[1] Muhammad Sajid Arshad, Miral Javed, Muhammad Sohaib, Farhan
Saeed, Ali Imran & Zaid Amjad | Fatih Yildiz (Reviewing
Editor) (2017) Tissue engineering approaches to develop cultured meat
from cells: A mini review, Cogent Food & Agriculture.
[2] Post, M. J. (2012). Cultured meat from stem cells: Challenges
and prospects. Meat Science, 92(3), 297–301.
[3] Post, M.J., Levenberg, S., Kaplan, D.L. et al.Scientific, sustainability and regulatory challenges of cultured meat.Nat Food 1, 403–415 (2020).
[4] Howard D, Buttery LD, Shakesheff KM, Roberts SJ. Tissue
engineering: strategies, stem cells and scaffolds. J Anat.
2008;213(1):66-72. doi:10.1111/j.1469-7580.2008.00878.x
[5] Xing H, Lee H, Luo L, Kyriakides TR. Extracellular
matrix-derived biomaterials in engineering cell
function. Biotechnol Adv. 2020;42:107421.
doi:10.1016/j.biotechadv.2019.107421
[6] Ahmad, Khurshid et al. “Extracellular Matrix and the Production
of Cultured Meat.” Foods (Basel, Switzerland) vol. 10,12 3116.
15 Dec. 2021, doi:10.3390/foods10123116
[7] Bomkamp, C.; Skaalure, S.C.; Fernando, G.F.; Ben-Arye, T.;
Swartz, E.W.; Specht, E.A. Scaffolding Biomaterials for 3D Cultivated
Meat: Prospects and Challenges. Adv. Sci. 2021, 9, 2102908.
[8] BEN-ARYE, Tom; LEVENBERG, Shulamit. Tissue Engineering for Clean
Meat Production. Frontiers In Sustainable Food Systems,
[S.L.], v. 3, n. 0, p. 0-0, 18 jun. 2019. Frontiers Media SA.
http://dx.doi.org/10.3389/fsufs.2019.00046.
[9] Bentzinger, C. F.; Wang, Y. X.; Rudnicki, M. A.. Building
Muscle: molecular regulation of myogenesis. Cold Spring Harbor
Perspectives In Biology, v. 4, n. 2, 2012. Cold Spring Harbor
Laboratory.
[10] Djisalov M, Knežić T, Podunavac I, et al. Cultivating
Multidisciplinarity: Manufacturing and Sensing Challenges in Cultured
Meat Production. Biology (Basel). 2021;10(3):204. Published 2021
Mar 9. doi:10.3390/biology10030204
[11] Hejazian L.B., Esmaeilzade B., Ghoroghi F.M., Moradi F.,
Hejazian M.B., Aslani A. The role of biodegradable engineered nanofiber
scaffolds seeded with hair follicle stem cells for tissue engineering,
Iran. Biomed. J. 2012;16:193–201
[12] Baker BM, Mauck RL. The effect of nanofiber alignment on the
maturation of engineered meniscus constructs. Biomaterials.
2007;28(11):1967-1977. doi:10.1016/j.biomaterials.2007.01.004
[13] Hickey RJ, Pelling AE. Cellulose Biomaterials for Tissue
Engineering. Front Bioeng Biotechnol. 2019;7:45. Published 2019
Mar 22. doi:10.3389/fbioe.2019.00045
[14] Marino, A., Baronio, M., Buratti, U., Mele, E., & Ciofani, G.
(2021). Porous Optically Transparent Cellulose Acetate Scaffolds for
Biomimetic Blood-Brain Barrierin vitro Models. Frontiers in
bioengineering and biotechnology, 9, 630063.
https://doi.org/10.3389/fbioe.2021.630063
[15] ELSAYED, Mardia T.; HASSAN, Abeer A.; ABDELAAL, Said A.; TAHER,
Mohamed M.; AHMED, Mohamed Khalaf; SHOUEIR, Kamel R.. Morphological,
antibacterial, and cell attachment of cellulose acetate nanofibers
containing modified hydroxyapatite for wound healing
utilizations. Journal Of Materials Research And Technology,
[S.L.], v. 9, n. 6, p. 13927-13936, nov. 2020. Elsevier BV.
http://dx.doi.org/10.1016/j.jmrt.2020.09.094.
[16] LIU, Haiqing; HSIEH, You-Lo. Ultrafine fibrous cellulose
membranes from electrospinning of cellulose acetate. Journal Of
Polymer Science Part B: Polymer Physics, [S.L.], v. 40, n. 18, p.
2119-2129, 8 ago. 2002. Wiley.
http://dx.doi.org/10.1002/polb.10261.
[17] N. Bifari, E., Bahadar Khan, S., A. Alamry, K., M. Asiri, A.,
& Akhtar, K. (2016). Cellulose Acetate Based Nanocomposites for
Biomedical Applications: A Review. Current Pharmaceutical Design,22(20), 3007–3019.
