References
[1] Muhammad Sajid Arshad, Miral Javed, Muhammad Sohaib, Farhan Saeed, Ali Imran & Zaid Amjad | Fatih Yildiz (Reviewing Editor) (2017) Tissue engineering approaches to develop cultured meat from cells: A mini review, Cogent Food & Agriculture. [2] Post, M. J. (2012). Cultured meat from stem cells: Challenges and prospects. Meat Science, 92(3), 297–301. [3] Post, M.J., Levenberg, S., Kaplan, D.L. et al.Scientific, sustainability and regulatory challenges of cultured meat.Nat Food 1, 403–415 (2020). [4] Howard D, Buttery LD, Shakesheff KM, Roberts SJ. Tissue engineering: strategies, stem cells and scaffolds. J Anat. 2008;213(1):66-72. doi:10.1111/j.1469-7580.2008.00878.x [5] Xing H, Lee H, Luo L, Kyriakides TR. Extracellular matrix-derived biomaterials in engineering cell function. Biotechnol Adv. 2020;42:107421. doi:10.1016/j.biotechadv.2019.107421 [6] Ahmad, Khurshid et al. “Extracellular Matrix and the Production of Cultured Meat.” Foods (Basel, Switzerland) vol. 10,12 3116. 15 Dec. 2021, doi:10.3390/foods10123116 [7] Bomkamp, C.; Skaalure, S.C.; Fernando, G.F.; Ben-Arye, T.; Swartz, E.W.; Specht, E.A. Scaffolding Biomaterials for 3D Cultivated Meat: Prospects and Challenges. Adv. Sci. 2021, 9, 2102908. [8] BEN-ARYE, Tom; LEVENBERG, Shulamit. Tissue Engineering for Clean Meat Production. Frontiers In Sustainable Food Systems, [S.L.], v. 3, n. 0, p. 0-0, 18 jun. 2019. Frontiers Media SA. http://dx.doi.org/10.3389/fsufs.2019.00046. [9] Bentzinger, C. F.; Wang, Y. X.; Rudnicki, M. A.. Building Muscle: molecular regulation of myogenesis. Cold Spring Harbor Perspectives In Biology, v. 4, n. 2, 2012. Cold Spring Harbor Laboratory. [10] Djisalov M, Knežić T, Podunavac I, et al. Cultivating Multidisciplinarity: Manufacturing and Sensing Challenges in Cultured Meat Production. Biology (Basel). 2021;10(3):204. Published 2021 Mar 9. doi:10.3390/biology10030204 [11] Hejazian L.B., Esmaeilzade B., Ghoroghi F.M., Moradi F., Hejazian M.B., Aslani A. The role of biodegradable engineered nanofiber scaffolds seeded with hair follicle stem cells for tissue engineering, Iran. Biomed. J. 2012;16:193–201 [12] Baker BM, Mauck RL. The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials. 2007;28(11):1967-1977. doi:10.1016/j.biomaterials.2007.01.004 [13] Hickey RJ, Pelling AE. Cellulose Biomaterials for Tissue Engineering. Front Bioeng Biotechnol. 2019;7:45. Published 2019 Mar 22. doi:10.3389/fbioe.2019.00045 [14] Marino, A., Baronio, M., Buratti, U., Mele, E., & Ciofani, G. (2021). Porous Optically Transparent Cellulose Acetate Scaffolds for Biomimetic Blood-Brain Barrierin vitro Models. Frontiers in bioengineering and biotechnology9, 630063. https://doi.org/10.3389/fbioe.2021.630063 [15] ELSAYED, Mardia T.; HASSAN, Abeer A.; ABDELAAL, Said A.; TAHER, Mohamed M.; AHMED, Mohamed Khalaf; SHOUEIR, Kamel R.. Morphological, antibacterial, and cell attachment of cellulose acetate nanofibers containing modified hydroxyapatite for wound healing utilizations. Journal Of Materials Research And Technology, [S.L.], v. 9, n. 6, p. 13927-13936, nov. 2020. Elsevier BV. http://dx.doi.org/10.1016/j.jmrt.2020.09.094. [16] LIU, Haiqing; HSIEH, You-Lo. Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. Journal Of Polymer Science Part B: Polymer Physics, [S.L.], v. 40, n. 18, p. 2119-2129, 8 ago. 2002. Wiley. http://dx.doi.org/10.1002/polb.10261. [17] N. Bifari, E., Bahadar Khan, S., A. Alamry, K., M. Asiri, A., & Akhtar, K. (2016). Cellulose Acetate Based Nanocomposites for Biomedical Applications: A Review. Current Pharmaceutical Design,22(20), 3007–3019. [18] MITCHELL, Geoffrey R.; TOJEIRA, Ana. Role of Anisotropy in Tissue Engineering. Procedia Engineering, [S.L.], v. 59, p. 117-125, 2013. Elsevier