References:
[1] E. Bonora, The metabolic syndrome and cardiovascular disease, Ann Med 38(1) (2006) 64-80.
[2] P. Kasper, A. Martin, S. Lang, F. Kütting, T. Goeser, M. Demir, H.M. Steffen, NAFLD and cardiovascular diseases: a clinical review, Clin Res Cardiol 110(7) (2021) 921-937.
[3] E.J. Benjamin, S.S. Virani, C.W. Callaway, A.M. Chamberlain, A.R. Chang, S. Cheng, S.E. Chiuve, M. Cushman, F.N. Delling, R. Deo, S.D. de Ferranti, J.F. Ferguson, M. Fornage, C. Gillespie, C.R. Isasi, M.C. Jiménez, L.C. Jordan, S.E. Judd, D. Lackland, J.H. Lichtman, L. Lisabeth, S. Liu, C.T. Longenecker, P.L. Lutsey, J.S. Mackey, D.B. Matchar, K. Matsushita, M.E. Mussolino, K. Nasir, M. O’Flaherty, L.P. Palaniappan, A. Pandey, D.K. Pandey, M.J. Reeves, M.D. Ritchey, C.J. Rodriguez, G.A. Roth, W.D. Rosamond, U.K.A. Sampson, G.M. Satou, S.H. Shah, N.L. Spartano, D.L. Tirschwell, C.W. Tsao, J.H. Voeks, J.Z. Willey, J.T. Wilkins, J.H. Wu, H.M. Alger, S.S. Wong, P. Muntner, Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association, Circulation 137(12) (2018) e67-e492.
[4] A. Timmis, N. Townsend, C. Gale, R. Grobbee, N. Maniadakis, M. Flather, E. Wilkins, L. Wright, R. Vos, J. Bax, M. Blum, F. Pinto, P. Vardas, European Society of Cardiology: Cardiovascular Disease Statistics 2017, Eur Heart J 39(7) (2018) 508-579.
[5] M.G. Saklayen, The Global Epidemic of the Metabolic Syndrome, Curr Hypertens Rep 20(2) (2018) 12.
[6] N. Townsend, M. Nichols, P. Scarborough, M. Rayner, Cardiovascular disease in Europe–epidemiological update 2015, Eur Heart J 36(40) (2015) 2696-705.
[7] G.A. Roth, M.H. Forouzanfar, A.E. Moran, R. Barber, G. Nguyen, V.L. Feigin, M. Naghavi, G.A. Mensah, C.J. Murray, Demographic and epidemiologic drivers of global cardiovascular mortality, N Engl J Med 372(14) (2015) 1333-41.
[8] J.I. Mechanick, M.E. Farkouh, J.D. Newman, W.T. Garvey, Cardiometabolic-Based Chronic Disease, Adiposity and Dysglycemia Drivers: JACC State-of-the-Art Review, J Am Coll Cardiol 75(5) (2020) 525-538.
[9] G.S. Hotamisligil, Foundations of Immunometabolism and Implications for Metabolic Health and Disease, Immunity 47(3) (2017) 406-420.
[10] D.V. Ilatovskaya, G.V. Halade, K.Y. DeLeon-Pennell, Adaptive immunity-driven inflammation and cardiovascular disease, Am J Physiol Heart Circ Physiol 317(6) (2019) H1254-h1257.
[11] D. Pedicino, A.F. Giglio, A. Ruggio, G. Massaro, A. D’Aiello, F. Trotta, C. Lucci, F. Graziani, L.M. Biasucci, F. Crea, G. Liuzzo, Inflammasome, T Lymphocytes and Innate-Adaptive Immunity Crosstalk: Role in Cardiovascular Disease and Therapeutic Perspectives, Thromb Haemost 118(8) (2018) 1352-1369.
[12] P. Libby, Interleukin-1 Beta as a Target for Atherosclerosis Therapy: Biological Basis of CANTOS and Beyond, J Am Coll Cardiol 70(18) (2017) 2278-2289.
[13] J. Danesh, S. Kaptoge, A.G. Mann, N. Sarwar, A. Wood, S.B. Angleman, F. Wensley, J.P. Higgins, L. Lennon, G. Eiriksdottir, A. Rumley, P.H. Whincup, G.D. Lowe, V. Gudnason, Long-term interleukin-6 levels and subsequent risk of coronary heart disease: two new prospective studies and a systematic review, PLoS Med 5(4) (2008) e78.
[14] P.M. Ridker, From C-Reactive Protein to Interleukin-6 to Interleukin-1: Moving Upstream To Identify Novel Targets for Atheroprotection, Circ Res 118(1) (2016) 145-56.
[15] Y.L. Chen, Y.C. Qiao, Y.H. Pan, Y. Xu, Y.C. Huang, Y.H. Wang, L.J. Geng, H.L. Zhao, X.X. Zhang, Correlation between serum interleukin-6 level and type 1 diabetes mellitus: A systematic review and meta-analysis, Cytokine 94 (2017) 14-20.
[16] M.A. Atieh, C.M. Faggion, Jr., G.J. Seymour, Cytokines in patients with type 2 diabetes and chronic periodontitis: A systematic review and meta-analysis, Diabetes Res Clin Pract 104(2) (2014) e38-45.
[17] T. Wang, C. He, Pro-inflammatory cytokines: The link between obesity and osteoarthritis, Cytokine Growth Factor Rev 44 (2018) 38-50.
[18] J. Zhang, Y. Xu, W. Ding, M. Zhao, J. Liu, J. Ye, Z. Wang, D. Ye, M. Wang, J. Wan, Increased expression of IL-20 is associated with ischemic cardiomyopathy and acute myocardial infarction, Biomark Med 15(17) (2021) 1641-1650.
[19] M.N. Lyngbakken, P.L. Myhre, H. Røsjø, T. Omland, Novel biomarkers of cardiovascular disease: Applications in clinical practice, Crit Rev Clin Lab Sci 56(1) (2019) 33-60.
