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Abstract—Large-scale multi-building and multi-floor indoor
localization has recently been the focus of intense research in
indoor localization based on Wi-Fi fingerprinting. Although sig-
nificant progress has been made in developing indoor localization
algorithms, few studies are dedicated to the critical issues of
using existing and constructing new Wi-Fi fingerprint databases,
especially for large-scale multi-building and multi-floor indoor
localization. In this paper, we first identify the challenges in
using and constructing Wi-Fi fingerprint databases for large-
scale multi-building and multi-floor indoor localization and then
provide our recommendations for those challenges based on a
case study of the UJIIndoorLoc database, which is the most
popular, publicly-available Wi-Fi fingerprint multi-building and
multi-floor database. Through the case study, we investigate its
statistical characteristics with a focus on the three aspects of (1)
the properties of detected wireless access points, (2) the number,
distribution, and quality of labels, and (3) the composition of the
database records, and then identify potential issues and ways
to address them in using the UJIIndoorLoc database. Based on
the results from the case study, we not only provide valuable
insights on the use of existing databases but also give important
directions for the design and construction of new databases for
large-scale multi-building and multi-floor indoor localization in
the future.

Index Terms—Indoor localization, Wi-Fi fingerprint database,
UJIIndoorLoc.

I. INTRODUCTION

HE rapid development of technologies for wireless com-

munication and mobile devices has brought about a
host of new applications and services, a notable example
of which is location-based services (LBS) [1f]. Global nav-
igation satellite systems (GNSS) and cellular networks can
accurately localize mobile users and devices in an outdoor
environment, which, however, cannot be a viable option for
indoor localization due to the lack of line-of-sight (LOS) signal
paths [2]. Since the location of mobile users and devices
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is essential to LBS, the indoor localization techniques not
based on GNSS and cellular networks have been increasingly
attracting attention from both researchers and practitioners.

Indoor localization can be done with and without rang-
ing [1]]. Ranging-based approaches rely on the distances be-
tween a point of interest and multiple known locations—i.e.,
anchor nodes like wireless access points (WAPs)—or dif-
ferences of them in determining the unknown position of
the point of interest through trilateration/multilateration. Time
of arrival (ToA) technique uses the travel time between the
unknown location of a user or a device and anchor nodes [3]],
[4], while time difference of arrival (TDoA) technique uses
the time differences between the arrivals of the user’s signals
at anchor nodes [5], [6]. Instead of arrival times or their
differences, angle of arrival (AoA) technique uses angles of
signal arrivals, which can be estimated by measuring time dif-
ferences of arrivals between individual elements of an antenna
array [7], [8]. Due to the reflections and multi-path interference
introduced by indoor structures and obstructions, however, it
is challenging to accurately estimate the arrival times or their
differences of received radio signals through non-line-of-sight
(NLOS) signal paths in time-based approaches. Likewise, the
angle measurement in AOA techniques could be affected by
indoor obstacles as well as the user’s body posture and way
of carrying devices. In large-scale multi-building and multi-
floor indoor localization, the performance of ranging-based
techniques cannot be comparable to that of single-floor indoor
localization. Given the requirement of deploying numerous
anchor nodes throughout buildings and floors, we can conclude
that ranging-based techniques are unsuitable for large-scale
multi-building and multi-floor indoor localization.

In ranging-free indoor localization techniques, the location
of a user or a device is not estimated based on distance-related
information with trilateration/multilateration. In the case of
location fingerprinting, which is by far the most popular
indoor localization technique, the information measured at
a point of interest—e.g., received signal strength indicator
(RSSI), channel state information (CSI), and geomagnetic
field intensity—is used for localization, which is supposed to
be unique to each location and thereby serves as a location
fingerprint. Specifically, in Wi-Fi fingerprinting using RSSIs as
its location fingerprints, there are offline and online phases in
its operation [9]: During the offline phase, the RSSIs at known
locations—called reference points (RPs) in the literature—
are collected and stored in a fingerprint database; during
the online phase, the current location of a user or a device
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is estimated based on the RPs whose RSSIs most closely
match the newly-measured RSSIs at the location. One of
the most significant advantages of Wi-Fi fingerprinting is
that it does not require additional hardware or infrastructure
(e.g., costly sensors and dedicated base stations serving as
anchor nodes) and, therefore, can be used in any environment
equipped with Wi-Fi networks, including offices, hospitals,
campuses, and shopping malls, making it a cost-effective
solution. For Wi-Fi fingerprinting, CSI also can be used as
location fingerprints, which, unlike coarse-grained RSSIs, can
provide fine-grained indicators consisting of both amplitude
and phase information during signal propagation and enables
even single-WAP localization. A significant drawback of CSI-
based Wi-Fi fingerprinting, however, is the requirement of
unique network interface cards (NICs) and device drivers for
the acquirement of CSI (e.g., Intel 5300 NICs) [10].

Due to their recent evolution and penetration into many
areas as new enabling technologies, artificial intelligence
(AI)/machine learning (ML) algorithms are frequently used to
improve the performance of location fingerprinting techniques.
The K-nearest neighbors (KNN) algorithm is one of the most
employed ML algorithms for indoor localization due to its
simplicity and efficiency [11f], [[12]. However, its localiza-
tion performance would be degraded by the complexity of
indoor environments, especially in large-scale multi-building
and multi-floor indoor localization, due to the increased spatial
variability and dynamics of Wi-Fi signals. Moreover, KNN
relies on stationary signal information and does not handle
temporal dynamics well, further limiting its effectiveness. In
contrast, deep neural networks (DNNs) can address the issues
in large-scale indoor localization [[13], [[14]], which can model
complex relationships between the input features and output
labels and thereby efficiently handle the spatial variability
and dynamic signals encountered in large-scale multi-building
and multi-floor indoor localization. In addition to classical
feedforward neural networks (FNNs) used in earlier works
(e.g., [13]]), more advanced DNNs like convolutional neural
networks (CNNs) [[15]], [16] and recurrent neural networks
(RNNs) [[I7] are employed as well due to their improved
robustness and generalization capability.

