References:
[1] E. Bonora, The metabolic syndrome and cardiovascular disease,
Ann Med 38(1) (2006) 64-80.
[2] P. Kasper, A. Martin, S. Lang, F. Kütting, T. Goeser, M. Demir,
H.M. Steffen, NAFLD and cardiovascular diseases: a clinical review, Clin
Res Cardiol 110(7) (2021) 921-937.
[3] E.J. Benjamin, S.S. Virani, C.W. Callaway, A.M. Chamberlain,
A.R. Chang, S. Cheng, S.E. Chiuve, M. Cushman, F.N. Delling, R. Deo,
S.D. de Ferranti, J.F. Ferguson, M. Fornage, C. Gillespie, C.R. Isasi,
M.C. Jiménez, L.C. Jordan, S.E. Judd, D. Lackland, J.H. Lichtman, L.
Lisabeth, S. Liu, C.T. Longenecker, P.L. Lutsey, J.S. Mackey, D.B.
Matchar, K. Matsushita, M.E. Mussolino, K. Nasir, M. O’Flaherty, L.P.
Palaniappan, A. Pandey, D.K. Pandey, M.J. Reeves, M.D. Ritchey, C.J.
Rodriguez, G.A. Roth, W.D. Rosamond, U.K.A. Sampson, G.M. Satou, S.H.
Shah, N.L. Spartano, D.L. Tirschwell, C.W. Tsao, J.H. Voeks, J.Z.
Willey, J.T. Wilkins, J.H. Wu, H.M. Alger, S.S. Wong, P. Muntner, Heart
Disease and Stroke Statistics-2018 Update: A Report From the American
Heart Association, Circulation 137(12) (2018) e67-e492.
[4] A. Timmis, N. Townsend, C. Gale, R. Grobbee, N. Maniadakis, M.
Flather, E. Wilkins, L. Wright, R. Vos, J. Bax, M. Blum, F. Pinto, P.
Vardas, European Society of Cardiology: Cardiovascular Disease
Statistics 2017, Eur Heart J 39(7) (2018) 508-579.
[5] M.G. Saklayen, The Global Epidemic of the Metabolic Syndrome,
Curr Hypertens Rep 20(2) (2018) 12.
[6] N. Townsend, M. Nichols, P. Scarborough, M. Rayner,
Cardiovascular disease in Europe–epidemiological update 2015, Eur
Heart J 36(40) (2015) 2696-705.
[7] G.A. Roth, M.H. Forouzanfar, A.E. Moran, R. Barber, G. Nguyen,
V.L. Feigin, M. Naghavi, G.A. Mensah, C.J. Murray, Demographic and
epidemiologic drivers of global cardiovascular mortality, N Engl J Med
372(14) (2015) 1333-41.
[8] J.I. Mechanick, M.E. Farkouh, J.D. Newman, W.T. Garvey,
Cardiometabolic-Based Chronic Disease, Adiposity and Dysglycemia
Drivers: JACC State-of-the-Art Review, J Am Coll Cardiol 75(5) (2020)
525-538.
[9] G.S. Hotamisligil, Foundations of Immunometabolism and
Implications for Metabolic Health and Disease, Immunity 47(3) (2017)
406-420.
[10] D.V. Ilatovskaya, G.V. Halade, K.Y. DeLeon-Pennell, Adaptive
immunity-driven inflammation and cardiovascular disease, Am J Physiol
Heart Circ Physiol 317(6) (2019) H1254-h1257.
[11] D. Pedicino, A.F. Giglio, A. Ruggio, G. Massaro, A. D’Aiello,
F. Trotta, C. Lucci, F. Graziani, L.M. Biasucci, F. Crea, G. Liuzzo,
Inflammasome, T Lymphocytes and Innate-Adaptive Immunity Crosstalk: Role
in Cardiovascular Disease and Therapeutic Perspectives, Thromb Haemost
118(8) (2018) 1352-1369.
[12] P. Libby, Interleukin-1 Beta as a Target for
Atherosclerosis Therapy: Biological Basis of CANTOS and Beyond, J Am
Coll Cardiol 70(18) (2017) 2278-2289.
[13] J. Danesh, S. Kaptoge, A.G. Mann, N. Sarwar, A. Wood, S.B.
Angleman, F. Wensley, J.P. Higgins, L. Lennon, G. Eiriksdottir, A.
Rumley, P.H. Whincup, G.D. Lowe, V. Gudnason, Long-term interleukin-6
levels and subsequent risk of coronary heart disease: two new
prospective studies and a systematic review, PLoS Med 5(4) (2008) e78.
[14] P.M. Ridker, From C-Reactive Protein to Interleukin-6 to
Interleukin-1: Moving Upstream To Identify Novel Targets for
Atheroprotection, Circ Res 118(1) (2016) 145-56.
[15] Y.L. Chen, Y.C. Qiao, Y.H. Pan, Y. Xu, Y.C. Huang, Y.H. Wang,
L.J. Geng, H.L. Zhao, X.X. Zhang, Correlation between serum
interleukin-6 level and type 1 diabetes mellitus: A systematic review
and meta-analysis, Cytokine 94 (2017) 14-20.
[16] M.A. Atieh, C.M. Faggion, Jr., G.J. Seymour, Cytokines in
patients with type 2 diabetes and chronic periodontitis: A systematic
review and meta-analysis, Diabetes Res Clin Pract 104(2) (2014) e38-45.
[17] T. Wang, C. He, Pro-inflammatory cytokines: The link between
obesity and osteoarthritis, Cytokine Growth Factor Rev 44 (2018) 38-50.
[18] J. Zhang, Y. Xu, W. Ding, M. Zhao, J. Liu, J. Ye, Z. Wang, D.
Ye, M. Wang, J. Wan, Increased expression of IL-20 is associated with
ischemic cardiomyopathy and acute myocardial infarction, Biomark Med
15(17) (2021) 1641-1650.
[19] M.N. Lyngbakken, P.L. Myhre, H. Røsjø, T. Omland, Novel
biomarkers of cardiovascular disease: Applications in clinical practice,
Crit Rev Clin Lab Sci 56(1) (2019) 33-60.