[20] P. Ruscitti, F. Masedu, S. Alvaro, P. Airò, N. Battafarano, L. Cantarini, F.P. Cantatore, G. Carlino, V. D’Abrosca, M. Frassi, B. Frediani, D. Iacono, V. Liakouli, R. Maggio, R. Mulè, I. Pantano, I. Prevete, L. Sinigaglia, M. Valenti, O. Viapiana, P. Cipriani, R. Giacomelli, Anti-interleukin-1 treatment in patients with rheumatoid arthritis and type 2 diabetes (TRACK): A multicentre, open-label, randomised controlled trial, PLoS Med 16(9) (2019) e1002901.
[21] M. Zhao, J. Zhang, Y. Xu, J. Liu, J. Ye, Z. Wang, D. Ye, Y. Feng, S. Xu, W. Pan, M. Wang, J. Wan, Selective Inhibition of NLRP3 Inflammasome Reverses Pressure Overload-Induced Pathological Cardiac Remodeling by Attenuating Hypertrophy, Fibrosis, and Inflammation, Int Immunopharmacol 99 (2021) 108046.
[22] X. Unamuno, J. Gómez-Ambrosi, B. Ramírez, A. Rodríguez, S. Becerril, V. Valentí, R. Moncada, C. Silva, J. Salvador, G. Frühbeck, V. Catalán, NLRP3 inflammasome blockade reduces adipose tissue inflammation and extracellular matrix remodeling, Cell Mol Immunol 18(4) (2021) 1045-1057.
[23] P.M. Ridker, B.M. Everett, A. Pradhan, J.G. MacFadyen, D.H. Solomon, E. Zaharris, V. Mam, A. Hasan, Y. Rosenberg, E. Iturriaga, M. Gupta, M. Tsigoulis, S. Verma, M. Clearfield, P. Libby, S.Z. Goldhaber, R. Seagle, C. Ofori, M. Saklayen, S. Butman, N. Singh, M. Le May, O. Bertrand, J. Johnston, N.P. Paynter, R.J. Glynn, Low-Dose Methotrexate for the Prevention of Atherosclerotic Events, N Engl J Med 380(8) (2019) 752-762.
[24] E. Lutgens, D. Atzler, Y. Döring, J. Duchene, S. Steffens, C. Weber, Immunotherapy for cardiovascular disease, Eur Heart J 40(48) (2019) 3937-3946.
[25] X. Chen, Y. Wu, L. Wang, Fat-resident Tregs: an emerging guard protecting from obesity-associated metabolic disorders, Obes Rev 14(7) (2013) 568-78.
[26] J.M. Stolley, D. Masopust, Tissue-resident memory T cells live off the fat of the land, Cell Res 27(7) (2017) 847-848.
[27] R. Zaman, H. Hamidzada, C. Kantores, A. Wong, S.A. Dick, Y. Wang, A. Momen, L. Aronoff, J. Lin, B. Razani, S. Mital, F. Billia, K.J. Lavine, S. Nejat, S. Epelman, Selective loss of resident macrophage-derived insulin-like growth factor-1 abolishes adaptive cardiac growth to stress, Immunity 54(9) (2021) 2057-2071.e6.
[28] N.R. Wong, J. Mohan, B.J. Kopecky, S. Guo, L. Du, J. Leid, G. Feng, I. Lokshina, O. Dmytrenko, H. Luehmann, G. Bajpai, L. Ewald, L. Bell, N. Patel, A. Bredemeyer, C.J. Weinheimer, J.M. Nigro, A. Kovacs, S. Morimoto, P.O. Bayguinov, M.R. Fisher, W.T. Stump, M. Greenberg, J.A.J. Fitzpatrick, S. Epelman, D. Kreisel, R. Sah, Y. Liu, H. Hu, K.J. Lavine, Resident cardiac macrophages mediate adaptive myocardial remodeling, Immunity 54(9) (2021) 2072-2088.e7.
[29] M.A. Gimbrone, Jr., G. García-Cardeña, Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis, Circ Res 118(4) (2016) 620-36.
[30] L.S. Tombor, D. John, S.F. Glaser, G. Luxán, E. Forte, M. Furtado, N. Rosenthal, N. Baumgarten, M.H. Schulz, J. Wittig, E.M. Rogg, Y. Manavski, A. Fischer, M. Muhly-Reinholz, K. Klee, M. Looso, C. Selignow, T. Acker, S.I. Bibli, I. Fleming, R. Patrick, R.P. Harvey, W.T. Abplanalp, S. Dimmeler, Single cell sequencing reveals endothelial plasticity with transient mesenchymal activation after myocardial infarction, Nat Commun 12(1) (2021) 681.
[31] M. Horckmans, M. Bianchini, D. Santovito, R.T.A. Megens, J.Y. Springael, I. Negri, M. Vacca, M. Di Eusanio, A. Moschetta, C. Weber, J. Duchene, S. Steffens, Pericardial Adipose Tissue Regulates Granulopoiesis, Fibrosis, and Cardiac Function After Myocardial Infarction, Circulation 137(9) (2018) 948-960.
[32] M.S. Burhans, D.K. Hagman, J.N. Kuzma, K.A. Schmidt, M. Kratz, Contribution of Adipose Tissue Inflammation to the Development of Type 2 Diabetes Mellitus, Compr Physiol 9(1) (2018) 1-58.
[33] P. Matzinger, T. Kamala, Tissue-based class control: the other side of tolerance, Nat Rev Immunol 11(3) (2011) 221-30.
[34] S.J. Galli, N. Borregaard, T.A. Wynn, Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils, Nat Immunol 12(11) (2011) 1035-44.
[35] G. Hajishengallis, T. Chavakis, Endogenous modulators of inflammatory cell recruitment, Trends Immunol 34(1) (2013) 1-6.