Small-scale indoor localization covers only a single floor
of multi-floor buildings or enclosed space (e.g., a classroom)
and utilizes location fingerprints based on a limited number
of WAPs. In such an environment, constructing and manag-
ing a fingerprint database is relatively straightforward, and
most indoor localization algorithms can accurately estimate
the location of a user or a device. However, it is not that
straightforward to extend not only the way of constructing
and managing fingerprint databases but also localization al-
gorithms to large-scale multi-building and multi-floor indoor
localization, where the characteristics and the dimension of
input signals are considerably complicated and more extensive.
Large-scale multi-building and multi-floor indoor localization
have to address the following unique issues in comparison to
their small-scale counterpart:

o Scalability: The higher dimension (i.e., the number of

detected WAPs) and the large number (i.e., the number
of RPs) of location fingerprints.

o Irregularity: Differences in location coverages and in-
ternal structures (e.g., floor plans) among buildings and
floors and uneven spatial distribution of RPs.

Note that the localization performance heavily depends on
the underlying Wi-Fi fingerprint database. There are bod-
ies of research reporting outstanding performance of their
proposed indoor localization algorithms, which are based
on their custom-built fingerprint databases covering limited
areas with simple internal structures like corridors and Lab
spaces, mainly because constructing large fingerprint databases
is labor-intensive and time-consuming; even worse, most of
those fingerprint databases are not publicly available. How-
ever, it is desirable to compare a newly-proposed indoor
localization algorithm with the existing ones on an equal
basis, preferably based on publicly-available, well-established
fingerprint databases. For this purpose, Torres-Sospedra et
al. provided the UlJlindoorLoc database 18], a large-scale
publicly-available multi-building and multi-floor Wi-Fi finger-
print database, which has been the most widely-used finger-
print database for benchmarking multi-building and multi-floor
indoor localization algorithms in the literature. Though there
have been numerous studies on indoor localization based on
the UJIIndoorLoc database, a systematic case study dedicated
to large-scale multi-building and multi-floor Wi-Fi fingerprint
databases has yet to be seen.

In this paper, therefore, we take the UJIIndoorLoc database
as a representative example of large-scale multi-building and
multi-floor Wi-Fi fingerprint databases and investigate its
statistical characteristics based on comprehensive analyses
to identify potential issues and ways to address them in
constructing and using a Wi-Fi fingerprint database for large-
scale multi-building and multi-floor indoor localization. The
results of our work in this paper provide valuable insights into
the use of existing databases and give important directions for
the design and construction of new databases in the future.

The rest of the paper is organized as follows: Section
reviews publicly-available fingerprint databases that are well-
known in the literature. Section [[II] presents the results of the
case study of the UJIIndoorLoc database. Section [[V]discusses
the challenges and provides recommendations in constructing
and using large-scale multi-building and multi-floor Wi-Fi
fingerprint databases. Section [V| concludes our work in this

paper.

II. REVIEW OF PUBLICLY-AVAILABLE FINGERPRINT
DATABASES

We review publicly-available fingerprint databases well
known in the literature and provide their taxonomy in this
section.

A. UlJlIndoorLoc

UllIndoorLoc is the first publicly-available multi-building
and multi-floor Wi-Fi fingerprint database, which covers a total
surface of over 108,000 m? of three four- or five-floor buildings
on the University Jaume I (UJI) campus in Castell6 de la Plana,
Spain [18].



The UlJlIndoorLoc database provides 21,048@ records mea-
sured at pre-established RPs (933 in total) and random loca-
tions. To guarantee statistical independence between datasets,
the validation dataset of the UJIIndoorLoc database was mea-
sured three months after the training dataset. The UJIIndoor-
Loc database is quite flexible in that the localization with it
can be based on classification of building, floor, and location
identifiers (IDs), regression of three-dimensional (3D) location
coordinates, or their hybrid given its large-scale multi-building
and multi-floor nature.

Due to these advantages and flexibility, the UJIIndoorLoc
database becomes the most widely-used reference for bench-
marking multi-building and multi-floor indoor localization al-
gorithms in the literature (e.g., selected as the official database
of the IPIN 2015 competition [[19]).

B. WicLoc

WicLoc fingerprint database covers the tenth floor of the
new main building at the Beihang University in Beijing,
China [20]]. The floor occupies an area of about 1,600 m?
and has 28 rooms with a size of 3.75mx8m each and a
circular corridor. The WicLoc database consists of the users’
daily location information, corresponding Wi-Fi RSSIs, and
other characteristics like users’ step counts and turns based
on crowdsourcing, which could significantly reduce the labor
cost for data collection. More than one hundred WAPs detected
in the floor are segmented into pre-defined 2 mx2 m grids.

C. TUT 2017 and TUT 2018

TUT 2017 and TUT 2018 are single-building and multi-
floor Wi-Fi fingerprint databases from the Tampere University
of Technology in Tampere, Finland, the details of which
are described in [21] and [22]], respectively. Both databases
provide training and test datasets, whose record consists of
RSSIs, floor, longitude, and latitude. The TUT 2017 database
is based on the records collected at random RPs (i.e., no
grid-based or pre-established mapping) by volunteers with
21 devices in a five-floor building with a footprint of about
22,570 m? (i.e., a size of about 208 mx108 m). The TUT 2018
database, on the other hand, is based on the records collected
at grid-based RPs in a three-floor building, where grid spacing
of 5mx1m is used for training and test datasets, respectively.