[20] P. Ruscitti, F. Masedu, S. Alvaro, P. Airò, N. Battafarano, L.
Cantarini, F.P. Cantatore, G. Carlino, V. D’Abrosca, M. Frassi, B.
Frediani, D. Iacono, V. Liakouli, R. Maggio, R. Mulè, I. Pantano, I.
Prevete, L. Sinigaglia, M. Valenti, O. Viapiana, P. Cipriani, R.
Giacomelli, Anti-interleukin-1 treatment in patients with rheumatoid
arthritis and type 2 diabetes (TRACK): A multicentre, open-label,
randomised controlled trial, PLoS Med 16(9) (2019) e1002901.
[21] M. Zhao, J. Zhang, Y. Xu, J. Liu, J. Ye, Z. Wang, D. Ye, Y.
Feng, S. Xu, W. Pan, M. Wang, J. Wan, Selective Inhibition of NLRP3
Inflammasome Reverses Pressure Overload-Induced Pathological Cardiac
Remodeling by Attenuating Hypertrophy, Fibrosis, and Inflammation, Int
Immunopharmacol 99 (2021) 108046.
[22] X. Unamuno, J. Gómez-Ambrosi, B. Ramírez, A. Rodríguez, S.
Becerril, V. Valentí, R. Moncada, C. Silva, J. Salvador, G. Frühbeck, V.
Catalán, NLRP3 inflammasome blockade reduces adipose tissue inflammation
and extracellular matrix remodeling, Cell Mol Immunol 18(4) (2021)
1045-1057.
[23] P.M. Ridker, B.M. Everett, A. Pradhan, J.G. MacFadyen, D.H.
Solomon, E. Zaharris, V. Mam, A. Hasan, Y. Rosenberg, E. Iturriaga, M.
Gupta, M. Tsigoulis, S. Verma, M. Clearfield, P. Libby, S.Z. Goldhaber,
R. Seagle, C. Ofori, M. Saklayen, S. Butman, N. Singh, M. Le May, O.
Bertrand, J. Johnston, N.P. Paynter, R.J. Glynn, Low-Dose Methotrexate
for the Prevention of Atherosclerotic Events, N Engl J Med 380(8) (2019)
752-762.
[24] E. Lutgens, D. Atzler, Y. Döring, J. Duchene, S. Steffens, C.
Weber, Immunotherapy for cardiovascular disease, Eur Heart J 40(48)
(2019) 3937-3946.
[25] X. Chen, Y. Wu, L. Wang, Fat-resident Tregs: an emerging guard
protecting from obesity-associated metabolic disorders, Obes Rev 14(7)
(2013) 568-78.
[26] J.M. Stolley, D. Masopust, Tissue-resident memory T cells live
off the fat of the land, Cell Res 27(7) (2017) 847-848.
[27] R. Zaman, H. Hamidzada, C. Kantores, A. Wong, S.A. Dick, Y.
Wang, A. Momen, L. Aronoff, J. Lin, B. Razani, S. Mital, F. Billia, K.J.
Lavine, S. Nejat, S. Epelman, Selective loss of resident
macrophage-derived insulin-like growth factor-1 abolishes adaptive
cardiac growth to stress, Immunity 54(9) (2021) 2057-2071.e6.
[28] N.R. Wong, J. Mohan, B.J. Kopecky, S. Guo, L. Du, J. Leid, G.
Feng, I. Lokshina, O. Dmytrenko, H. Luehmann, G. Bajpai, L. Ewald, L.
Bell, N. Patel, A. Bredemeyer, C.J. Weinheimer, J.M. Nigro, A. Kovacs,
S. Morimoto, P.O. Bayguinov, M.R. Fisher, W.T. Stump, M. Greenberg,
J.A.J. Fitzpatrick, S. Epelman, D. Kreisel, R. Sah, Y. Liu, H. Hu, K.J.
Lavine, Resident cardiac macrophages mediate adaptive myocardial
remodeling, Immunity 54(9) (2021) 2072-2088.e7.
[29] M.A. Gimbrone, Jr., G. García-Cardeña, Endothelial Cell
Dysfunction and the Pathobiology of Atherosclerosis, Circ Res 118(4)
(2016) 620-36.
[30] L.S. Tombor, D. John, S.F. Glaser, G. Luxán, E. Forte, M.
Furtado, N. Rosenthal, N. Baumgarten, M.H. Schulz, J. Wittig, E.M. Rogg,
Y. Manavski, A. Fischer, M. Muhly-Reinholz, K. Klee, M. Looso, C.
Selignow, T. Acker, S.I. Bibli, I. Fleming, R. Patrick, R.P. Harvey,
W.T. Abplanalp, S. Dimmeler, Single cell sequencing reveals endothelial
plasticity with transient mesenchymal activation after myocardial
infarction, Nat Commun 12(1) (2021) 681.
[31] M. Horckmans, M. Bianchini, D. Santovito, R.T.A. Megens, J.Y.
Springael, I. Negri, M. Vacca, M. Di Eusanio, A. Moschetta, C. Weber, J.
Duchene, S. Steffens, Pericardial Adipose Tissue Regulates
Granulopoiesis, Fibrosis, and Cardiac Function After Myocardial
Infarction, Circulation 137(9) (2018) 948-960.
[32] M.S. Burhans, D.K. Hagman, J.N. Kuzma, K.A. Schmidt, M. Kratz,
Contribution of Adipose Tissue Inflammation to the Development of Type 2
Diabetes Mellitus, Compr Physiol 9(1) (2018) 1-58.
[33] P. Matzinger, T. Kamala, Tissue-based class control: the other
side of tolerance, Nat Rev Immunol 11(3) (2011) 221-30.
[34] S.J. Galli, N. Borregaard, T.A. Wynn, Phenotypic and functional
plasticity of cells of innate immunity: macrophages, mast cells and
neutrophils, Nat Immunol 12(11) (2011) 1035-44.
[35] G. Hajishengallis, T. Chavakis, Endogenous modulators of
inflammatory cell recruitment, Trends Immunol 34(1) (2013) 1-6.