[36] L.M. Gonçalves, Angiogenic growth factors: potential new treatment for acute myocardial infarction?, Cardiovasc Res 45(2) (2000) 294-302.
[37] N.G. Frangogiannis, Pathophysiology of Myocardial Infarction, Compr Physiol 5(4) (2015) 1841-75.
[38] M.J. Daseke, 2nd, M.A.A. Tenkorang, U. Chalise, S.R. Konfrst, M.L. Lindsey, Cardiac fibroblast activation during myocardial infarction wound healing: Fibroblast polarization after MI, Matrix Biol 91-92 (2020) 109-116.
[39] G. Hajishengallis, T. Chavakis, DEL-1-Regulated Immune Plasticity and Inflammatory Disorders, Trends Mol Med 25(5) (2019) 444-459.
[40] I. Kourtzelis, X. Li, I. Mitroulis, D. Grosser, T. Kajikawa, B. Wang, M. Grzybek, J. von Renesse, A. Czogalla, M. Troullinaki, A. Ferreira, C. Doreth, K. Ruppova, L.-S. Chen, K. Hosur, J.-H. Lim, K.-J. Chung, S. Grossklaus, A.K. Tausche, L.A.B. Joosten, N.M. Moutsopoulos, B. Wielockx, A. Castrillo, J.M. Korostoff, Ü. Coskun, G. Hajishengallis, T. Chavakis, DEL-1 promotes macrophage efferocytosis and clearance of inflammation, Nature immunology 20(1) (2019) 40-49.
[41] T. Failer, M. Amponsah-Offeh, A. Neuwirth, I. Kourtzelis, P. Subramanian, P. Mirtschink, M. Peitzsch, K. Matschke, S.M. Tugtekin, T. Kajikawa, X. Li, A. Steglich, F. Gembardt, A.C. Wegner, C. Hugo, G. Hajishengallis, T. Chavakis, A. Deussen, V. Todorov, I. Kopaliani, Developmental endothelial locus-1 protects from hypertension-induced cardiovascular remodeling via immunomodulation, J Clin Invest 132(6) (2022).
[42] X. Wei, S. Zou, Z. Xie, Z. Wang, N. Huang, Z. Cen, Y. Hao, C. Zhang, Z. Chen, F. Zhao, Z. Hu, X. Teng, Y. Gui, X. Liu, H. Zheng, H. Zhou, S. Chen, J. Cheng, F. Zeng, Y. Zhou, W. Wu, J. Hu, Y. Wei, K. Cui, J. Li, EDIL3 deficiency ameliorates adverse cardiac remodeling by neutrophil extracellular traps (NET)-mediated macrophage polarization, Cardiovasc Res (2021).
[43] J.L. Sun, J. Park, T. Lee, J.H. Jeong, T.W. Jung, DEL-1 ameliorates high-fat diet-induced insulin resistance in mouse skeletal muscle through SIRT1/SERCA2-mediated ER stress suppression, Biochem Pharmacol 171 (2020) 113730.
[44] C. Hidai, T. Zupancic, K. Penta, A. Mikhail, M. Kawana, E.E. Quertermous, Y. Aoka, M. Fukagawa, Y. Matsui, D. Platika, R. Auerbach, B.L. Hogan, R. Snodgrass, T. Quertermous, Cloning and characterization of developmental endothelial locus-1: an embryonic endothelial cell protein that binds the alphavbeta3 integrin receptor, Genes Dev 12(1) (1998) 21-33.
[45] M.A. Eskan, R. Jotwani, T. Abe, J. Chmelar, J.H. Lim, S. Liang, P.A. Ciero, J.L. Krauss, F. Li, M. Rauner, L.C. Hofbauer, E.Y. Choi, K.J. Chung, A. Hashim, M.A. Curtis, T. Chavakis, G. Hajishengallis, The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss, Nat Immunol 13(5) (2012) 465-73.
[46] E.Y. Choi, E. Chavakis, M.A. Czabanka, H.F. Langer, L. Fraemohs, M. Economopoulou, R.K. Kundu, A. Orlandi, Y.Y. Zheng, D.A. Prieto, C.M. Ballantyne, S.L. Constant, W.C. Aird, T. Papayannopoulou, C.G. Gahmberg, M.C. Udey, P. Vajkoczy, T. Quertermous, S. Dimmeler, C. Weber, T. Chavakis, Del-1, an endogenous leukocyte-endothelial adhesion inhibitor, limits inflammatory cell recruitment, Science 322(5904) (2008) 1101-4.
[47] E.Y. Choi, J.H. Lim, A. Neuwirth, M. Economopoulou, A. Chatzigeorgiou, K.J. Chung, S. Bittner, S.H. Lee, H. Langer, M. Samus, H. Kim, G.S. Cho, T. Ziemssen, K. Bdeir, E. Chavakis, J.Y. Koh, L. Boon, K. Hosur, S.R. Bornstein, S.G. Meuth, G. Hajishengallis, T. Chavakis, Developmental endothelial locus-1 is a homeostatic factor in the central nervous system limiting neuroinflammation and demyelination, Mol Psychiatry 20(7) (2015) 880-888.
[48] J. Shin, T. Maekawa, T. Abe, E. Hajishengallis, K. Hosur, K. Pyaram, I. Mitroulis, T. Chavakis, G. Hajishengallis, DEL-1 restrains osteoclastogenesis and inhibits inflammatory bone loss in nonhuman primates, Sci Transl Med 7(307) (2015) 307ra155.
[49] J. Shin, K.B. Hosur, K. Pyaram, R. Jotwani, S. Liang, T. Chavakis, G. Hajishengallis, Expression and function of the homeostatic molecule Del-1 in endothelial cells and the periodontal tissue, Clin Dev Immunol 2013 (2013) 617809.
[50] M. Folwaczny, E. Karnesi, T. Berger, E. Paschos, Clinical association between chronic periodontitis and the leukocyte extravasation inhibitors developmental endothelial locus-1 and pentraxin-3, Eur J Oral Sci 125(4) (2017) 258-264.