[18] MITCHELL, Geoffrey R.; TOJEIRA, Ana. Role of Anisotropy in
Tissue Engineering. Procedia Engineering, [S.L.], v. 59, p.
117-125, 2013. Elsevier BV.
http://dx.doi.org/10.1016/j.proeng.2013.05.100. dos Santos, A. E. A.,
dos
[19] MARZIO, Nicola di; EGLIN, David; SERRA, Tiziano; MORONI,
Lorenzo. Bio-Fabrication: convergence of 3d bioprinting and
nano-biomaterials in tissue engineering and regenerative
medicine. Frontiers In Bioengineering And Biotechnology,
[S.L.], v. 8, p. 0-3, 16 abr. 2020. Frontiers Media SA.
http://dx.doi.org/10.3389/fbioe.2020.00326.
[20] Hernández-Ochoa L, Aguirre-Prieto YB, Nevárez-Moorillón GV,
Gutierrez-Mendez N, Salas-Muñoz E. Use of essential oils and extracts
from spices in meat protection. J Food Sci Technol.
2014;51(5):957-963. doi:10.1007/s13197-011-0598-3
[21] Patra, Amlan Kumar. “An Overview of Antimicrobial Properties
of Different Classes of Phytochemicals.” Dietary Phytochemicals
and Microbes 1–32. 18 Feb. 2012, doi:10.1007/978-94-007-3926-0_1
[22] Yousefi M, Khorshidian N and Hosseini H (2020) Potential
Application of Essential Oils for Mitigation of Listeria
monocytogenes in Meat and Poultry Products. Front.
Nutr. 7:577287. doi: 10.3389/fnut.2020.577287
[23] Shahid-ul-Islam, Rather, L. J., & Mohammad, F. (2016).
Phytochemistry, biological activities and potential of annatto in
natural colorant production for industrial applications - A review.Journal of Advanced Research, 7(3), 499–514.
[24] Rivera-Madrid, R., Aguilar-Espinosa, M., Cárdenas-Conejo, Y.,
Garza-Caligaris, L. E. Carotenoid Derivates in Achiote (Bixa orellana)
Seeds: Synthesis and Health Promoting Properties. Frontiers Plant
Science, 7, 21, 2016.
[25] Cardarelli, C. R., Benassi, M. de T., & Mercadante, A. Z.
(2008). Characterization of different annatto extracts based on
antioxidant and colour properties. LWT - Food Science and
Technology, 41(9), 1689–1693.
[26] Santos, F. V., Freitas, K. M., Pimenta, L. P. S., de Oliveira
Andrade, L., Marinho, T. A., de Avelar, G. F., da Silva, A. B., &
Ferreira, R. V. (2021). Cellulose acetate nanofibers loaded with crude
annatto extract: Preparation, characterization, and in vivo evaluation
for potential wound healing applications. Materials Science and
Engineering C, 118(November 2019), 111322.
[27] Ning Xiang, John S.K. Yuen, Andrew J. Stout, Natalie R. Rubio,
Ying Chen, David L. Kaplan, 3D porous scaffolds from wheat glutenin for
cultured meat applications, Biomaterials, Volume 285, 2022, 121543, ISSN
0142-9612, https://doi.org/10.1016/j.biomaterials.2022.121543.
[28] Pfaffl MW, Horgan GW, Dempfle L. Relative expression software
tool (REST) for group-wise comparison and statistical analysis of
relative expression results in real-time PCR. Nucleic Acids Res.
2002
[29] Giridhar, P. A Review on Annatto Dye Extraction, Analysis and
Processing – A Food Technology Perspective. Journal of Scientific
Research and Reports, 3, 327, 2014.
[30] Calogero, G. Bartolotta, A., Di Marco G., Di Carlo A.,
Bonaccorso, F. Vegetable-based dye-sensitized solar cells. Chemical
Society Reviews, 44, 3244, 2015.
[31] Scotter, M. The chemistry and analysis of annatto food
colouring: a review. Food Additives and Contaminants, 26, 1123, 2009.
[32] Rahmalia, W., Fabre, J. F., Mouloungui, Z. Effects of
Cyclohexane/Acetone Ratio on Bixin Extraction Yield by Accelerated
Solvent Extraction Method. Procedia Chemistry, 14, 455, 2015.
[33] Santos, L. F., Dias, V. M., Pilla, V., Andrade, A.A., Alves, L.
P., Munin, E., Monteiro, V. S., Zilio. S. C. Spectroscopic and
photothermal characterization of annatto: Applications in functional
foods. Dyes and Pigments, 110, 72, 2010.
[34] M.M. Meier, L.A. Kanis, V. Soldi, Characterization and
drugpermeation profiles of microporous and dense cellulose acetate
membranes: influence of plasticizer and pore forming agent, Int. J.
Pharm. 278, 99–110, 2004.
[35] Skornyakov, I.V., Komar, V.P. IR spectra and the structure of
plasticized cellulose acetate films. Journal of Applied Spectroscopy 65,
911, 1998.