D. BLE RSSI Database based on Apple iBeacon

This Bluetooth low energy (BLE) RSSI database was cre-
ated for a real-world evaluation of the semi-supervised deep
reinforcement learning (DRL) model proposed for indoor
localization in the context of a smart city [23]]. The database is
based on the records by iPhone 6S smartphones of the RSSIs
from Apple iBeacon [24] devices mounted on the ceiling of
the first floor of the Waldo Library at Western Michigan Uni-
versity in Michigan, USA. A grid of 13 iBeacon devices was
deployed to cover an area of 200 ft.x180 ft., which contains

IThe total number of records mentioned in [18] is 21,049, but the actual
number of records contained in the two CSV files (i.e., “trainingData.csv”
and “validationData.cvs”) publicly released by the same group is 21,048.

many pillars blocking the propagation of iBeacon signals. The
database provides 820 and 600 labeled data points—i.e., labels
composed of location, timestamp, and RSSIs—for training and
testing, respectively, and 5,200 unlabeled data points for semi-
supervised learning.

E. Taxonomy of Fingerprint Databases

Table [I| provides a taxonomy of the fingerprint databases
discussed in this section.

First, fingerprint databases can be categorized into single-
floor, single-building and multi-floor, and multi-building and
multi-floor databases based on their coverage.

Second, as for the way of collecting RSSIs, there are two
categories of crowdsourcing, which is based on volunteers, and
insourcing, which is purposefully designed and systematically
carried out by the participants of the project. The former often
leads to crowded RSSI records at random RPs but requires less
effort since only volunteers are required. The latter may result
in a more structured and tidier RSSI database, but it requires
considerable labor during the construction.

Third, based on the capabilities of RSSI measurement
devices, the databases are also categorized into the two groups
of Wi-Fi RSSI and multi-network RSSI, the latter of which
includes RSSIs for other types of networks (e.g., cellular
networks and BLE) as well.

III. A CASE STUDY OF THE UJIINDOORLOC DATABASE

In this section, we present the results of our statistical
investigation of the UJIIndoorLoc database. The UJIIndoorLoc
database [18]] provides 21,048 records (i.e., measurements) in
total—i.e., 19,937 records in the training dataset and 1,111
records in the validation dataset—covering the three buildings
on the UJI campus, each of which consists of RSSIs from 520
WAPs and 9 fields of location and measurement information
(i.e., 529 fields per record). The histograms in Fig. [ show the
overall distributions of the RSSIs in the training and validation
datasets.
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Fig. 1: RSSI histograms.

A. Label-Based Record Analyses

The quality of indoor localization depends on the location
and measurement information provided by a fingerprint label.
Table [[I lists the fields of the UJIIndoorLoc fingerprint label,
where the first six and the rest three are for location and
measurement information, respectively.



TABLE I: Taxonomy of publicly-available fingerprint databases.

Category Implementation UJTIndoorLoc [18] [ WicLoc [20] [ TUT 2017 [21] | TUT 2018 [22] [ iBeacon [23]
Single-floor. v v
Coverage Single-building and multi-floor v v
Multi-building and multi-floor v
. Crowdsourcing v v
Collection Insourcing v M M
Fingerprint Wi—Fi RSSI v v v v
Multi-network RSSI v

TABLE II: Fields of the UJIIndoorLoc fingerprint label.

Field Description Range of Values
BUILDINGID Building identification [0, 2]
FLOOR Floor identification [0, 4]
LONGITUDE Longitude
LATITUDE Latitude
SPACEID Room identification [1, 254]
RELATIVEPOSITION  Room/corridor marker [1, 2]
USERID User identification [0, 18]
PHONEID Phone identification [0, 24]
TIMESTAMP Capture time

1) Location Information: Fig. [2] shows building-level
record distributions of the UlJlIndoorLoc database, where
there is a noticeable difference in the record distributions of
the training and validation datasets. Fig. |2| (a) shows that,
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Fig. 2: Building-level record distributions: (a) Training and (b)
validation datasets.

though Building 2 have just one more floor than Building O
and 1, its number of records in the training dataset is almost
the same as the sum of those of Building 0 and 1. Regarding
the validation dataset, on the other hand, it is Building O that
has the most number of records as shown in Fig. [2] (b). Fig. 3]
also shows uneven record distributions over floors of each
building, which results from the accessibility of the rooms

(e.g., the rooms on the third floor of each building are more
easily accessible than the others in the training dataset).
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Fig. 3: Floor-level record distributions: (a) Training and (b)
validation datasets.

The uneven record distribution of the training dataset could
be explained by its building-level RP distribution and the
histogram for the number of records per RP in Figs. [] and
[l Note that RPs were established only for the training dataset
in the UJIIndoorLoc database Table X]; the records of
the validation dataset do not provide SPACEID and RELA-
TIVEPOSITION on which RPs are based. With the location
coordinates of LONGITUDE and LATITUDE alone, therefore,
the number of records per RP cannot be calculated.

As shown in Fig. [ the number of RPs in Building 2
is significantly larger than those in Building O and 1—i.e.,
like the numbers of records shown in Fig. |Z| (a)—due to the
allocation of RPs for the training dataset of the UJIIndoorLoc
database [[18]. Considering the RP-level record distribution of
the training dataset shown in Fig. [5 together, we can conclude
that the allocation of RPs and repeated RSSI measurements at
those RPs are critical to the record distributions over buildings
and floors.
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Fig. |§| (a) and (b) show the floor plans of the three
buildings on the UJI campus map with their corresponding
BUILDINGIDs and the 3D visualization of record coordinates
of LONGITUDE, LATITUDE, and FLOOR, respectively. As
expected from the floor plans, the spatial distribution of the
records of Building 1 is much more complicated than those
of Building 0 and 2. One noticeable feature of the spatial
distributions is that the coverage of the records of the training
dataset is quite incomplete on the top floor of Building 2,
where there are virtually no training records for the lower
right part of the floor, while the validation records are more
or less evenly distributed along the corridors. Such clear
coverage gaps between the datasets can negatively affect the
model’s localization performance on the validation dataset.
Data augmentation techniques can be used in this regard to
fill the spatial gaps in the training dataset and thereby improve
the generalization capabilities and localization performance of
a model [25].