[36] L.M. Gonçalves, Angiogenic growth factors: potential new
treatment for acute myocardial infarction?, Cardiovasc Res 45(2) (2000)
294-302.
[37] N.G. Frangogiannis, Pathophysiology of Myocardial Infarction,
Compr Physiol 5(4) (2015) 1841-75.
[38] M.J. Daseke, 2nd, M.A.A. Tenkorang, U. Chalise, S.R. Konfrst,
M.L. Lindsey, Cardiac fibroblast activation during myocardial infarction
wound healing: Fibroblast polarization after MI, Matrix Biol 91-92
(2020) 109-116.
[39] G. Hajishengallis, T. Chavakis, DEL-1-Regulated Immune
Plasticity and Inflammatory Disorders, Trends Mol Med 25(5) (2019)
444-459.
[40] I. Kourtzelis, X. Li, I. Mitroulis, D. Grosser, T. Kajikawa, B.
Wang, M. Grzybek, J. von Renesse, A. Czogalla, M. Troullinaki, A.
Ferreira, C. Doreth, K. Ruppova, L.-S. Chen, K. Hosur, J.-H. Lim, K.-J.
Chung, S. Grossklaus, A.K. Tausche, L.A.B. Joosten, N.M. Moutsopoulos,
B. Wielockx, A. Castrillo, J.M. Korostoff, Ü. Coskun, G. Hajishengallis,
T. Chavakis, DEL-1 promotes macrophage efferocytosis and clearance of
inflammation, Nature immunology 20(1) (2019) 40-49.
[41] T. Failer, M. Amponsah-Offeh, A. Neuwirth, I. Kourtzelis, P.
Subramanian, P. Mirtschink, M. Peitzsch, K. Matschke, S.M. Tugtekin, T.
Kajikawa, X. Li, A. Steglich, F. Gembardt, A.C. Wegner, C. Hugo, G.
Hajishengallis, T. Chavakis, A. Deussen, V. Todorov, I. Kopaliani,
Developmental endothelial locus-1 protects from hypertension-induced
cardiovascular remodeling via immunomodulation, J Clin Invest 132(6)
(2022).
[42] X. Wei, S. Zou, Z. Xie, Z. Wang, N. Huang, Z. Cen, Y. Hao, C.
Zhang, Z. Chen, F. Zhao, Z. Hu, X. Teng, Y. Gui, X. Liu, H. Zheng, H.
Zhou, S. Chen, J. Cheng, F. Zeng, Y. Zhou, W. Wu, J. Hu, Y. Wei, K. Cui,
J. Li, EDIL3 deficiency ameliorates adverse cardiac remodeling by
neutrophil extracellular traps (NET)-mediated macrophage polarization,
Cardiovasc Res (2021).
[43] J.L. Sun, J. Park, T. Lee, J.H. Jeong, T.W. Jung, DEL-1
ameliorates high-fat diet-induced insulin resistance in mouse skeletal
muscle through SIRT1/SERCA2-mediated ER stress suppression, Biochem
Pharmacol 171 (2020) 113730.
[44] C. Hidai, T. Zupancic, K. Penta, A. Mikhail, M. Kawana, E.E.
Quertermous, Y. Aoka, M. Fukagawa, Y. Matsui, D. Platika, R. Auerbach,
B.L. Hogan, R. Snodgrass, T. Quertermous, Cloning and characterization
of developmental endothelial locus-1: an embryonic endothelial cell
protein that binds the alphavbeta3 integrin receptor, Genes Dev 12(1)
(1998) 21-33.
[45] M.A. Eskan, R. Jotwani, T. Abe, J. Chmelar, J.H. Lim, S. Liang,
P.A. Ciero, J.L. Krauss, F. Li, M. Rauner, L.C. Hofbauer, E.Y. Choi,
K.J. Chung, A. Hashim, M.A. Curtis, T. Chavakis, G. Hajishengallis, The
leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory
bone loss, Nat Immunol 13(5) (2012) 465-73.
[46] E.Y. Choi, E. Chavakis, M.A. Czabanka, H.F. Langer, L.
Fraemohs, M. Economopoulou, R.K. Kundu, A. Orlandi, Y.Y. Zheng, D.A.
Prieto, C.M. Ballantyne, S.L. Constant, W.C. Aird, T. Papayannopoulou,
C.G. Gahmberg, M.C. Udey, P. Vajkoczy, T. Quertermous, S. Dimmeler, C.
Weber, T. Chavakis, Del-1, an endogenous leukocyte-endothelial adhesion
inhibitor, limits inflammatory cell recruitment, Science 322(5904)
(2008) 1101-4.
[47] E.Y. Choi, J.H. Lim, A. Neuwirth, M. Economopoulou, A.
Chatzigeorgiou, K.J. Chung, S. Bittner, S.H. Lee, H. Langer, M. Samus,
H. Kim, G.S. Cho, T. Ziemssen, K. Bdeir, E. Chavakis, J.Y. Koh, L. Boon,
K. Hosur, S.R. Bornstein, S.G. Meuth, G. Hajishengallis, T. Chavakis,
Developmental endothelial locus-1 is a homeostatic factor in the central
nervous system limiting neuroinflammation and demyelination, Mol
Psychiatry 20(7) (2015) 880-888.
[48] J. Shin, T. Maekawa, T. Abe, E. Hajishengallis, K. Hosur, K.
Pyaram, I. Mitroulis, T. Chavakis, G. Hajishengallis, DEL-1 restrains
osteoclastogenesis and inhibits inflammatory bone loss in nonhuman
primates, Sci Transl Med 7(307) (2015) 307ra155.
[49] J. Shin, K.B. Hosur, K. Pyaram, R. Jotwani, S. Liang, T.
Chavakis, G. Hajishengallis, Expression and function of the homeostatic
molecule Del-1 in endothelial cells and the periodontal tissue, Clin Dev
Immunol 2013 (2013) 617809.
[50] M. Folwaczny, E. Karnesi, T. Berger, E. Paschos, Clinical
association between chronic periodontitis and the leukocyte
extravasation inhibitors developmental endothelial locus-1 and
pentraxin-3, Eur J Oral Sci 125(4) (2017) 258-264.