[51] T. Maekawa, H. Tamura, H. Domon, T. Hiyoshi, T. Isono, D. Yonezawa, N. Hayashi, N. Takahashi, K. Tabeta, T. Maeda, M. Oda, A. Ziogas, V.I. Alexaki, T. Chavakis, Y. Terao, G. Hajishengallis, Erythromycin inhibits neutrophilic inflammation and mucosal disease by upregulating DEL-1, JCI Insight 5(15) (2020).
[52] A. Ziogas, T. Maekawa, J.R. Wiessner, T.T. Le, D. Sprott, M. Troullinaki, A. Neuwirth, V. Anastasopoulou, S. Grossklaus, K.J. Chung, M. Sperandio, T. Chavakis, G. Hajishengallis, V.I. Alexaki, DHEA Inhibits Leukocyte Recruitment through Regulation of the Integrin Antagonist DEL-1, J Immunol 204(5) (2020) 1214-1224.
[53] H. Kim, S.H. Lee, M.N. Lee, G.T. Oh, K.C. Choi, E.Y. Choi, p53 regulates the transcription of the anti-inflammatory molecule developmental endothelial locus-1 (Del-1), Oncotarget 4(11) (2013) 1976-85.
[54] J. Wenzina, S. Holzner, E. Puujalka, P.F. Cheng, A. Forsthuber, K. Neumüller, K. Schossleitner, B.M. Lichtenberger, M.P. Levesque, P. Petzelbauer, Inhibition of p38/MK2 Signaling Prevents Vascular Invasion of Melanoma, J Invest Dermatol 140(4) (2020) 878-890.e5.
[55] A. Goris, S. Sawcer, K. Vandenbroeck, H. Carton, A. Billiau, E. Setakis, A. Compston, B. Dubois, New candidate loci for multiple sclerosis susceptibility revealed by a whole genome association screen in a Belgian population, J Neuroimmunol 143(1-2) (2003) 65-9.
[56] T. Schürpf, Q. Chen, J.H. Liu, R. Wang, T.A. Springer, J.H. Wang, The RGD finger of Del-1 is a unique structural feature critical for integrin binding, Faseb j 26(8) (2012) 3412-20.
[57] J. Zhong, B. Eliceiri, D. Stupack, K. Penta, G. Sakamoto, T. Quertermous, M. Coleman, N. Boudreau, J.A. Varner, Neovascularization of ischemic tissues by gene delivery of the extracellular matrix protein Del-1, J Clin Invest 112(1) (2003) 30-41.
[58] C. Hidai, M. Kawana, H. Kitano, S. Kokubun, Discoidin domain of Del1 protein contributes to its deposition in the extracellular matrix, Cell Tissue Res 330(1) (2007) 83-95.
[59] D. Vestweber, How leukocytes cross the vascular endothelium, Nat Rev Immunol 15(11) (2015) 692-704.
[60] Y.Y. Kang, D.Y. Kim, S.H. Lee, E.Y. Choi, Deficiency of developmental endothelial locus-1 (Del-1) aggravates bleomycin-induced pulmonary fibrosis in mice, Biochem Biophys Res Commun 445(2) (2014) 369-74.
[61] I. Kourtzelis, K. Kotlabova, J.H. Lim, I. Mitroulis, A. Ferreira, L.S. Chen, B. Gercken, A. Steffen, E. Kemter, A. Klotzsche-von Ameln, C. Waskow, K. Hosur, A. Chatzigeorgiou, B. Ludwig, E. Wolf, G. Hajishengallis, T. Chavakis, Developmental endothelial locus-1 modulates platelet-monocyte interactions and instant blood-mediated inflammatory reaction in islet transplantation, Thromb Haemost 115(4) (2016) 781-8.
[62] S.K. Dasgupta, A. Le, T. Chavakis, R.E. Rumbaut, P. Thiagarajan, Developmental endothelial locus-1 (Del-1) mediates clearance of platelet microparticles by the endothelium, Circulation 125(13) (2012) 1664-72.
[63] R. Hanayama, M. Tanaka, K. Miwa, S. Nagata, Expression of developmental endothelial locus-1 in a subset of macrophages for engulfment of apoptotic cells, J Immunol 172(6) (2004) 3876-82.
[64] G. Hajishengallis, T. Chavakis, DEL-1: a potential therapeutic target in inflammatory and autoimmune disease?, Expert Rev Clin Immunol 17(6) (2021) 549-552.
[65] Y. Fu, J. Tsauo, Y. Sun, Z. Wang, K.Y. Kim, S.H. Lee, D.Y. Kim, F. Jing, D. Lim, H.Y. Song, H. Hyun, E.Y. Choi, Developmental endothelial locus-1 prevents development of peritoneal adhesions in mice, Biochem Biophys Res Commun 500(3) (2018) 783-789.
[66] I. Mitroulis, L.S. Chen, R.P. Singh, I. Kourtzelis, M. Economopoulou, T. Kajikawa, M. Troullinaki, A. Ziogas, K. Ruppova, K. Hosur, T. Maekawa, B. Wang, P. Subramanian, T. Tonn, P. Verginis, M. von Bonin, M. Wobus, M. Bornhäuser, T. Grinenko, M. Di Scala, A. Hidalgo, B. Wielockx, G. Hajishengallis, T. Chavakis, Secreted protein Del-1 regulates myelopoiesis in the hematopoietic stem cell niche, J Clin Invest 127(10) (2017) 3624-3639.
[67] G.R. Geovanini, P. Libby, Atherosclerosis and inflammation: overview and updates, Clin Sci (Lond) 132(12) (2018) 1243-1252.
[68] P.N. Hopkins, Molecular biology of atherosclerosis, Physiol Rev 93(3) (2013) 1317-542.
[69] P. Libby, The changing landscape of atherosclerosis, Nature 592(7855) (2021) 524-533.