2) Users and Phones: The UlllndoorLoc database was
constructed based on the measurements by 18 users for the
training dataset (i.e., USER 1 to 18), but the USERID field
was not recorded and set to O for the validation dataset. Fig. [7]
shows a user-level record distribution of the training dataset,
where we can observe that there are a few dominant contribu-
tors like USER 11 with 4,516 records and USER 1 with 2,737
records. Likewise, we can also identify the dominance of a
couple of phones in Fig. [8] which shows phone-level record
distributions.
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Fig. 6: Record spatial distributions: (a) Buildings on the UJI
campus map from Google Earth and (b) 3D visualization of
record coordinates.

Note that the position of a user’s phone (e.g., height and
direction) affects RSSI measurements as does the model and
software/firmware version of the phone; at the exact the same
location, a combination of different user and phone could
result in different RSSI values. Given the dominance of a
few users and phones in constructing the database, we can
also apply techniques like data augmentation [25] and data
resampling [26] to reduce the risk of bias and overfitting
and thereby improve a model’s generalization as discussed in
Section [II=AT}

The data analysis in Fig. [§] reveals that PHONE 13 and 14
hold the majority of the training dataset records. Additionally,
PHONE 13 is the most significant contributor to the validation
dataset. Notably, there are a few instances where the same
phones appear in both datasets, which challenges the model’s
generalization to new, unseen phones. This observation is
critical as it accurately reflects the real-world scenario, where
the phones used may not be limited to those in the training



5000
4516

4000+

%)
(=3
(=3
S

[
[=3
(=3
S

Number of records

1000+

1 23 45 6 7 8 9 1011 12 13 14 15 16 17 18
USERID

Fig. 7: User-level record distribution of the training dataset.

6000

50001 4835

Number of records
[3%] w B
(=3 (=3 =3
(=3 (=3 =3
S 35 3

1000+

440 498

01234567 89101112131415161718192021222324
PHONEID

(a)

500

400

(%)
[=3
S

213

Number of records

60

01234567 289101112131415161718192021222324
PHONEID

(b)
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(b) validation datasets.

dataset. Note that, without the records by PHONE 13 and 14,
the remaining records of the training dataset shown in Fig. 0]
quite poorly cover the entire space in comparison to the whole
records shown in Fig. [f] (b).

3) Timestamp: The time of record capture is provided by
TIMESTAMP field in Unix time format, which was set by
a centralized server to avoid the issue of devices’ different
timing settings [18]. As shown in Fig. [[0] RSSIs measured
with the same phone at the same location but at different
times (i.e., just 13 seconds’ difference in the example) could be
different due to several factors such as time-varying wireless
channels and the movements of a user measuring RSSIs,
which affects the accuracy and reliability of indoor localization
systems. This could be a major issue specifically for highly
dynamic indoor environments such as airports, shopping malls,

24

21
Rl 18

o® @&ﬁ‘ggb 88 Xy ’ZE 15D

.’%’%Qﬂ%ﬁa 12%

o@@a@ v & o
- s | 6
I g ,

0.0 025 05 X 0.75
Normalized Longitude

Fig. 9: Phone spatial distribution of the training dataset (ex-
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and hospitals.

B. Field-Level RSSI Analyses

For the analyses of RSSIs presented in this section, we
exclude the RSSI values of undetected WAPs in each record
by setting them to NaN, which stands for “Not a Number”.

1) Statistical Characteristics: Fig. [T1] shows the scatter
plots of the field-level RSSI mean, median, and first and third
quartiles of both training and validation datasets, while Fig.[12]
shows the histograms of their means, medians, and standard
deviations. By field-level, we mean each of the 520 RSSI
columns (i.e., fields) of the UJIIndoorLoc database, the RSSIs
of which are from one specific WAP.

From the field-level RSSI statistics shown in Fig. [T} we can
observe that most of the means and medians of both training
and validation datasets fall between -95 and -70, though the
spread of the training dataset is slightly greater than that of the
validation dataset. As most of the RSSI values are weak (i.e.,
<—70) and volatile [27], they are susceptible to environmental
changes such as people and furniture movement. As shown in
Fig.[T2)(c), it is also worth to note that the standard deviations
of the RSSIs are less than 2 for around 15% of the WAPs. This
would indicate a situation where these WAPs yield similar
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Fig. 11: Scatter plots of the field-level RSSI mean, median, and
first and third quartiles of (a) the training and (b) validation
datasets.

RSSIs (e.g., they are barely detected at only a few RPs), which
are of little help during the localization.

From Fig. [TT] we also observe that some WAPs are present
in either of the datasets but not both: For example, Fig. [IT] (a)
shows a gab of WAPs around 240 in the training dataset,
while Fig. [TT] (b) shows the absence of WAPs in the range
of [370, 410]. We can think of the following reasons for the
inconsistencies of detected WAPs between the datasets:

o There are changes in the environments and the WAPs
such as the addition of new furniture or equipment
blocking the signals from WAPs and the replacement of
failed WAPs with new ones. Note that a validation dataset
was constructed three months after the training dataset.

« Some WAPs are not detected by certain phones due to
hardware and software issues. Again, note that different
sets of phones, with a few dominant ones, were used
for the training and validation datasets as discussed in
Section |[II-A2] The diversity of phones used in collecting
fingerprints is the key to address this.

o There are significant differences in the measurement
locations between the datasets as discussed with Fig. |§| (b)

in Section [[I=ATl

2) Unique Values: Unique values of the RSSI from each
WAP can provide an insight into the distinct characteristics of
the corresponding WAP in indoor localization. Specifically,
through the analyses of field-level unique values, we can
identify the RSSI values that are constant over multiple
locations and/or measurements (e.g., weak signals that are
barely detectable) and thereby hardly contribute to location
fingerprinting due to their lack of uniqueness. Those values can
be removed to reduce the cost of maintaining large-scale multi-
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Fig. 12: Histograms of the (a) mean, (b) median, and (c)
standard deviation of field-level RSSIs.

building and multi-floor Wi-Fi fingerprint databases, which not
only speeds up training but also lower the risk of overfitting.