[51] T. Maekawa, H. Tamura, H. Domon, T. Hiyoshi, T. Isono, D.
Yonezawa, N. Hayashi, N. Takahashi, K. Tabeta, T. Maeda, M. Oda, A.
Ziogas, V.I. Alexaki, T. Chavakis, Y. Terao, G. Hajishengallis,
Erythromycin inhibits neutrophilic inflammation and mucosal disease by
upregulating DEL-1, JCI Insight 5(15) (2020).
[52] A. Ziogas, T. Maekawa, J.R. Wiessner, T.T. Le, D. Sprott, M.
Troullinaki, A. Neuwirth, V. Anastasopoulou, S. Grossklaus, K.J. Chung,
M. Sperandio, T. Chavakis, G. Hajishengallis, V.I. Alexaki, DHEA
Inhibits Leukocyte Recruitment through Regulation of the Integrin
Antagonist DEL-1, J Immunol 204(5) (2020) 1214-1224.
[53] H. Kim, S.H. Lee, M.N. Lee, G.T. Oh, K.C. Choi, E.Y. Choi, p53
regulates the transcription of the anti-inflammatory molecule
developmental endothelial locus-1 (Del-1), Oncotarget 4(11) (2013)
1976-85.
[54] J. Wenzina, S. Holzner, E. Puujalka, P.F. Cheng, A. Forsthuber,
K. Neumüller, K. Schossleitner, B.M. Lichtenberger, M.P. Levesque, P.
Petzelbauer, Inhibition of p38/MK2 Signaling Prevents Vascular Invasion
of Melanoma, J Invest Dermatol 140(4) (2020) 878-890.e5.
[55] A. Goris, S. Sawcer, K. Vandenbroeck, H. Carton, A. Billiau, E.
Setakis, A. Compston, B. Dubois, New candidate loci for multiple
sclerosis susceptibility revealed by a whole genome association screen
in a Belgian population, J Neuroimmunol 143(1-2) (2003) 65-9.
[56] T. Schürpf, Q. Chen, J.H. Liu, R. Wang, T.A. Springer, J.H.
Wang, The RGD finger of Del-1 is a unique structural feature critical
for integrin binding, Faseb j 26(8) (2012) 3412-20.
[57] J. Zhong, B. Eliceiri, D. Stupack, K. Penta, G. Sakamoto, T.
Quertermous, M. Coleman, N. Boudreau, J.A. Varner, Neovascularization of
ischemic tissues by gene delivery of the extracellular matrix protein
Del-1, J Clin Invest 112(1) (2003) 30-41.
[58] C. Hidai, M. Kawana, H. Kitano, S. Kokubun, Discoidin domain of
Del1 protein contributes to its deposition in the extracellular matrix,
Cell Tissue Res 330(1) (2007) 83-95.
[59] D. Vestweber, How leukocytes cross the vascular endothelium,
Nat Rev Immunol 15(11) (2015) 692-704.
[60] Y.Y. Kang, D.Y. Kim, S.H. Lee, E.Y. Choi, Deficiency of
developmental endothelial locus-1 (Del-1) aggravates bleomycin-induced
pulmonary fibrosis in mice, Biochem Biophys Res Commun 445(2) (2014)
369-74.
[61] I. Kourtzelis, K. Kotlabova, J.H. Lim, I. Mitroulis, A.
Ferreira, L.S. Chen, B. Gercken, A. Steffen, E. Kemter, A. Klotzsche-von
Ameln, C. Waskow, K. Hosur, A. Chatzigeorgiou, B. Ludwig, E. Wolf, G.
Hajishengallis, T. Chavakis, Developmental endothelial locus-1 modulates
platelet-monocyte interactions and instant blood-mediated inflammatory
reaction in islet transplantation, Thromb Haemost 115(4) (2016) 781-8.
[62] S.K. Dasgupta, A. Le, T. Chavakis, R.E. Rumbaut, P.
Thiagarajan, Developmental endothelial locus-1 (Del-1) mediates
clearance of platelet microparticles by the endothelium, Circulation
125(13) (2012) 1664-72.
[63] R. Hanayama, M. Tanaka, K. Miwa, S. Nagata, Expression of
developmental endothelial locus-1 in a subset of macrophages for
engulfment of apoptotic cells, J Immunol 172(6) (2004) 3876-82.
[64] G. Hajishengallis, T. Chavakis, DEL-1: a potential therapeutic
target in inflammatory and autoimmune disease?, Expert Rev Clin Immunol
17(6) (2021) 549-552.
[65] Y. Fu, J. Tsauo, Y. Sun, Z. Wang, K.Y. Kim, S.H. Lee, D.Y. Kim,
F. Jing, D. Lim, H.Y. Song, H. Hyun, E.Y. Choi, Developmental
endothelial locus-1 prevents development of peritoneal adhesions in
mice, Biochem Biophys Res Commun 500(3) (2018) 783-789.
[66] I. Mitroulis, L.S. Chen, R.P. Singh, I. Kourtzelis, M.
Economopoulou, T. Kajikawa, M. Troullinaki, A. Ziogas, K. Ruppova, K.
Hosur, T. Maekawa, B. Wang, P. Subramanian, T. Tonn, P. Verginis, M. von
Bonin, M. Wobus, M. Bornhäuser, T. Grinenko, M. Di Scala, A. Hidalgo, B.
Wielockx, G. Hajishengallis, T. Chavakis, Secreted protein Del-1
regulates myelopoiesis in the hematopoietic stem cell niche, J Clin
Invest 127(10) (2017) 3624-3639.
[67] G.R. Geovanini, P. Libby, Atherosclerosis and inflammation:
overview and updates, Clin Sci (Lond) 132(12) (2018) 1243-1252.
[68] P.N. Hopkins, Molecular biology of atherosclerosis, Physiol Rev
93(3) (2013) 1317-542.
[69] P. Libby, The changing landscape of atherosclerosis, Nature
592(7855) (2021) 524-533.
[70] A.J. Lusis, Atherosclerosis, Nature 407(6801) (2000) 233-41.