[70] A.J. Lusis, Atherosclerosis, Nature 407(6801) (2000) 233-41.
[71] N.A. Finn, D. Eapen, P. Manocha, H. Al Kassem, B. Lassegue, N. Ghasemzadeh, A. Quyyumi, C.D. Searles, Coronary heart disease alters intercellular communication by modifying microparticle-mediated microRNA transport, FEBS Lett 587(21) (2013) 3456-63.
[72] A. Kakino, Y. Fujita, A. Nakano, S. Horiuchi, T. Sawamura, Developmental Endothelial Locus-1 (Del-1) Inhibits Oxidized Low-Density Lipoprotein Activity by Direct Binding, and Its Overexpression Attenuates Atherogenesis in Mice, Circ J 80(12) (2016) 2541-2549.
[73] P. Subramanian, M. Prucnal, B. Gercken, M. Economopoulou, G. Hajishengallis, T. Chavakis, Endothelial cell-specific overexpression of developmental endothelial locus-1 does not influence atherosclerosis development in ApoE(-/-) mice, Thromb Haemost 117(10) (2017) 2003-2005.
[74] L. Burnier, P. Fontana, A. Angelillo-Scherrer, B.R. Kwak, Intercellular communication in atherosclerosis, Physiology (Bethesda) 24 (2009) 36-44.
[75] C.M. Boulanger, F. Dignat-George, Microparticles: an introduction, Arterioscler Thromb Vasc Biol 31(1) (2011) 2-3.
[76] A. Benetos, M. Petrovic, T. Strandberg, Hypertension Management in Older and Frail Older Patients, Circ Res 124(7) (2019) 1045-1060.
[77] L.L. Cooper, J. Rong, E.J. Benjamin, M.G. Larson, D. Levy, J.A. Vita, N.M. Hamburg, R.S. Vasan, G.F. Mitchell, Components of hemodynamic load and cardiovascular events: the Framingham Heart Study, Circulation 131(4) (2015) 354-61; discussion 361.
[78] M.S. Madhur, F. Elijovich, M.R. Alexander, A. Pitzer, J. Ishimwe, J.P. Van Beusecum, D.M. Patrick, C.D. Smart, T.R. Kleyman, J. Kingery, R.N. Peck, C.L. Laffer, A. Kirabo, Hypertension: Do Inflammation and Immunity Hold the Key to Solving this Epidemic?, Circ Res 128(7) (2021) 908-933.
[79] J. Ye, B. Que, Y. Huang, Y. Lin, J. Chen, L. Liu, Y. Shi, Y. Wang, M. Wang, T. Zeng, Z. Wang, H. Hu, Y. Xu, L. Shi, D. Ye, J. Liu, H. Jiang, J. Wan, Q. Ji, Interleukin-12p35 knockout promotes macrophage differentiation, aggravates vascular dysfunction, and elevates blood pressure in angiotensin II-infused mice, Cardiovasc Res 115(6) (2019) 1102-1113.
[80] J. Ye, Y. Wang, Z. Wang, Q. Ji, Y. Huang, T. Zeng, H. Hu, D. Ye, J. Wan, Y. Lin, Circulating Th1, Th2, Th9, Th17, Th22, and Treg Levels in Aortic Dissection Patients, Mediators Inflamm 2018 (2018) 5697149.
[81] J. Ye, Y. Wang, Z. Wang, Y. Lin, L. Liu, Q. Zhou, M. Wang, Y. Xu, D. Ye, J. Zhang, J. Wan, Q. Ji, Circulating IL-37 levels are elevated in patients with hypertension, Exp Ther Med 21(6) (2021) 558.
[82] J. Ye, Y. Wang, Z. Wang, L. Liu, Z. Yang, M. Wang, Y. Xu, D. Ye, J. Zhang, Q. Zhou, Y. Lin, Q. Ji, J. Wan, The Expression of IL-12 Family Members in Patients with Hypertension and Its Association with the Occurrence of Carotid Atherosclerosis, Mediators Inflamm 2020 (2020) 2369279.
[83] J. Ye, Q. Ji, J. Liu, L. Liu, Y. Huang, Y. Shi, L. Shi, M. Wang, M. Liu, Y. Feng, H. Jiang, Y. Xu, Z. Wang, J. Song, Y. Lin, J. Wan, Interleukin 22 Promotes Blood Pressure Elevation and Endothelial Dysfunction in Angiotensin II-Treated Mice, J Am Heart Assoc 6(10) (2017).
[84] A. Kirabo, V. Fontana, A.P. de Faria, R. Loperena, C.L. Galindo, J. Wu, A.T. Bikineyeva, S. Dikalov, L. Xiao, W. Chen, M.A. Saleh, D.W. Trott, H.A. Itani, A. Vinh, V. Amarnath, K. Amarnath, T.J. Guzik, K.E. Bernstein, X.Z. Shen, Y. Shyr, S.C. Chen, R.L. Mernaugh, C.L. Laffer, F. Elijovich, S.S. Davies, H. Moreno, M.S. Madhur, J. Roberts, 2nd, D.G. Harrison, DC isoketal-modified proteins activate T cells and promote hypertension, J Clin Invest 124(10) (2014) 4642-56.
[85] H.A. Itani, W.G. McMaster, Jr., M.A. Saleh, R.R. Nazarewicz, T.P. Mikolajczyk, A.M. Kaszuba, A. Konior, A. Prejbisz, A. Januszewicz, A.E. Norlander, W. Chen, R.H. Bonami, A.F. Marshall, G. Poffenberger, C.M. Weyand, M.S. Madhur, D.J. Moore, D.G. Harrison, T.J. Guzik, Activation of Human T Cells in Hypertension: Studies of Humanized Mice and Hypertensive Humans, Hypertension 68(1) (2016) 123-32.