Fig. [I3] shows the histograms of the number of unique
RSSI values per WAP. The histograms reveal that a significant
number of WAPs have smaller numbers of unique values;
about one-third of the WAPs in the training dataset and half
of the WAPs in the validation dataset have unique values of
less than five. This implies that the signal strengths from those
WAPs are so weak that they are detected only at a few RPs or
their RSSIs are identical across many RPs. The scatter plots of
building-level unique RSSI values shown in Fig. [T4] visualizes
the significance of each WAP in a clear way.

3) Spatial Distribution: Fig.[T5]shows an example of field-
level RSSI spatial distributions, which is based on the RSSIs
from WAP486 of the training dataset. From Fig. [I5] we can
observe that, though WAP486 is detected at various places, its
RSSIs are much stronger on the second floor of Building 2,
which would indicate its deployment location.

Estimating the locations of all WAPs in a large-scale multi-
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building and multi-floor environment is not practical, but our
discussions based on Fig. [T3] provides a practical alternative:
If few critical WAPs can be identified or a target area can be
hierarchically divided into smaller sub-regions, we can focus
on a small number of WAPs with a reduced input dimension
and approximately estimate their locations through the analysis
of their RSSI spatial distributions.

C. Record-Level Fingerprint Analyses

Due to the lack of information for SPACEID, RELATIVE-
POSITION, and USERID in the validation dataset, we base
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Fig. 15: Spatial distribution of the RSSIs from WAP486 of the
training dataset in Building 2.

the record-level fingerprint analyses mainly on the training
dataset.

Fig. [T6] shows the distributions of the number of detected
WAPs per record for both training and validation datasets.
The bins with the highest relative frequency for the training
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Fig. 16: Distributions of the number of detected WAPs per
record.

and validation datasets are [16, 20] and [12, 16], respectively,
which is understandable given the much smaller numbers of
records, users, and phones and the shorter measurement period
of the validation dataset.

Note that the left-most bar of the histogram of Fig. [T6]indi-
cates that there are few records with few or no detected WAPs.
As the records with no detected WAPs, namely WAP-absent
records, can impair the performance of indoor localization
by mapping the same fingerprint of RSSIs of non-detected
WAP&H to multiple locations, it is imperative to investigate
WAP-absent records. Fig. [I7] shows the distribution of WAP-
absent records of the training dataset per building, user, and
phone. From Fig. (a), we observe that Building O has
significantly fewer WAP-absent records than Building 1 and

2The RSSIs of non-detected WAPs of the UJlIndoorLoc database are
typically set to -110 before training a localization model .
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2, while Fig. (b) and (c) show that USER 8 and 17 and
PHONE 1 and 22 are mostly associated with WAP-absent
records.

Note that the validation dataset does not contain WAP-
absent records, which could be explained as follows:

« PHONE 1 and 22 were not used for the validation dataset.
The WAP-absent records, therefore, could be related with
the sensitivity of specific phones as shown in Fig.

« The number of records of the validation dataset is signif-
icantly lower than that of the training dataset, so there
were fewer chances of collecting WAP-absent records
during the construction of the validation dataset.

o As the records of the validation dataset were collected
three months later than those of the training dataset, the
environment had changed and/or some WAPs had been

removed or gone down.

We also investigate how many WAPs are detected at more
than one building, which could impair the performance of
indoor localization as well. The results are summarized in
Table where L4 denotes the number of WAPs detected
at Building i for i€A. We can see that the number of WAPs

TABLE III: The number of WAPs detected at building(s).

Dataset Building Number of detected WAPs
0 Lp=200 Ly =59

Training 1 Ll =207 L1’2=82 L()) 1 ,2=3
2 L,=203 Ly»=7
0 Lo=183 Ly, 1=46

Validation 1 L1=170 L1,2=65 L(),1’2=2
2 Lr=125 Lp»=3

detected at Building 1 and 2 is higher than that at Building 0O
and 1, which is understandable given the shorter distance
between Building 1 and 2 as shown in Fig. [f] (a). The existence
of WAPs detected at Building 0 and 2 and all three buildings,
however, is unexpected, and their effects on localization and
related pre-processing would be interesting topics for further
investigation.

In addition to the building-level analyses, we carry out
an RP-level analysis of the RSSI samples measured at the
same RPs based on the sample Pearson correlation coefficient
(PCC), which measures the linear correlation between two
samples [28]], [29]. For each pair of the RSSI samples of
X=[x1,...,x500] and Y=[y1, ..., yspo] measured at an RP, their
sample PCC is given by

20(xi = %) (yi = 7)

VER = 0252 - 9)°

(D

rxy =

where
520 520

)E:in and y:Zyi. )
i=1 i=1

rx,y ranges from -1 to 1, where 1 indicates a positive corre-
lation, O indicates no correlation, and -1 indicates a negative
correlation. Fig. [I8] shows the histogram of the sample PCCs
for all possible pairs of the RSSI samples measured at the same
RPs in the training dataset, which indicates strong positive
correlations for most pairs. There are still few pairs with very
low correlations; samples common to those pairs could impair
the localization performance of a model and, therefore, be
filtered out as outliers.