[71] N.A. Finn, D. Eapen, P. Manocha, H. Al Kassem, B. Lassegue, N.
Ghasemzadeh, A. Quyyumi, C.D. Searles, Coronary heart disease alters
intercellular communication by modifying microparticle-mediated microRNA
transport, FEBS Lett 587(21) (2013) 3456-63.
[72] A. Kakino, Y. Fujita, A. Nakano, S. Horiuchi, T. Sawamura,
Developmental Endothelial Locus-1 (Del-1) Inhibits Oxidized Low-Density
Lipoprotein Activity by Direct Binding, and Its Overexpression
Attenuates Atherogenesis in Mice, Circ J 80(12) (2016) 2541-2549.
[73] P. Subramanian, M. Prucnal, B. Gercken, M. Economopoulou, G.
Hajishengallis, T. Chavakis, Endothelial cell-specific overexpression of
developmental endothelial locus-1 does not influence atherosclerosis
development in ApoE(-/-) mice, Thromb Haemost 117(10) (2017) 2003-2005.
[74] L. Burnier, P. Fontana, A. Angelillo-Scherrer, B.R. Kwak,
Intercellular communication in atherosclerosis, Physiology (Bethesda) 24
(2009) 36-44.
[75] C.M. Boulanger, F. Dignat-George, Microparticles: an
introduction, Arterioscler Thromb Vasc Biol 31(1) (2011) 2-3.
[76] A. Benetos, M. Petrovic, T. Strandberg, Hypertension Management
in Older and Frail Older Patients, Circ Res 124(7) (2019) 1045-1060.
[77] L.L. Cooper, J. Rong, E.J. Benjamin, M.G. Larson, D. Levy, J.A.
Vita, N.M. Hamburg, R.S. Vasan, G.F. Mitchell, Components of hemodynamic
load and cardiovascular events: the Framingham Heart Study, Circulation
131(4) (2015) 354-61; discussion 361.
[78] M.S. Madhur, F. Elijovich, M.R. Alexander, A. Pitzer, J.
Ishimwe, J.P. Van Beusecum, D.M. Patrick, C.D. Smart, T.R. Kleyman, J.
Kingery, R.N. Peck, C.L. Laffer, A. Kirabo, Hypertension: Do
Inflammation and Immunity Hold the Key to Solving this Epidemic?, Circ
Res 128(7) (2021) 908-933.
[79] J. Ye, B. Que, Y. Huang, Y. Lin, J. Chen, L. Liu, Y. Shi, Y.
Wang, M. Wang, T. Zeng, Z. Wang, H. Hu, Y. Xu, L. Shi, D. Ye, J. Liu, H.
Jiang, J. Wan, Q. Ji, Interleukin-12p35 knockout promotes macrophage
differentiation, aggravates vascular dysfunction, and elevates blood
pressure in angiotensin II-infused mice, Cardiovasc Res 115(6) (2019)
1102-1113.
[80] J. Ye, Y. Wang, Z. Wang, Q. Ji, Y. Huang, T. Zeng, H. Hu, D.
Ye, J. Wan, Y. Lin, Circulating Th1, Th2, Th9, Th17, Th22, and Treg
Levels in Aortic Dissection Patients, Mediators Inflamm 2018 (2018)
5697149.
[81] J. Ye, Y. Wang, Z. Wang, Y. Lin, L. Liu, Q. Zhou, M. Wang, Y.
Xu, D. Ye, J. Zhang, J. Wan, Q. Ji, Circulating IL-37 levels are
elevated in patients with hypertension, Exp Ther Med 21(6) (2021) 558.
[82] J. Ye, Y. Wang, Z. Wang, L. Liu, Z. Yang, M. Wang, Y. Xu, D.
Ye, J. Zhang, Q. Zhou, Y. Lin, Q. Ji, J. Wan, The Expression of IL-12
Family Members in Patients with Hypertension and Its Association with
the Occurrence of Carotid Atherosclerosis, Mediators Inflamm 2020 (2020)
2369279.
[83] J. Ye, Q. Ji, J. Liu, L. Liu, Y. Huang, Y. Shi, L. Shi, M.
Wang, M. Liu, Y. Feng, H. Jiang, Y. Xu, Z. Wang, J. Song, Y. Lin, J.
Wan, Interleukin 22 Promotes Blood Pressure Elevation and Endothelial
Dysfunction in Angiotensin II-Treated Mice, J Am Heart Assoc 6(10)
(2017).
[84] A. Kirabo, V. Fontana, A.P. de Faria, R. Loperena, C.L.
Galindo, J. Wu, A.T. Bikineyeva, S. Dikalov, L. Xiao, W. Chen, M.A.
Saleh, D.W. Trott, H.A. Itani, A. Vinh, V. Amarnath, K. Amarnath, T.J.
Guzik, K.E. Bernstein, X.Z. Shen, Y. Shyr, S.C. Chen, R.L. Mernaugh,
C.L. Laffer, F. Elijovich, S.S. Davies, H. Moreno, M.S. Madhur, J.
Roberts, 2nd, D.G. Harrison, DC isoketal-modified proteins activate T
cells and promote hypertension, J Clin Invest 124(10) (2014) 4642-56.
[85] H.A. Itani, W.G. McMaster, Jr., M.A. Saleh, R.R. Nazarewicz,
T.P. Mikolajczyk, A.M. Kaszuba, A. Konior, A. Prejbisz, A. Januszewicz,
A.E. Norlander, W. Chen, R.H. Bonami, A.F. Marshall, G. Poffenberger,
C.M. Weyand, M.S. Madhur, D.J. Moore, D.G. Harrison, T.J. Guzik,
Activation of Human T Cells in Hypertension: Studies of Humanized Mice
and Hypertensive Humans, Hypertension 68(1) (2016) 123-32.
[86] M.A. Saleh, A.E. Norlander, M.S. Madhur, Inhibition of
Interleukin 17-A but not Interleukin-17F Signaling Lowers Blood Pressure
and Reduces End-organ Inflammation in Angiotensin II-induced
Hypertension, JACC Basic Transl Sci 1(7) (2016) 606-616.