[86] M.A. Saleh, A.E. Norlander, M.S. Madhur, Inhibition of Interleukin 17-A but not Interleukin-17F Signaling Lowers Blood Pressure and Reduces End-organ Inflammation in Angiotensin II-induced Hypertension, JACC Basic Transl Sci 1(7) (2016) 606-616.
[87] M.S. Madhur, H.E. Lob, L.A. McCann, Y. Iwakura, Y. Blinder, T.J. Guzik, D.G. Harrison, Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction, Hypertension 55(2) (2010) 500-7.
[88] Y. Li, Y. Wu, C. Zhang, P. Li, W. Cui, J. Hao, X. Ma, Z. Yin, J. Du, γδT Cell-derived interleukin-17A via an interleukin-1β-dependent mechanism mediates cardiac injury and fibrosis in hypertension, Hypertension 64(2) (2014) 305-14.
[89] T. Basting, E. Lazartigues, DOCA-Salt Hypertension: an Update, Curr Hypertens Rep 19(4) (2017) 32.
[90] C.A. Amador, V. Barrientos, J. Peña, A.A. Herrada, M. González, S. Valdés, L. Carrasco, R. Alzamora, F. Figueroa, A.M. Kalergis, L. Michea, Spironolactone decreases DOCA-salt-induced organ damage by blocking the activation of T helper 17 and the downregulation of regulatory T lymphocytes, Hypertension 63(4) (2014) 797-803.
[91] M. Rezaee, K. Penta, T. Quertermous, Del1 mediates VSMC adhesion, migration, and proliferation through interaction with integrin alpha(v)beta(3), Am J Physiol Heart Circ Physiol 282(5) (2002) H1924-32.
[92] T. Barhoumi, J.C. Fraulob-Aquino, M.O.R. Mian, S. Ouerd, N. Idris-Khodja, K.G. Huo, A. Rehman, A. Caillon, B. Dancose-Giambattisto, T. Ebrahimian, S. Lehoux, P. Paradis, E.L. Schiffrin, Matrix metalloproteinase-2 knockout prevents angiotensin II-induced vascular injury, Cardiovasc Res 113(14) (2017) 1753-1762.
[93] C. Diaz-Canestro, Y.M. Puspitasari, L. Liberale, T.J. Guzik, A.J. Flammer, N.R. Bonetti, P. Wüst, S. Costantino, F. Paneni, A. Akhmedov, Z. Varga, S. Ministrini, J.H. Beer, F. Ruschitzka, M. Hermann, T.F. Lüscher, I. Sudano, G.G. Camici, MMP-2 knockdown blunts age-dependent carotid stiffness by decreasing elastin degradation and augmenting eNOS activation, Cardiovasc Res (2021).
[94] P. Liu, M. Sun, S. Sader, Matrix metalloproteinases in cardiovascular disease, Can J Cardiol 22 Suppl B(Suppl B) (2006) 25b-30b.
[95] M. Nakamura, J. Sadoshima, Mechanisms of physiological and pathological cardiac hypertrophy, Nat Rev Cardiol 15(7) (2018) 387-407.
[96] B.C. Bernardo, K.L. Weeks, L. Pretorius, J.R. McMullen, Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies, Pharmacol Ther 128(1) (2010) 191-227.
[97] I. Shimizu, T. Minamino, Physiological and pathological cardiac hypertrophy, J Mol Cell Cardiol 97 (2016) 245-62.
[98] M. Wang, M. Zhao, J. Yu, Y. Xu, J. Zhang, J. Liu, Z. Zheng, J. Ye, Z. Wang, D. Ye, Y. Feng, S. Xu, W. Pan, C. Wei, J. Wan, MCC950, a Selective NLRP3 Inhibitor, Attenuates Adverse Cardiac Remodeling Following Heart Failure Through Improving the Cardiometabolic Dysfunction in Obese Mice, Front Cardiovasc Med 9 (2022) 727474.
[99] Z. Wang, Y. Xu, M. Wang, J. Ye, J. Liu, H. Jiang, D. Ye, J. Wan, TRPA1 inhibition ameliorates pressure overload-induced cardiac hypertrophy and fibrosis in mice, EBioMedicine 36 (2018) 54-62.
[100] J. Ye, L. Liu, Q. Ji, Y. Huang, Y. Shi, L. Shi, J. Liu, M. Wang, Y. Xu, H. Jiang, Z. Wang, Y. Lin, J. Wan, Anti-Interleukin-22-Neutralizing Antibody Attenuates Angiotensin II-Induced Cardiac Hypertrophy in Mice, Mediators Inflamm 2017 (2017) 5635929.
[101] Z. Wang, D. Ye, J. Ye, M. Wang, J. Liu, H. Jiang, Y. Xu, J. Zhang, J. Chen, J. Wan, The TRPA1 Channel in the Cardiovascular System: Promising Features and Challenges, Front Pharmacol 10 (2019) 1253.
[102] A.R. Pinto, A. Ilinykh, M.J. Ivey, J.T. Kuwabara, M.L. D’Antoni, R. Debuque, A. Chandran, L. Wang, K. Arora, N.A. Rosenthal, M.D. Tallquist, Revisiting Cardiac Cellular Composition, Circ Res 118(3) (2016) 400-9.
[103] H.W. Vliegen, A. van der Laarse, C.J. Cornelisse, F. Eulderink, Myocardial changes in pressure overload-induced left ventricular hypertrophy. A study on tissue composition, polyploidization and multinucleation, Eur Heart J 12(4) (1991) 488-94.
[104] D.Y. Kim, S.H. Lee, Y. Fu, F. Jing, W.Y. Kim, S.B. Hong, J.A. Song, H. Choe, H.J. Ryu, M. Kim, D. Lim, M.S. Kim, C.O. Yun, T. Lee, H. Hyun, E.Y. Choi, Del-1, an Endogenous Inhibitor of TGF-β Activation, Attenuates Fibrosis, Front Immunol 11 (2020) 68.