D. Preliminary Experimental Results

To demonstrate potential benefits of the analyses presented
in Sections to we carry out preliminary exper-
iments based on them. All the experiments were run on a
workstation with an Intel Core 19-9900X CPU, 128 GB RAM,
and two Nvidia GeForce RTX 2080Ti GPUs running Ubuntu
20.04.2 LTS, and all the models are implemented using Python
3.8.5. As the metric of the indoor localization performance, we
use the EVAAL 3D error [19].
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First, we assess the effects of WAP-absent records on indoor
localization performance using the hierarchical RNN model
of [17], whose results are shown in Fig. @ As discussed in
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Fig. 19: Mean 3D error of the hierarchical RNN [17].

Section [[TI-C] the results clearly indicate that we can improve
indoor localization performance by filtering out the WAP-
absent records from the database.

Second, we consider more complicated pre-filtering to ex-
clude WAPs not providing unique information. Specifically,
we filter out the following WAPs:

« WAPs with less than 3 unique RSSI values.

« WAPs with RSSI standard deviations less than 1.

After we apply the proposed pre-filtering to the training
dataset, we also exclude in the validation dataset the WAPs
that are already pre-filtered from the training dataset. As
a result, the total number of WAPs of both training and
validation datasets is reduced from 520 to 416, which also
significantly reduces the training dataset size from 51,518 KB
to 33,640 KB.

To investigate the effects of the pre-filtering process, we
evaluate the performance of floor classification using the con-
ventional ML algorithms of KNN [30]], C-support vector clas-
sification (SVC) [31]], and C5.0 decision tree algorithm [32]] as
in [33]. Fig. @ shows the confusion matrices with and without
pre-filtering, where we can observe that the filtering improves
the classification performance slightly over all the algorithms.
Note that, however, the major benefit of the filtering is the
significant reduction of training time from 5min to 3 min,

i.e., by 40%. We also evaluate the performance of indoor
localization using the hierarchical RNN [17] and summarize
its results in Table which demonstrate that the pre-filtering
reduces 3D error but decreases floor hit rate.

TABLE IV: Localization performance of the hierarchical
RNN [[17] with and without pre-filtering.

EvAAL 3D error [m]

8.62
8.51

Floor hit rate [%]

95.2
92.0

Without pre-filtering
With pre-filtering

Finally, we investigate the effects of the representation
of missing RSSIs (i.e., NaN) in the database by evaluating
the localization performance with different numerical val-
ues. Table [V] summarizes the average floor hit rate of the
floor classification based on conventional ML algorithms,
and Table [VI] provides the 2D error and success rate of the
hierarchical RNN [[17]], where the success rate is the percentage
of successful classification of both building and floor.

TABLE V: Average floor hit rate of the floor classification
based on SVC, KNN, and C5.0 with different numerical values
for missing RSSIs.

Average floor hit rate [%]

NaN Representation

SVC  KNN C5.0
100 82.0 795 78.9
-105 86.3 85.3 81.0
-110 86.8 85.0 81.4

TABLE VI: Localization performance of the hierarchical
RNN [17] with different numerical values for missing RSSIs.

Representation 2D error [m]  Success rate [%]
100 10.949 79.6
-105 8.274 92.4
-110 8.312 93.1

The three numerical values for missing RSSIs are selected
based on the following rationales:
« 100 is the original representation used in the UJIIndoor-
Loc database.
e -105 is consistent with the minimal value of RSSIs, i.e.,
-104.
e -110 is the most frequently used in the literature for
research based on the UJlIndoorLoc database.
The results from Tables [V] and [VI] indicate that there is
room for improvement in numerical representation of missing
RSSIs.

IV. CHALLENGES AND RECOMMENDATIONS

Sections reveals the issues of the fingerprints in the
UlJIIndoorLoc database in their spatial coverage, measurement
practices, and lack of diversity in users and phones, which
could have negative effects on the performance of a local-
ization model trained with the database. Here we provide
our recommendations on the challenges in using existing
fingerprint databases and constructing new ones for large-scale
multi-building and multi-floor indoor localization.
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Fig. 20: Confusion matrices of the floor classification based on SVC, KNN, and C5.0: (a) Without WAP-wise feature filtering

and (b) with WAP-wise feature filtering.

A. On the Use of Existing Fingerprint Databases

1) Localization Algorithms and Models: The accuracy of
localization has been a top priority in studying localization
algorithms and models, often at the expense of their space
and time complexity, because the underlying scenario is that
both training of a model during the offline phase and using a
trained model for location estimation during the online phase
are done at a centralized server with plenty of computing and
power resources; under this scenario, a user device just reports
the RSSIs measured at an unknown location to and receives
estimated location information from the server.

Achieving good localization accuracy is relatively straight-
forward with a fingerprint database constructed for a controlled
small-scale environment over a short period of time, which,
however, is challenging with a fingerprint database constructed
for a large-scale multi-building and multi-floor environment
over a long period of time. In the case of the UJIlIndoorLoc
database, the validation dataset was collected three months
after the training dataset with fewer users and devices, result-
ing in fewer detected WAPs. To address the issues resulting
from the differences between training and validation/testing
datasets in large-scale multi-building and multi-floor indoor
localization, therefore, techniques like transfer learning []3}[]
and domain adaptation could be applied for the improve-
ment of the generalization and robustness of a model.

In addition to the accuracy and robustness of localization,
user privacy is also an important factor. The conventional
scenario based on the client-server model raises privacy con-
cerns due to the collection of user information (i.e., location
fingerprints) by a centralized server, especially during the
online phase. As the computational power of user devices
increase, it is possible to perform localization tasks directly
on user devices (e.g., based on pretrained models downloaded
from a server) without submitting user information to a server,
which can protect users’ privacy.

As for response time, smaller models have an advantage
over larger ones, which can also provide reasonable local-
ization performance in small-scale indoor localization, but
their direct application to large-scale indoor localization cannot
guarantee the same level of performance. One promising
solution in this regard is knowledge distillation [36], which
can compress large models without much sacrificing their
performance. This process has garnered much success in many
research areas but not in indoor localization yet.