[87] M.S. Madhur, H.E. Lob, L.A. McCann, Y. Iwakura, Y. Blinder,
T.J. Guzik, D.G. Harrison, Interleukin 17 promotes angiotensin
II-induced hypertension and vascular dysfunction, Hypertension 55(2)
(2010) 500-7.
[88] Y. Li, Y. Wu, C. Zhang, P. Li, W. Cui, J. Hao, X. Ma, Z. Yin,
J. Du, γδT Cell-derived interleukin-17A via an interleukin-1β-dependent
mechanism mediates cardiac injury and fibrosis in hypertension,
Hypertension 64(2) (2014) 305-14.
[89] T. Basting, E. Lazartigues, DOCA-Salt Hypertension: an Update,
Curr Hypertens Rep 19(4) (2017) 32.
[90] C.A. Amador, V. Barrientos, J. Peña, A.A. Herrada, M. González,
S. Valdés, L. Carrasco, R. Alzamora, F. Figueroa, A.M. Kalergis, L.
Michea, Spironolactone decreases DOCA-salt-induced organ damage by
blocking the activation of T helper 17 and the downregulation of
regulatory T lymphocytes, Hypertension 63(4) (2014) 797-803.
[91] M. Rezaee, K. Penta, T. Quertermous, Del1 mediates VSMC
adhesion, migration, and proliferation through interaction with integrin
alpha(v)beta(3), Am J Physiol Heart Circ Physiol 282(5) (2002) H1924-32.
[92] T. Barhoumi, J.C. Fraulob-Aquino, M.O.R. Mian, S. Ouerd, N.
Idris-Khodja, K.G. Huo, A. Rehman, A. Caillon, B. Dancose-Giambattisto,
T. Ebrahimian, S. Lehoux, P. Paradis, E.L. Schiffrin, Matrix
metalloproteinase-2 knockout prevents angiotensin II-induced vascular
injury, Cardiovasc Res 113(14) (2017) 1753-1762.
[93] C. Diaz-Canestro, Y.M. Puspitasari, L. Liberale, T.J. Guzik,
A.J. Flammer, N.R. Bonetti, P. Wüst, S. Costantino, F. Paneni, A.
Akhmedov, Z. Varga, S. Ministrini, J.H. Beer, F. Ruschitzka, M. Hermann,
T.F. Lüscher, I. Sudano, G.G. Camici, MMP-2 knockdown blunts
age-dependent carotid stiffness by decreasing elastin degradation and
augmenting eNOS activation, Cardiovasc Res (2021).
[94] P. Liu, M. Sun, S. Sader, Matrix metalloproteinases in
cardiovascular disease, Can J Cardiol 22 Suppl B(Suppl B) (2006)
25b-30b.
[95] M. Nakamura, J. Sadoshima, Mechanisms of physiological and
pathological cardiac hypertrophy, Nat Rev Cardiol 15(7) (2018) 387-407.
[96] B.C. Bernardo, K.L. Weeks, L. Pretorius, J.R. McMullen,
Molecular distinction between physiological and pathological cardiac
hypertrophy: experimental findings and therapeutic strategies, Pharmacol
Ther 128(1) (2010) 191-227.
[97] I. Shimizu, T. Minamino, Physiological and pathological cardiac
hypertrophy, J Mol Cell Cardiol 97 (2016) 245-62.
[98] M. Wang, M. Zhao, J. Yu, Y. Xu, J. Zhang, J. Liu, Z. Zheng, J.
Ye, Z. Wang, D. Ye, Y. Feng, S. Xu, W. Pan, C. Wei, J. Wan, MCC950, a
Selective NLRP3 Inhibitor, Attenuates Adverse Cardiac Remodeling
Following Heart Failure Through Improving the Cardiometabolic
Dysfunction in Obese Mice, Front Cardiovasc Med 9 (2022) 727474.
[99] Z. Wang, Y. Xu, M. Wang, J. Ye, J. Liu, H. Jiang, D. Ye, J.
Wan, TRPA1 inhibition ameliorates pressure overload-induced cardiac
hypertrophy and fibrosis in mice, EBioMedicine 36 (2018) 54-62.
[100] J. Ye, L. Liu, Q. Ji, Y. Huang, Y. Shi, L. Shi, J. Liu, M.
Wang, Y. Xu, H. Jiang, Z. Wang, Y. Lin, J. Wan,
Anti-Interleukin-22-Neutralizing Antibody Attenuates Angiotensin
II-Induced Cardiac Hypertrophy in Mice, Mediators Inflamm 2017 (2017)
5635929.
[101] Z. Wang, D. Ye, J. Ye, M. Wang, J. Liu, H. Jiang, Y. Xu, J.
Zhang, J. Chen, J. Wan, The TRPA1 Channel in the Cardiovascular System:
Promising Features and Challenges, Front Pharmacol 10 (2019) 1253.
[102] A.R. Pinto, A. Ilinykh, M.J. Ivey, J.T. Kuwabara, M.L.
D’Antoni, R. Debuque, A. Chandran, L. Wang, K. Arora, N.A. Rosenthal,
M.D. Tallquist, Revisiting Cardiac Cellular Composition, Circ Res 118(3)
(2016) 400-9.
[103] H.W. Vliegen, A. van der Laarse, C.J. Cornelisse, F.
Eulderink, Myocardial changes in pressure overload-induced left
ventricular hypertrophy. A study on tissue composition, polyploidization
and multinucleation, Eur Heart J 12(4) (1991) 488-94.
[104] D.Y. Kim, S.H. Lee, Y. Fu, F. Jing, W.Y. Kim, S.B. Hong, J.A.
Song, H. Choe, H.J. Ryu, M. Kim, D. Lim, M.S. Kim, C.O. Yun, T. Lee, H.
Hyun, E.Y. Choi, Del-1, an Endogenous Inhibitor of TGF-β Activation,
Attenuates Fibrosis, Front Immunol 11 (2020) 68.
[105] G. Heusch, Molecular basis of cardioprotection: signal
transduction in ischemic pre-, post-, and remote conditioning, Circ Res
116(4) (2015) 674-99.