BV. http://dx.doi.org/10.1016/j.proeng.2013.05.100. dos Santos, A. E. A., dos [19] MARZIO, Nicola di; EGLIN, David; SERRA, Tiziano; MORONI, Lorenzo. Bio-Fabrication: convergence of 3d bioprinting and nano-biomaterials in tissue engineering and regenerative medicine. Frontiers In Bioengineering And Biotechnology, [S.L.], v. 8, p. 0-3, 16 abr. 2020. Frontiers Media SA. http://dx.doi.org/10.3389/fbioe.2020.00326. [20] Hernández-Ochoa L, Aguirre-Prieto YB, Nevárez-Moorillón GV, Gutierrez-Mendez N, Salas-Muñoz E. Use of essential oils and extracts from spices in meat protection. J Food Sci Technol. 2014;51(5):957-963. doi:10.1007/s13197-011-0598-3 [21] Patra, Amlan Kumar. “An Overview of Antimicrobial Properties of Different Classes of Phytochemicals.” Dietary Phytochemicals and Microbes 1–32. 18 Feb. 2012, doi:10.1007/978-94-007-3926-0_1 [22] Yousefi M, Khorshidian N and Hosseini H (2020) Potential Application of Essential Oils for Mitigation of Listeria monocytogenes in Meat and Poultry Products. Front. Nutr. 7:577287. doi: 10.3389/fnut.2020.577287 [23] Shahid-ul-Islam, Rather, L. J., & Mohammad, F. (2016). Phytochemistry, biological activities and potential of annatto in natural colorant production for industrial applications - A review.Journal of Advanced Research, 7(3), 499–514. [24] Rivera-Madrid, R., Aguilar-Espinosa, M., Cárdenas-Conejo, Y., Garza-Caligaris, L. E. Carotenoid Derivates in Achiote (Bixa orellana) Seeds: Synthesis and Health Promoting Properties. Frontiers Plant Science, 7, 21, 2016. [25] Cardarelli, C. R., Benassi, M. de T., & Mercadante, A. Z. (2008). Characterization of different annatto extracts based on antioxidant and colour properties. LWT - Food Science and Technology, 41(9), 1689–1693. [26] Santos, F. V., Freitas, K. M., Pimenta, L. P. S., de Oliveira Andrade, L., Marinho, T. A., de Avelar, G. F., da Silva, A. B., & Ferreira, R. V. (2021). Cellulose acetate nanofibers loaded with crude annatto extract: Preparation, characterization, and in vivo evaluation for potential wound healing applications. Materials Science and Engineering C, 118(November 2019), 111322. [27] Ning Xiang, John S.K. Yuen, Andrew J. Stout, Natalie R. Rubio, Ying Chen, David L. Kaplan, 3D porous scaffolds from wheat glutenin for cultured meat applications, Biomaterials, Volume 285, 2022, 121543, ISSN 0142-9612, https://doi.org/10.1016/j.biomaterials.2022.121543. [28] Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002 [29] Giridhar, P. A Review on Annatto Dye Extraction, Analysis and Processing – A Food Technology Perspective. Journal of Scientific Research and Reports, 3, 327, 2014. [30] Calogero, G. Bartolotta, A., Di Marco G., Di Carlo A., Bonaccorso, F. Vegetable-based dye-sensitized solar cells. Chemical Society Reviews, 44, 3244, 2015. [31] Scotter, M. The chemistry and analysis of annatto food colouring: a review. Food Additives and Contaminants, 26, 1123, 2009. [32] Rahmalia, W., Fabre, J. F., Mouloungui, Z. Effects of Cyclohexane/Acetone Ratio on Bixin Extraction Yield by Accelerated Solvent Extraction Method. Procedia Chemistry, 14, 455, 2015. [33] Santos, L. F., Dias, V. M., Pilla, V., Andrade, A.A., Alves, L. P., Munin, E., Monteiro, V. S., Zilio. S. C. Spectroscopic and photothermal characterization of annatto: Applications in functional foods. Dyes and Pigments, 110, 72, 2010. [34] M.M. Meier, L.A. Kanis, V. Soldi, Characterization and drugpermeation profiles of microporous and dense cellulose acetate membranes: influence of plasticizer and pore forming agent, Int. J. Pharm. 