Therefore, it is essential to strike a right balance among
accuracy, robustness, response time, and privacy in studying
localization algorithms and models by taking into account the
following important aspects:

¢ The number of records required for model training.
o The model size and computational power required for



localization.

o The amount of data collected from users and stored on

the device.

o The structure and architecture of an indoor localization

system (e.g., cloud-based and on-device).

2) Data Balancing: The spatial complexity of building
structures and the accessibility of RPs pose challenges to
large-scale indoor localization, which lead to uneven spatial
distribution of records. As discussed in Section [[II-A] the
UlllndoorLoc database shows significant imbalance in the
number of records (e.g., between west and east corridors of
Building 2). The UJIIndoorLoc database also shows the domi-
nance of a couple of users and phones during the construction
of both datasets. Such data imbalance in space, user, and
device distributions could result in poor and biased training
results, so data balancing during the construction of Wi-Fi
fingerprint databases is essential to achieving unbiased results
as well as good localization performance from trained models.

To handle data imbalance, we can apply data augmenta-
tion and/or data resampling techniques to existing fingerprint
databases: As for data augmentation, straightforward applica-
tion of conventional techniques (e.g., [25], [37]]) could provide
satisfactory results when original records already have a good
space coverage like those of Building O shown in Fig. (6] (b).
When a building structure is complicated and original records
poorly cover the space like the top floor of Building 2 or the
bottom two floors of Building 1 of the UJIIndoorLoc database,
however, we need a more sophisticated data augmentation
schemes like generative adversarial network (GAN)-based
ones [38].

As for data resampling, we can apply advanced data resam-
pling techniques like stratified sampling [39] and weighted
random sampling as well as conventional up- and down-
sampling to obtain more evenly-distributed datasets. For ex-
ample, we can apply weighted random sampling to Floor 1
and 2 of Building 2 of the UJlIndoorLoc database.

3) Data Preprocessing: Based on the comprehensive analy-
ses in Section[[TI=B] it has been observed that certain WAPs are
not playing a critical role in accurately identifying a specific
building or floor. The significance of each WAP can vary
depending on the particular building and floor. For instance,
during data augmentation tasks, certain WAPs within the range
of [20, 40] in the UJlIndoorLoc training dataset are detected
in Building O but have negligible relevance for Building 2
as shown in Fig. [T4] Therefore, when selecting inputs for
indoor localization models and complex data augmentation
algorithms, it is crucial to consider the importance of each
WAP at different levels.

For instance, leveraging the hierarchical nature of multi-
building and multi-floor indoor localization, we can apply the
following strategies to limit the number of input dimensions
by a step in manner:

As illustrated in Fig. 21} once the building-level classifi-
cation model is established, for floor classification, we can
use only the WAPs that are important for the given building
as inputs. Similarly, for coordinate-level localization, we can
use only the WAPs that are important for the given floor as
inputs. This hierarchical data evolution training framework can
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Fig. 21: Hierarchical and hybrid/fusion data evolution training
framework. Note that the filtering operations in data evolution
are performed based on both feature-wise and record-wise
analyses.

significantly reduce the input dimension of indoor localization
models and the cost of retraining models when the database is
updated. However, the downside of this framework, illustrated
in is that it requires the construction of a series of
separate models for each level of localization, which could
be a challenge in terms of computational resources and time.
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Fig. 22: Downside of the hierarchical data evolution training
framework, multiple models are required for each level of
localization.

It is also worth to investigate pre-filtering of WAPs with all-
NaN values in the database. In the case of the UJIIndoorLoc
database, as discussed in Section [[TI-B] Out of 520 WAPs,
55 and 153 WAPs were never detected in the training and
validation datasets, respectively. Excluding these WAPs could
substantially reduce the input dimension of indoor localization
models and storage requirements for the database, particularly
for large-scale scenarios. There have been proposed several
WAP selection schemes [41]-[44], but their application to
large-scale multi-building and multi-floor indoor localization
databases are to be carefully investigated.

WAP-absent records in the database—i.e., resulting from the
lack of WAPs around the user or the device’s inability to detect
WAPs at the time of RSSI measurement—can deteriorate
indoor localization performance and cause issues like the
cold start problem []21_3]], a decrease in robustness, and poor
generalization. In the case of the UJIIndoorLoc database, users
with PHONE 1 or 22 are more likely to generate WAP-
absent records on the top floor of Building 1 as discussed



in Section To avoid such issues, we can simply filter
out WAP-absent records before training a model. We can also
apply more advanced techniques like data imputation to handle
such missing data [46].

4) Missing Value Representation: It is important to under-
stand that different databases may represent NaN with different
numerical values. For example, the UJlIndoorLoc database
labels NaN values as 100, which is typically converted to
-110 during the preprocessing. While a larger variation in
RSSI values for different locations could help room or floor
classifications, it is unsuitable for coordinate regression as
demonstrated in Tables [V] and [V]] of Section Therefore,
it is important to numerically represent missing RSSIs based
on the statistics of RSSI values in the database, which can
ensure accurate indoor localization for both classification and
regression.

B. On the Construction of New Fingerprint Databases

1) RP Selection: It would be ideal if we could tackle the
issue of uneven record distributions during the construction of
a database through a more systematic way of RP selection,
because imbalanced data may cause issues like bias and
overfitting in classification [47]]. Proper selection of RPs during
the construction of a database, however, is challenging in that
the following, seemingly-contradicting requirements should be
met simultaneously:

« RPs should cover entire monitoring areas in a balanced

way.

« RPs should be easily accessible for data collection.

As discussed in Section the UllIndoorLoc database
shows both building- and floor-level uneven record distribu-
tions due to the accessibility of the restricted spaces like
chemical laboratories and private offices [[18§]].