[105] G. Heusch, Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning, Circ Res 116(4) (2015) 674-99.
[106] A.E. Moran, M.H. Forouzanfar, G.A. Roth, G.A. Mensah, M. Ezzati, A. Flaxman, C.J. Murray, M. Naghavi, The global burden of ischemic heart disease in 1990 and 2010: the Global Burden of Disease 2010 study, Circulation 129(14) (2014) 1493-501.
[107] M.H. Kown, T. Suzuki, M.L. Koransky, K. Penta, G. Sakamoto, C.L. Jahncke, A.J. Carter, T. Quertermous, R.C. Robbins, Comparison of developmental endothelial locus-1 angiogenic factor with vascular endothelial growth factor in a porcine model of cardiac ischemia, Ann Thorac Surg 76(4) (2003) 1246-51.
[108] M. Nahrendorf, F.K. Swirski, E. Aikawa, L. Stangenberg, T. Wurdinger, J.L. Figueiredo, P. Libby, R. Weissleder, M.J. Pittet, The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions, J Exp Med 204(12) (2007) 3037-47.
[109] N.G. Frangogiannis, The inflammatory response in myocardial injury, repair, and remodelling, Nat Rev Cardiol 11(5) (2014) 255-65.
[110] V. Frodermann, M. Nahrendorf, Neutrophil-macrophage cross-talk in acute myocardial infarction, Eur Heart J 38(3) (2017) 198-200.
[111] N.G. Frangogiannis, Regulation of the inflammatory response in cardiac repair, Circ Res 110(1) (2012) 159-73.
[112] H. Wang, X. Li, T. Kajikawa, J. Shin, J.H. Lim, I. Kourtzelis, K. Nagai, J.M. Korostoff, S. Grossklaus, R. Naumann, T. Chavakis, G. Hajishengallis, Stromal cell-derived DEL-1 inhibits Tfh cell activation and inflammatory arthritis, J Clin Invest 131(19) (2021).
[113] X. Li, A. Colamatteo, L. Kalafati, T. Kajikawa, H. Wang, J.H. Lim, K. Bdeir, K.J. Chung, X. Yu, C. Fusco, A. Porcellini, S. De Simone, G. Matarese, T. Chavakis, V. De Rosa, G. Hajishengallis, The DEL-1/β3 integrin axis promotes regulatory T cell responses during inflammation resolution, J Clin Invest 130(12) (2020) 6261-6277.
[114] L. Deban, R.C. Russo, M. Sironi, F. Moalli, M. Scanziani, V. Zambelli, I. Cuccovillo, A. Bastone, M. Gobbi, S. Valentino, A. Doni, C. Garlanda, S. Danese, G. Salvatori, M. Sassano, V. Evangelista, B. Rossi, E. Zenaro, G. Constantin, C. Laudanna, B. Bottazzi, A. Mantovani, Regulation of leukocyte recruitment by the long pentraxin PTX3, Nat Immunol 11(4) (2010) 328-34.
[115] M. Salio, S. Chimenti, N. De Angelis, F. Molla, V. Maina, M. Nebuloni, F. Pasqualini, R. Latini, C. Garlanda, A. Mantovani, Cardioprotective function of the long pentraxin PTX3 in acute myocardial infarction, Circulation 117(8) (2008) 1055-64.
[116] T. Kempf, A. Zarbock, C. Widera, S. Butz, A. Stadtmann, J. Rossaint, M. Bolomini-Vittori, M. Korf-Klingebiel, L.C. Napp, B. Hansen, A. Kanwischer, U. Bavendiek, G. Beutel, M. Hapke, M.G. Sauer, C. Laudanna, N. Hogg, D. Vestweber, K.C. Wollert, GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice, Nat Med 17(5) (2011) 581-8.
[117] R. Li, J. Zeng, T. Ren, Expression of DEL-1 in alveolar epithelial cells prevents lipopolysaccharide-induced inflammation, oxidative stress, and eosinophil recruitment in acute lung injury, Int Immunopharmacol 110 (2022) 108961.
[118] Y. Fan, W. Zhu, M. Yang, Y. Zhu, F. Shen, Q. Hao, W.L. Young, G.Y. Yang, Y. Chen, Del-1 gene transfer induces cerebral angiogenesis in mice, Brain Res 1219 (2008) 1-7.
[119] E.C. Ciucurel, A.E. Vlahos, M.V. Sefton, Using Del-1 to tip the angiogenic balance in endothelial cells in modular constructs, Tissue Eng Part A 20(7-8) (2014) 1222-34.
[120] K. Penta, J.A. Varner, L. Liaw, C. Hidai, R. Schatzman, T. Quertermous, Del1 induces integrin signaling and angiogenesis by ligation of alphaVbeta3, J Biol Chem 274(16) (1999) 11101-9.
[121] Y. Aoka, F.L. Johnson, K. Penta, K. Hirata Ki, C. Hidai, R. Schatzman, J.A. Varner, T. Quertermous, The embryonic angiogenic factor Del1 accelerates tumor growth by enhancing vascular formation, Microvasc Res 64(1) (2002) 148-61.
[122] H.K. Ho, J.J. Jang, S. Kaji, G. Spektor, A. Fong, P. Yang, B.S. Hu, R. Schatzman, T. Quertermous, J.P. Cooke, Developmental endothelial locus-1 (Del-1), a novel angiogenic protein: its role in ischemia, Circulation 109(10) (2004) 1314-9.
[123] P.M. Grossman, F. Mendelsohn, T.D. Henry, J.B. Hermiller, M. Litt, J.F. Saucedo, R.J. Weiss, D.E. Kandzari, N. Kleiman, R.D. Anderson, D. Gottlieb, R. Karlsberg, J. Snell, K. Rocha-Singh, Results from a phase II multicenter, double-blind placebo-controlled study of Del-1 (VLTS-589) for intermittent claudication in subjects with peripheral arterial disease, Am Heart J 153(5) (2007) 874-80.
