References

[1] Pollegioni, L., Rosini, E., Molla, G., Advances in enzymatic synthesis of D-Amino acids. Int. J. Mol. Sci. 2020, 21 , 3206.
[2] Gao, X. Z., Ma, Q. Y., Zhu, H. L., Distribution, industrial applications, and enzymatic synthesis of D-amino acids. Appl. Microbiol. Biotechnol. 2015, 99 , 3341-3349.
[3] Fan, A., Li, J., Yu, Y., Zhang, D., et al. , Enzymatic cascade systems for D-amino acid synthesis: progress and perspectives.Syst. Microbiol. Biomanuf. 2021, 1 , 397-410.
[4] Vedha-Peters, K., Gunawardana, M., Rozzell, J. D., Novick, S. J., Creation of a broad-range and highly stereoselective D-amino acid dehydrogenase for the one-step synthesis of D-amino acids. J. Am. Chem. Soc. 2006, 128 , 10923-10929.
[5] Hayashi, J., Seto, T., Akita, H., Watanabe, M., et al. , Structure-based engineering of an artificially generated NADP(+)-dependent D-Amino acid dehydrogenase. Appl. Environ. Microbiol. 2017, 83 .
[6] Akita, H., Hayashi, J., Sakuraba, H., Ohshima, T., Artificial thermostable D-Amino acid dehydrogenase: creation and application.Front. Microbiol. 2018, 9 .
[7] Gao, X. Z., Ma, Q. Y., Chen, M. L., Dong, M. M., et al. , Insight into the highly conserved and differentiated co-factor binding sites of meso-diaminopimelate dehydrogenase StDAPDH. J. Chem. Inf. Model. 2019, 59 , 2331-2338.
[8] Lu, C., Zhang, S., Song, W., Liu, J., et al. , Efficient synthesis of D-phenylalanine from L-phenylalanine via a tri-enzymatic cascade pathway. ChemCatChem. 2021, 13 , 3165-3173.
[9] Liang, S., Wu, X. L., Xiong, J., Zong, M. H., Lou, W. Y., Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review. Coord. Chem. Rev. 2020,406 .
[10] Liang, J. Y., Mazur, F., Tang, C. Y., Ning, X. N., et al. , Peptide-induced super-assembly of biocatalytic metal-organic frameworks for programmed enzyme cascades. Chem. Sci. 2019,10 , 7852-7858.
[11] Sha, F. R., Chen, Y. J., Drout, R. J., Idrees, K. B., et al. , Stabilization of an enzyme cytochrome c in a metal-organic framework against denaturing organic solvents. Iscience. 2021,24 .
[12] Gascón, V., Carucci, C., Jiménez, M. B., Blanco, R. M., et al. , Rapid in situ immobilization of enzymes in metal–organic framework supports under mild conditions.ChemCatChem. 2017, 9 , 1182-1186.
[13] Liu, D., Du, K., Feng, W., Immobilization of enzymes using a multifunctional fusion polypeptide. Biotechnol. Lett. 2018,40 , 181-187.
[14] Wang, S. Y., Duan, L. X., Jiang, L., Liu, K. L., Wang, S. Z., Assembly of peptide linker to amino acid dehydrogenase and immobilized with metal-organic framework. J. Chem. Technol. Biotechnol. 2022,97 , 741-748.
[15] Du, K., Sun, J., Song, X., Song, C., Feng, W., Enhancement of the solubility and stability of d-amino acid oxidase by fusion to an elastin like polypeptide. J. BIOTECHNOL. 2015, 212 , 50-55.
[16] Caparco, A. A., Bommarius, A. S., Champion, J. A., Effect of peptide linker length and omposition on immobilization and catalysis of leucine zipper-enzyme fusion proteins. AIChE J. 2018, 64 , 2934-2946.
[17] Song, Z., Li, Y., Teng, H., Ding, C. F., et al. , Designed zwitterionic peptide combined with sacrificial Fe-MOF for low fouling and highly sensitive electrochemical detection of T4 polynucleotide kinase. Sens. Actuators, B 2020, 305 .
[18] Zernia, S., Frank, R., Weiße, R. H.-J., Jahnke, H.-G., et al. , Surface-binding peptide facilitates electricity-driven NADPH-free cytochrome P450 catalysis. ChemCatChem. 2018, 10 , 525-530.
[19] Kuhlman, B., Jacobs, T., Linskey, T., Computational design of protein linkers, in: Stoddard, B. L. (Ed.), Computational Design of Ligand Binding Proteins , Springer New York, NY 2016, pp. 341-351.
[20] Meneely, K. M., Sundlov, J. A., Gulick, A. M., Moran, G. R., Lamb, A. L., An open and shut case: the interaction of magnesium with MST Enzymes. J. Am. Chem. Soc. 2016, 138 , 9277-9293.
[21] Kokkonen, P., Bednar, D., Pinto, G., Prokop, Z., Damborsky, J., Engineering enzyme access tunnels. Biotechnol. Adv. 2019,37 , 107386.
[22] Liu, K. L., Wang, S. Y., Duan, L. X., Jiang, L., Wang, S. Z., Effect of ionic liquids on catalytic characteristics of hyperthermophilic and halophilic phenylalanine dehydrogenase and mechanism study. Biochem. Eng. J. 2021, 176 .
[23] Calderón, C., Contreras, R., Campodónico, R., Surfactant-mediated enzymatic superactivity in water/ionic liquid mixtures, evaluated on a model hydrolytic reaction catalyzed by α-chymotrypsin. J. Mol. Liq. 2019, 283 , 522-531.
[24] Zhang, Y., Zhang, J., Huang, X., Zhou, X., et al. , Assembly of graphene oxide–enzyme conjugates through hydrophobic interaction. Small 2012, 8 , 154-159.
[25] Singh, K., Mishra, A., Sharma, D., Singh, K., Nanotechnology in enzyme immobilization: an overview on enzyme immobilization with nanoparticle matrix. Curr. Nanosci. 2019, 15 , 234-241.
[26] Zhang, J., Jin, N., Ji, N., Chen, X., et al. , The encounter of biomolecules in metal–organic framework micro/nano Reactors. ACS Appl. Mater. Interfaces 2021, 13 , 52215-52233.
[27] Huang, S., Kou, X., Shen, J., Chen, G., Ouyang, G., “Armor-Plating” enzymes with metal–organic frameworks (MOFs).Angew. Chem., Int. Ed. 2020, 59 , 8786-8798.
[28] Li, Y. M., Yuan, J., Ren, H., Ji, C. Y., et al. , Fine-Tuning the micro-environment to optimize the catalytic activity of enzymes immobilized in multivariate metal-organic frameworks. J. Am. Chem. Soc. 2021, 143 , 15378-15390.
[29] Banerjee, P. C., Lobo, D. E., Middag, R., Ng, W. K., et al. , Electrochemical capacitance of Ni-doped metal organic framework and reduced graphene oxide composites: more than the sum of Its parts.ACS Appl. Mater. Interfaces 2015, 7 , 3655-3664.
[30] Patel, S. K. S., Choi, H., Lee, J.-K., Multimetal-Based inorganic–protein hybrid system for enzyme Immobilization. ACS Sustainable Chem. Eng. 2019, 7 , 13633-13638.
[31] Zhao, M., Han, J., Wu, J., Li, Y., et al. , One-step separation and immobilization of his-tagged enzyme directly from cell lysis solution by biomimetic mineralization approach. Biochem. Eng. J. 2021, 167 , 107893.