We can apply post-construction techniques as practical
alternatives in this regard: For example, we can utilize spatial
data augmentation [25[] for Building 0 and 1 and stratified
sampling [48]] for Building 2. As a smaller number of RPs with
balanced space coverage is better than a larger number of RPs
with poor space coverage even for the application of the post-
construction techniques, the selection of RPs was and remains
a top priority for the construction of fingerprint databases.

2) Measurement Practices: How to measure fingerprints
based on the selected RPs is another important factor for not
only the construction of a fingerprint database but also its
maintenance and update.

The frequency of RSSI measurements (e.g., daily
or weekly), together with the total period of database
construction (e.g., over a month or a year), needs to be
carefully determined. With a low measurement frequency,
some WAPs may not be detected during the measurements
due to their being in a standby or sleeping operation mode,
while a high measurement frequency incurs a higher labor
cost. Note that the effects of a low frequency of RSSI
measurements could be compensated for using a longer
period of database construction. As environment changes like
people’s presence and the use of various electronic devices
significantly affect the measured RSSIs, using different times

of the day for measurements (e.g., during or after work
hours) is also required to increase the temporal diversity of a
fingerprint database.

Together with the measurement frequency and time and
the database construction period, the way of visiting RPs is
important, too. For example, we can visit and measure RSSIs
at the same RPs repeatedly over a construction period for
small-scale indoor localization, while we can divide RPs and
visit a part of them during each measurement for large-scale
multi-building and multi-floor indoor localization.

Though we carefully plan RSSI measurements at properly
selected RPs for the construction of a fingerprint database, it
will be useless if we do not have enough human resource to
carry out the plan. As discussed in Section |lI-El a hybrid data
collection strategy combining in/outsourcing with volunteering
can be adopted to reduce the high labor cost. Even with such a
hybrid data collection strategy, a core group of participants is
still a key to the successful construction of a good fingerprint
database, who is to provide high-quality RSSI measurements
by strictly following the measurement plan.

3) User, Device, and Network Diversity: To increase the
diversity of collected fingerprint data for the robustness of a
trained model, the measurements should be done with multiple
users of different physical characteristics (e.g., height) with
different models of devices. For example, depending on a
couple of devices could result in lots of WAP-absent records
due to the special characteristics or even errors of certain
devices as discussed in Section [[II=C|

To further increase the diversity of location fingerprints and
thereby provide more robust localization service in various
indoor environments, we can collect and provide other types
of location fingerprints like RSSIs of BLE [24] and cellular
networks [49] and geomagnetic field intensity [S0] as well as
Wi-Fi RSSIs.

4) Database Maintenance and Update: Once an indoor
localization system is deployed in the field with a constructed
fingerprint database, there will be increasing requirements for
the maintenance and update of the fingerprint databases, the
activities of which include addition of fingerprints from new
WAPs, replacement of fingerprints from existing WAPs, and
removal of fingerprints no longer relevant.

In addition to manual collection of fingerprints by hu-
man participants, automatic collection of fingerprints using
lightweight, battery-powered anchor devices deployed at se-
lected RPs could be considered to further reduce the labor
cost [51f]. Also, exploiting unlabeled RSSIs submitted by
users during the online phase of an indoor localization system
deployed in the field is another interesting option in this
regard [52].

V. CONCLUSIONS

Wi-Fi fingerprinting has become a dominant technology for
indoor localization due to its major advantage of usability
in any environment equipped with Wi-Fi networks without
requiring additional hardware or infrastructure. As the local-
ization performance of Wi-Fi fingerprinting heavily depends
on the quality of the underlying fingerprint database used to



train an ML model for location estimation, a study on the use
and construction of fingerprint databases becomes as important
as that on localization algorithms and models, whose major
focus, however, has been limited to databases covering a single
floor or building.

The UllIndoorLoc Wi-Fi fingerprint database represents a
significant advancement in the field of multi-building and
multi-floor indoor localization. While many researchers have
used this database as a benchmark to evaluate the performance
of their proposed algorithms and models, there have been few
studies dedicated to multi-building and multi-floor fingerprint
databases. This paper aims to fill this gap by examining the
UlJIIndoorLoc database, which is by far the most popular
multi-building and multi-floor Wi-Fi fingerprint database, and
providing practical guidance on the use of existing databases
and future directions for the design and construction of new
databases.

As a basis, we have carried out a comprehensive case
study of the UJlIndoorLoc database, where we investigate
the statistical characteristics of the UlJlIndoorLoc database
through both field-level and record-level analyses. We have
obtained several key insights on the UJlIndoorLoc database
through those analyses, i.e., (1) the uneven spatial distributions
of records, (2) the lack of user and phone diversity during
the measurements, (3) the existence of WAP-absent records,
and (4) the identification of WAPs not providing unique
information for fingerprinting; especially, we have assessed
and demonstrated the effects of WAP-absent records and
WAPs not providing unique information on indoor localization
performance through preliminary experiments.

Based on the results of the case study with the UJIIndoorLoc
database, we have provided our recommendations on the chal-
lenges in using existing fingerprint databases and constructing
new ones for large-scale multi-building and multi-floor indoor
localization, where we discuss in detail potential application
of advanced ML techniques like data augmentation, data
resampling, data imputation, and semi-supervised learning in
addressing the challenges.

To the best of the authors’ knowledge, this is the first
work to extensively analyze the UJIIndoorLoc database, iden-
tify its issues, and provide recommendations on the various
challenges in using the existing database and constructing
new ones for large-scale multi-building and multi-floor indoor
localization. Our findings presented in this paper serve as a
valuable starting point to researchers new to this field and
provide a practical guidance to those interested in using the
UlJlIIndoorLoc database or creating their own large-scale Wi-
Fi fingerprint databases. Note that we have been constructing
our own large-scale multi-building and multi-floor Wi-Fi fin-
gerprint database based on the results of this case study, whose
preliminary results are presented in [S1]].
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