[106] A.E. Moran, M.H. Forouzanfar, G.A. Roth, G.A. Mensah, M.
Ezzati, A. Flaxman, C.J. Murray, M. Naghavi, The global burden of
ischemic heart disease in 1990 and 2010: the Global Burden of Disease
2010 study, Circulation 129(14) (2014) 1493-501.
[107] M.H. Kown, T. Suzuki, M.L. Koransky, K. Penta, G. Sakamoto,
C.L. Jahncke, A.J. Carter, T. Quertermous, R.C. Robbins, Comparison of
developmental endothelial locus-1 angiogenic factor with vascular
endothelial growth factor in a porcine model of cardiac ischemia, Ann
Thorac Surg 76(4) (2003) 1246-51.
[108] M. Nahrendorf, F.K. Swirski, E. Aikawa, L. Stangenberg, T.
Wurdinger, J.L. Figueiredo, P. Libby, R. Weissleder, M.J. Pittet, The
healing myocardium sequentially mobilizes two monocyte subsets with
divergent and complementary functions, J Exp Med 204(12) (2007) 3037-47.
[109] N.G. Frangogiannis, The inflammatory response in myocardial
injury, repair, and remodelling, Nat Rev Cardiol 11(5) (2014) 255-65.
[110] V. Frodermann, M. Nahrendorf, Neutrophil-macrophage cross-talk
in acute myocardial infarction, Eur Heart J 38(3) (2017) 198-200.
[111] N.G. Frangogiannis, Regulation of the inflammatory response in
cardiac repair, Circ Res 110(1) (2012) 159-73.
[112] H. Wang, X. Li, T. Kajikawa, J. Shin, J.H. Lim, I. Kourtzelis,
K. Nagai, J.M. Korostoff, S. Grossklaus, R. Naumann, T. Chavakis, G.
Hajishengallis, Stromal cell-derived DEL-1 inhibits Tfh cell activation
and inflammatory arthritis, J Clin Invest 131(19) (2021).
[113] X. Li, A. Colamatteo, L. Kalafati, T. Kajikawa, H. Wang, J.H.
Lim, K. Bdeir, K.J. Chung, X. Yu, C. Fusco, A. Porcellini, S. De Simone,
G. Matarese, T. Chavakis, V. De Rosa, G. Hajishengallis, The DEL-1/β3
integrin axis promotes regulatory T cell responses during inflammation
resolution, J Clin Invest 130(12) (2020) 6261-6277.
[114] L. Deban, R.C. Russo, M. Sironi, F. Moalli, M. Scanziani, V.
Zambelli, I. Cuccovillo, A. Bastone, M. Gobbi, S. Valentino, A. Doni, C.
Garlanda, S. Danese, G. Salvatori, M. Sassano, V. Evangelista, B. Rossi,
E. Zenaro, G. Constantin, C. Laudanna, B. Bottazzi, A. Mantovani,
Regulation of leukocyte recruitment by the long pentraxin PTX3, Nat
Immunol 11(4) (2010) 328-34.
[115] M. Salio, S. Chimenti, N. De Angelis, F. Molla, V. Maina, M.
Nebuloni, F. Pasqualini, R. Latini, C. Garlanda, A. Mantovani,
Cardioprotective function of the long pentraxin PTX3 in acute myocardial
infarction, Circulation 117(8) (2008) 1055-64.
[116] T. Kempf, A. Zarbock, C. Widera, S. Butz, A. Stadtmann, J.
Rossaint, M. Bolomini-Vittori, M. Korf-Klingebiel, L.C. Napp, B. Hansen,
A. Kanwischer, U. Bavendiek, G. Beutel, M. Hapke, M.G. Sauer, C.
Laudanna, N. Hogg, D. Vestweber, K.C. Wollert, GDF-15 is an inhibitor of
leukocyte integrin activation required for survival after myocardial
infarction in mice, Nat Med 17(5) (2011) 581-8.
[117] R. Li, J. Zeng, T. Ren, Expression of DEL-1 in alveolar
epithelial cells prevents lipopolysaccharide-induced inflammation,
oxidative stress, and eosinophil recruitment in acute lung injury, Int
Immunopharmacol 110 (2022) 108961.
[118] Y. Fan, W. Zhu, M. Yang, Y. Zhu, F. Shen, Q. Hao, W.L. Young,
G.Y. Yang, Y. Chen, Del-1 gene transfer induces cerebral angiogenesis in
mice, Brain Res 1219 (2008) 1-7.
[119] E.C. Ciucurel, A.E. Vlahos, M.V. Sefton, Using Del-1 to tip
the angiogenic balance in endothelial cells in modular constructs,
Tissue Eng Part A 20(7-8) (2014) 1222-34.
[120] K. Penta, J.A. Varner, L. Liaw, C. Hidai, R. Schatzman, T.
Quertermous, Del1 induces integrin signaling and angiogenesis by
ligation of alphaVbeta3, J Biol Chem 274(16) (1999) 11101-9.
[121] Y. Aoka, F.L. Johnson, K. Penta, K. Hirata Ki, C. Hidai, R.
Schatzman, J.A. Varner, T. Quertermous, The embryonic angiogenic factor
Del1 accelerates tumor growth by enhancing vascular formation, Microvasc
Res 64(1) (2002) 148-61.
[122] H.K. Ho, J.J. Jang, S. Kaji, G. Spektor, A. Fong, P. Yang,
B.S. Hu, R. Schatzman, T. Quertermous, J.P. Cooke, Developmental
endothelial locus-1 (Del-1), a novel angiogenic protein: its role in
ischemia, Circulation 109(10) (2004) 1314-9.
[123] P.M. Grossman, F. Mendelsohn, T.D. Henry, J.B. Hermiller, M.
Litt, J.F. Saucedo, R.J. Weiss, D.E. Kandzari, N. Kleiman, R.D.
Anderson, D. Gottlieb, R. Karlsberg, J. Snell, K. Rocha-Singh, Results
from a phase II multicenter, double-blind placebo-controlled study of
Del-1 (VLTS-589) for intermittent claudication in subjects with
peripheral arterial disease, Am Heart J 153(5) (2007) 874-80.