[124] E.C. Ciucurel, M.V. Sefton, Del-1 overexpression in endothelial cells increases vascular density in tissue-engineered implants containing endothelial cells and adipose-derived mesenchymal stromal cells, Tissue Eng Part A 20(7-8) (2014) 1235-52.
[125] A. Klotzsche-von Ameln, S. Cremer, J. Hoffmann, P. Schuster, S. Khedr, I. Korovina, M. Troullinaki, A. Neuwirth, D. Sprott, A. Chatzigeorgiou, M. Economopoulou, A. Orlandi, A. Hain, A.M. Zeiher, A. Deussen, G. Hajishengallis, S. Dimmeler, T. Chavakis, E. Chavakis, Endogenous developmental endothelial locus-1 limits ischaemia-related angiogenesis by blocking inflammation, Thromb Haemost 117(6) (2017) 1150-1163.
[126] D. Jeong, S. Ban, S. Oh, S. Jin Lee, S. Yong Park, Y.W. Koh, Prognostic Significance of EDIL3 Expression and Correlation with Mesenchymal Phenotype and Microvessel Density in Lung Adenocarcinoma, Sci Rep 7(1) (2017) 8649.
[127] W. Shen, S. Zhu, H. Qin, M. Zhong, J. Wu, R. Zhang, H. Song, EDIL3 knockdown inhibits retinal angiogenesis through the induction of cell cycle arrest in vitro, Mol Med Rep 16(4) (2017) 4054-4060.
[128] X. Niu, Q. Han, Y. Liu, J. Li, R. Hou, J. Li, K. Zhang, Psoriasis-associated angiogenesis is mediated by EDIL3, Microvasc Res 132 (2020) 104056.
[129] H. Kitano, A. Mamiya, T. Ishikawa, Y. Fujiwara, Y. Masaoka, T. Miki, C. Hidai, An Epidermal Growth Factor Motif of Developmental Endothelial Locus 1 Protein Inhibits Efficient Angiogenesis in Explanted Squamous Cell Carcinoma In Vivo, Rev Invest Clin 73(1) (2020) 039-051.
[130] A. Kalani, P.K. Kamat, K. Kalani, N. Tyagi, Epigenetic impact of curcumin on stroke prevention, Metab Brain Dis 30(2) (2015) 427-35.
[131] S.C. Cramer, G. Nelles, R.R. Benson, J.D. Kaplan, R.A. Parker, K.K. Kwong, D.N. Kennedy, S.P. Finklestein, B.R. Rosen, A functional MRI study of subjects recovered from hemiparetic stroke, Stroke 28(12) (1997) 2518-27.
[132] C.A. Altar, P. Laeng, L.W. Jurata, J.A. Brockman, A. Lemire, J. Bullard, Y.V. Bukhman, T.A. Young, V. Charles, M.G. Palfreyman, Electroconvulsive seizures regulate gene expression of distinct neurotrophic signaling pathways, J Neurosci 24(11) (2004) 2667-77.
[133] S.S. Newton, E.F. Collier, J. Hunsberger, D. Adams, R. Terwilliger, E. Selvanayagam, R.S. Duman, Gene profile of electroconvulsive seizures: induction of neurotrophic and angiogenic factors, J Neurosci 23(34) (2003) 10841-51.
[134] S.S. Newton, M.J. Girgenti, E.F. Collier, R.S. Duman, Electroconvulsive seizure increases adult hippocampal angiogenesis in rats, Eur J Neurosci 24(3) (2006) 819-28.
[135] Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants, Lancet 387(10027) (2016) 1513-1530.
[136] R. Stöhr, M. Federici, Insulin resistance and atherosclerosis: convergence between metabolic pathways and inflammatory nodes, Biochem J 454(1) (2013) 1-11.
[137] T.V. Rohm, D.T. Meier, J.M. Olefsky, M.Y. Donath, Inflammation in obesity, diabetes, and related disorders, Immunity 55(1) (2022) 31-55.
[138] L. Stefani, G. Galanti, Physical Exercise Prescription in Metabolic Chronic Disease, Adv Exp Med Biol 1005 (2017) 123-141.
[139] C.H. Kwon, J.L. Sun, M.J. Kim, A.M. Abd El-Aty, J.H. Jeong, T.W. Jung, Clinically confirmed DEL-1 as a myokine attenuates lipid-induced inflammation and insulin resistance in 3T3-L1 adipocytes via AMPK/HO-1- pathway, Adipocyte 9(1) (2020) 576-586.
[140] S.P. Weisberg, D. McCann, M. Desai, M. Rosenbaum, R.L. Leibel, A.W. Ferrante, Jr., Obesity is associated with macrophage accumulation in adipose tissue, J Clin Invest 112(12) (2003) 1796-808.
[141] L.P. Cobb, S. Siamakpour-Reihani, D. Zhang, X. Qin, K. Owzar, C. Zhou, T.P. Conrads, G.L. Maxwell, K.M. Darcy, N.W. Bateman, T. Litzi, V. Bae-Jump, A.A. Secord, Obesity and altered angiogenic-related gene expression in endometrial cancer, Gynecol Oncol 163(2) (2021) 320-326.
[142] W.Y. Kim, S.H. Lee, D.Y. Kim, H.J. Ryu, G.R. Chon, Y.Y. Park, Y. Fu, J.W. Huh, C.M. Lim, Y. Koh, E.Y. Choi, S.B. Hong, Serum developmental endothelial locus-1 is associated with severity of sepsis in animals and humans, Sci Rep 9(1) (2019) 13005.
[143] Z. Christoforakis, E. Dermitzaki, E. Paflioti, M. Katrinaki, M. Deiktakis, H.T. T, K. Ballalis, C. Tsatsanis, M. Venihaki, G. Kontakis, Correlation of systemic metabolic inflammation with knee osteoarthritis, Hormones (Athens) (2022).