278, 99–110, 2004. [35] Skornyakov, I.V., Komar, V.P. IR spectra and the structure of plasticized cellulose acetate films. Journal of Applied Spectroscopy 65, 911, 1998. [36] PINZÓN-GARCÍA, Ana Delia; CASSINI-VIEIRA, Puebla; RIBEIRO, Cyntia Cabral; JENSEN, Carlos Eduardo de Matos; BARCELOS, Luciola Silva; CORTES, Maria Esperanza; SINISTERRA, Ruben Dario. Efficient cutaneous wound healing using bixin-loaded PCL nanofibers in diabetic mice. Journal Of Biomedical Materials Research Part B: Applied Biomaterials, [S.L.], v. 105, n. 7, p. 1938-1949, 13 jun. 2016. Wiley. [37] Menzies, K. L., & Jones, L. (2010). The impact of contact angle on the biocompatibility of biomaterials. Optometry and Vision Science, 87(6), 387–399. [38] Mandal, D. Chakrabarty. Studies on the mechanical, thermal, morphological and barrier properties of nanocomposites based on poly(vinyl alcohol) and nanocellulose from sugarcane bagasse. Journal of Industrial and Engineering Chemistry, 20, 462–473 (2014). [39] Santos, João Paulo Ferreira; da Silva, Aline Bruna ; Sundararaj, Uttandaraman ; Bretas, Rosario. Novel electrical conductive hybrid nanostructures based on PA 6/MWCNT COOH electrospun nanofibers and anchored MWCNT COOH. Polymer Engineering and Science, v. 55, p. n/a-n/a, 2015. [40] Candido, R. G., Godoy, G. G., & Gonçalves, A. (2017). Characterization and application of cellulose acetate synthesized from sugarcane bagasse. Carbohydrate Polymers, 167, 280–289. [41] SILVA, Marta C. D.; BOTELHO, J. R.; CONCEIÇăO, Marta M.; LIRA, B. F.; COUTINHO, Monyque A.; DIAS, A. F.; SOUZA, A. G.; A. FILHO, P. F.. Thermogravimetric investigations on the thermal degradation of bixin, derived from the seeds of annatto (Bixa orellana L.). Journal Of Thermal Analysis And Calorimetry, [S.L.], v. 79, n. 2, p. 277 281, jan. 2005. Springer Science and Business Media LLC. [42] Vieira, M. G. A., Da Silva, M. A., Dos Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review.European Polymer Journal, 47(3), 254–263. [43] Tanaka K, Sato K, Yoshida T, Fukuda T, Hanamura K, Kojima N, Shirao T, Yanagawa T, Watanabe H. Evidence for cell density affecting C2C12 myogenesis: possible regulation of myogenesis by cell-cell communication. Muscle Nerve. 2011 [44] Bruno Oliveira Silva Duran, Guilherme Alcarás Góes, Bruna Tereza ThomaziniZanella, Paula Paccielli Freire , Jessica Silvino Valente, Rondinelle Artur Simões Salomão, Ana Fernandes, Edson Assunção Mareco, Robson Francisco Carvalho & Maeli Dal-Pai-Silva. Ascorbic acid stimulates the in vitro myoblast proliferation and migration of pacu (Piaractus mesopotamicus). Scientific Reports (2019) 9:2229 [45] SNOW, Mikel H. Myogenic cell formation in regenerating rat skeletal muscle injured by mincing I. A fine structural study. The Anatomical Record, [S.L.], v. 188, n. 2, p. 181-199, jun. 1977. [46] GURDON, J.B.; LEMAIRE, P.; KATO, K. Community effects and related phenomena in development. Cell, [S.L.], v. 75, n. 5, p. 831-834, dez. 1993. [47] Bruyère, C., Versaevel, M., Mohammed, D. et al.Actomyosin contractility scales with myoblast elongation and enhances differentiation through YAP nuclear export. Sci Rep 9,15565 (2019). [48] Chal, J., & Pourquié, O. (2017). Making muscle: Skeletal myogenesis in vivo and in vitro. Development (Cambridge),144(12), 2104–2122. [49] CHOI, Kwang‐Hwan; YOON, Ji Won; KIM, Minsu; LEE, Hyun Jung; JEONG, Jinsol; RYU, Minkyung; JO, Cheorun; LEE, Chang‐Kyu. Muscle stem cell isolation and in vitro culture for meat production: a methodological review. Comprehensive Reviews In Food Science And Food Safety, [S.L.], v. 20, n. 1, p. 429-457, 6 nov. 2020. Wiley. [50] Capella, S. O., Tillmann, M. T., Félix, A. O. C., Fontoura, E. G., Fernandes, C. G., Freitag, R. A., Santos, M. A. Z., Félix, S. R., & Nobre, M. O. (2016). Potencial cicatricial da Bixa orellana L. em feridas cutâneas: Estudo em modelo experimental. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, 68(1), 104–112.