[124] E.C. Ciucurel, M.V. Sefton, Del-1 overexpression in
endothelial cells increases vascular density in tissue-engineered
implants containing endothelial cells and adipose-derived mesenchymal
stromal cells, Tissue Eng Part A 20(7-8) (2014) 1235-52.
[125] A. Klotzsche-von Ameln, S. Cremer, J. Hoffmann, P. Schuster,
S. Khedr, I. Korovina, M. Troullinaki, A. Neuwirth, D. Sprott, A.
Chatzigeorgiou, M. Economopoulou, A. Orlandi, A. Hain, A.M. Zeiher, A.
Deussen, G. Hajishengallis, S. Dimmeler, T. Chavakis, E. Chavakis,
Endogenous developmental endothelial locus-1 limits ischaemia-related
angiogenesis by blocking inflammation, Thromb Haemost 117(6) (2017)
1150-1163.
[126] D. Jeong, S. Ban, S. Oh, S. Jin Lee, S. Yong Park, Y.W. Koh,
Prognostic Significance of EDIL3 Expression and Correlation with
Mesenchymal Phenotype and Microvessel Density in Lung Adenocarcinoma,
Sci Rep 7(1) (2017) 8649.
[127] W. Shen, S. Zhu, H. Qin, M. Zhong, J. Wu, R. Zhang, H. Song,
EDIL3 knockdown inhibits retinal angiogenesis through the induction of
cell cycle arrest in vitro, Mol Med Rep 16(4) (2017) 4054-4060.
[128] X. Niu, Q. Han, Y. Liu, J. Li, R. Hou, J. Li, K. Zhang,
Psoriasis-associated angiogenesis is mediated by EDIL3, Microvasc Res
132 (2020) 104056.
[129] H. Kitano, A. Mamiya, T. Ishikawa, Y. Fujiwara, Y. Masaoka, T.
Miki, C. Hidai, An Epidermal Growth Factor Motif of Developmental
Endothelial Locus 1 Protein Inhibits Efficient Angiogenesis in Explanted
Squamous Cell Carcinoma In Vivo, Rev Invest Clin 73(1) (2020) 039-051.
[130] A. Kalani, P.K. Kamat, K. Kalani, N. Tyagi, Epigenetic impact
of curcumin on stroke prevention, Metab Brain Dis 30(2) (2015) 427-35.
[131] S.C. Cramer, G. Nelles, R.R. Benson, J.D. Kaplan, R.A. Parker,
K.K. Kwong, D.N. Kennedy, S.P. Finklestein, B.R. Rosen, A functional MRI
study of subjects recovered from hemiparetic stroke, Stroke 28(12)
(1997) 2518-27.
[132] C.A. Altar, P. Laeng, L.W. Jurata, J.A. Brockman, A. Lemire,
J. Bullard, Y.V. Bukhman, T.A. Young, V. Charles, M.G. Palfreyman,
Electroconvulsive seizures regulate gene expression of distinct
neurotrophic signaling pathways, J Neurosci 24(11) (2004) 2667-77.
[133] S.S. Newton, E.F. Collier, J. Hunsberger, D. Adams, R.
Terwilliger, E. Selvanayagam, R.S. Duman, Gene profile of
electroconvulsive seizures: induction of neurotrophic and angiogenic
factors, J Neurosci 23(34) (2003) 10841-51.
[134] S.S. Newton, M.J. Girgenti, E.F. Collier, R.S. Duman,
Electroconvulsive seizure increases adult hippocampal angiogenesis in
rats, Eur J Neurosci 24(3) (2006) 819-28.
[135] Worldwide trends in diabetes since 1980: a pooled analysis of
751 population-based studies with 4.4 million participants, Lancet
387(10027) (2016) 1513-1530.
[136] R. Stöhr, M. Federici, Insulin resistance and atherosclerosis:
convergence between metabolic pathways and inflammatory nodes, Biochem J
454(1) (2013) 1-11.
[137] T.V. Rohm, D.T. Meier, J.M. Olefsky, M.Y. Donath, Inflammation
in obesity, diabetes, and related disorders, Immunity 55(1) (2022)
31-55.
[138] L. Stefani, G. Galanti, Physical Exercise Prescription in
Metabolic Chronic Disease, Adv Exp Med Biol 1005 (2017) 123-141.
[139] C.H. Kwon, J.L. Sun, M.J. Kim, A.M. Abd El-Aty, J.H. Jeong,
T.W. Jung, Clinically confirmed DEL-1 as a myokine attenuates
lipid-induced inflammation and insulin resistance in 3T3-L1 adipocytes
via AMPK/HO-1- pathway, Adipocyte 9(1) (2020) 576-586.
[140] S.P. Weisberg, D. McCann, M. Desai, M. Rosenbaum, R.L. Leibel,
A.W. Ferrante, Jr., Obesity is associated with macrophage accumulation
in adipose tissue, J Clin Invest 112(12) (2003) 1796-808.
[141] L.P. Cobb, S. Siamakpour-Reihani, D. Zhang, X. Qin, K. Owzar,
C. Zhou, T.P. Conrads, G.L. Maxwell, K.M. Darcy, N.W. Bateman, T. Litzi,
V. Bae-Jump, A.A. Secord, Obesity and altered angiogenic-related gene
expression in endometrial cancer, Gynecol Oncol 163(2) (2021) 320-326.
[142] W.Y. Kim, S.H. Lee, D.Y. Kim, H.J. Ryu, G.R. Chon, Y.Y. Park,
Y. Fu, J.W. Huh, C.M. Lim, Y. Koh, E.Y. Choi, S.B. Hong, Serum
developmental endothelial locus-1 is associated with severity of sepsis
in animals and humans, Sci Rep 9(1) (2019) 13005.
[143] Z. Christoforakis, E. Dermitzaki, E. Paflioti, M. Katrinaki,
M. Deiktakis, H.T. T, K. Ballalis, C. Tsatsanis, M. Venihaki, G.
Kontakis, Correlation of systemic metabolic inflammation with knee
osteoarthritis, Hormones (Athens) (2022).