[36] PINZÓN-GARCÍA, Ana Delia; CASSINI-VIEIRA, Puebla; RIBEIRO,
Cyntia Cabral; JENSEN, Carlos Eduardo de Matos; BARCELOS, Luciola Silva;
CORTES, Maria Esperanza; SINISTERRA, Ruben Dario. Efficient cutaneous
wound healing using bixin-loaded PCL nanofibers in diabetic mice.
Journal Of Biomedical Materials Research Part B: Applied
Biomaterials, [S.L.], v. 105, n. 7, p. 1938-1949, 13 jun. 2016.
Wiley.
[37] Menzies, K. L., & Jones, L. (2010). The impact of contact
angle on the biocompatibility of biomaterials. Optometry and
Vision Science, 87(6), 387–399.
[38] Mandal, D. Chakrabarty. Studies on the mechanical, thermal,
morphological and barrier properties of nanocomposites based on
poly(vinyl alcohol) and nanocellulose from sugarcane bagasse. Journal of
Industrial and Engineering Chemistry, 20, 462–473 (2014).
[39] Santos, João Paulo Ferreira; da Silva, Aline Bruna ;
Sundararaj, Uttandaraman ; Bretas, Rosario. Novel electrical conductive
hybrid nanostructures based on PA 6/MWCNT COOH electrospun nanofibers
and anchored MWCNT COOH. Polymer Engineering and Science, v. 55, p.
n/a-n/a, 2015.
[40] Candido, R. G., Godoy, G. G., & Gonçalves, A. (2017).
Characterization and application of cellulose acetate synthesized from
sugarcane bagasse. Carbohydrate Polymers, 167, 280–289.
[41] SILVA, Marta C. D.; BOTELHO, J. R.; CONCEIÇăO, Marta M.; LIRA,
B. F.; COUTINHO, Monyque A.; DIAS, A. F.; SOUZA, A. G.; A. FILHO, P. F..
Thermogravimetric investigations on the thermal degradation of bixin,
derived from the seeds of annatto (Bixa orellana L.). Journal Of Thermal
Analysis And Calorimetry, [S.L.], v. 79, n. 2, p. 277 281, jan.
2005. Springer Science and Business Media LLC.
[42] Vieira, M. G. A., Da Silva, M. A., Dos Santos, L. O., & Beppu,
M. M. (2011). Natural-based plasticizers and biopolymer films: A review.European Polymer Journal, 47(3), 254–263.
[43] Tanaka K, Sato K, Yoshida T, Fukuda T, Hanamura K, Kojima N,
Shirao T, Yanagawa T, Watanabe H. Evidence for cell density affecting
C2C12 myogenesis: possible regulation of myogenesis by cell-cell
communication. Muscle Nerve. 2011
[44] Bruno Oliveira Silva Duran, Guilherme Alcarás Góes, Bruna
Tereza ThomaziniZanella, Paula Paccielli Freire , Jessica Silvino
Valente, Rondinelle Artur Simões Salomão, Ana Fernandes, Edson Assunção
Mareco, Robson Francisco Carvalho & Maeli Dal-Pai-Silva. Ascorbic acid
stimulates the in vitro myoblast proliferation and migration of pacu
(Piaractus mesopotamicus). Scientific Reports (2019) 9:2229
[45] SNOW, Mikel H. Myogenic cell formation in regenerating rat
skeletal muscle injured by mincing I. A fine structural study. The
Anatomical Record, [S.L.], v. 188, n. 2, p. 181-199, jun. 1977.
[46] GURDON, J.B.; LEMAIRE, P.; KATO, K. Community effects and
related phenomena in development. Cell, [S.L.], v. 75, n. 5, p.
831-834, dez. 1993.
[47] Bruyère, C., Versaevel, M., Mohammed, D. et al.Actomyosin contractility scales with myoblast elongation and enhances
differentiation through YAP nuclear export. Sci Rep 9,15565 (2019).
[48] Chal, J., & Pourquié, O. (2017). Making muscle: Skeletal
myogenesis in vivo and in vitro. Development (Cambridge),144(12), 2104–2122.
[49] CHOI, Kwang‐Hwan; YOON, Ji Won; KIM, Minsu; LEE, Hyun Jung;
JEONG, Jinsol; RYU, Minkyung; JO, Cheorun; LEE, Chang‐Kyu. Muscle stem
cell isolation and in vitro culture for meat production: a
methodological review. Comprehensive Reviews In Food Science And Food
Safety, [S.L.], v. 20, n. 1, p. 429-457, 6 nov. 2020.
Wiley.
[50] Capella, S. O., Tillmann, M. T., Félix, A. O. C., Fontoura, E.
G., Fernandes, C. G., Freitag, R. A., Santos, M. A. Z., Félix, S. R., &
Nobre, M. O. (2016). Potencial cicatricial da Bixa orellana L. em
feridas cutâneas: Estudo em modelo experimental. Arquivo Brasileiro de
Medicina Veterinaria e Zootecnia, 68(1), 104–112.