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Abstract

Thin plate system based on acoustic vibration plays an important role in micro nano
manipulation and exploration of nonlinear science. In this paper, starting from the
actual thin plate system driven by acoustic wave signals, combining the mechanical
analysis of thin plate micro element and the approximation approach Bubnov-
Galerkin integral method, the governing equation of a forced vibration square thin
plate is derived. Of note, the reaction force of the thin plate vibration system is
defined as f = � |w| resembling the Hooke’s law. And then by solving amplitude-
frequency response function of the thin plate oscillator using the harmonic balance
method, the amplitude-frequency curves under the action of distinct parameters are
analyzed with two different vibration modes through numerical simulation. Further,
the conservative chaotic motions in the thin plate oscillator is demonstrated by the
theory and numerical method. Drawing the dynamics maps indicating the system
states reveals the evolution laws of the system. Through expounding the effect of
force fields and system energy, the underlying mechanism of chaos is interpreted.
Additionally, the phenomenon of chaos occurred in the oscillator is controlled by the
method of velocity and displacement states feedback, which is meaningful for the
engineering application.
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1 INTRODUCTION

The micro thin plate system driven by acoustic waves has been extensively used in some important engineering fields, such
as microchip assembly1,2, cell culture3,4,5 and particle manipulations6,7,8. These tasks make full use of the advantages of
acoustic manipulation based on vibration plate including 1):miniaturization of control equipment, 2):contactless manipulation,
3):diversity of manipulation targets and experiment environment compatibility. And the physical principle behind these acous-
tic manipulation is Chladni effect, which is discovered in 1787 by German physicist Ernst Florens Friedrich9,10. Apparently, the
structures of the thin plate, material and geometric properties will closely influence the manipulation accuracy of the thin plate
system. On the other hand, from the driving signal source, amplitude and frequency, even the driving interval are all the impor-
tant factors that will influence the effect of micro thin plate. Consequently, it has both theoretical value and practical meaning
to investigate the micro thin plate vibration system by acoustic waves.
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Simultaneously, nonlinear oscillators of various types attract a lot of attentions as they play an important role in many engi-
neering technology and industrial production. Some nonlinear oscillators with typical characteristics have been investigated in
recent years. Such as Zhou and Chen reported the Rayleigh-Duffing oscillator with no-smooth periodic perturbation and har-
monic excitation11. Gendelman. O, Kravetc. P et al, studied a forced vibro-impact oscillator with coulomb friction12. The chaotic
motions of a simple dry-friction oscillator is investigated by Licsko and Csernak13. Li et al demonstrated the nonlinear impact
oscillators with bilateral rigid constraints14. With particular emphasis, micro thin plate oscillators are also an important branch
as their promising and valuable prospects in various application scenarios. Dynamic analysis of amplitude frequency character-
istics is the most key indicator reflecting the oscillator performances. In which, the resonance region and resonance frequency
with maximum system energy under different parameter and geometric conditions can be determined to guide and adjust the
practical application.
Moreover, chaotic dynamics of the nonlinear vibration systems have also been discussed in recent years for its inevitability.

Zhou and Chen investigated the chaotic motions of the Rayleigh-Duffing oscillator11,15. In16, Meleshenko. P. A. et al reported
the conservative chaos in a simple oscillatory system with non-smooth nonlinearity. Boudjema. R. investigated the dynamical
manifestation of chaotic behavior in a q-Tsallis harmonic oscillator17. Alliluev A. D. and Makarov D. V. analyzed the dynamics
of a Nonlinear Quantum oscillator under Non-Markovian pumping18. Kruglov. V. P , Krylosova. D. A , Sataev. I. R , et al
revealed the features of a chaotic attractor in a quasiperiodically driven nonlinear oscillator. Alternatively, there are many ways
to characterize the chaotic property of a dynamic system19. The intuitive method for determining the occurrence of chaos is
to draw the phase portrait and the sequence diagram, and observe the complexity and disorder of their evolution laws. Further
more, by calculating the Lyapunov exponents(LEs) of a dynamic system and judging their positive and negative to determine the
state of system, and the characteristic of a conservative system is summarized as zero-sum LEs, but the non-conservative system
with negative-sum LEs20,21,22,23,24. Meanwhile, the dynamic evolution characteristics is another important aspect of analysis by
the improved method. In this paper, the thin plate oscillator is transformed into a three-dimensional autonomous system. The
conservative chaotic characteristics of proposed oscillator is revealed through theoretical analysis and simulation verification, as
well as the evolution process by drawing and concluding the dynamics maps based on the various parameters and initial values.
Throughout the relevant reports of chaos research, modeling from the actual background is of great significance, which will

help to further guide the practical engineering. Whereas, there is a lack of research and analysis on chaos mechanism. Very
recently, researchers have made some contributions. One of the universal methods is analyzing the action effects of force fields
and energy in the system progressively. For instance, Pelino. V et al reveal the energy cycle for the Lorenz attractor25. Yang.
Y, Qi. G et al analysis the mechanism of plasma chaotic system combining mechanics and energy26. Similarly, the underlying
reason for the chaos of thin plate oscillator modeled in this paper is also explored. When it comes to the applications of chaotic
systems, generally, the randomness of chaotic sequence is considered, which includes secure communication, image encryption,
fault identification of the system, signal prediction and stock financial fields27,28. Chaos means that in a deterministic system,
there is a seemingly random irregular motion, and its behavior is uncertain, unrepeatable and unpredictable. Unfortunately, the
phenomenon of chaos is not expected in many engineering projects. That is because chaotic vibration will probably cause the
instability of an actual system. And the uncontrolled instability is the main inducement for system damage or crash and low
efficiency. Chaotic vibration will make the system produce irregular oscillation, often produce some unpredictable interference
fluctuations, resulting in mechanical load exceeding its bearing range, excessive increase of noise and reduction of operation
accuracy. Hence, chaotic phenomena need to be avoided in some engineering applications. The control target is to effectively
obtain the periodic orbit needed or suppress the chaotic behavior through possible strategies and methods29,30,31,32. As a result,
the effective suppression and control of chaos have significant practice meaning. Chaos generated in the proposed thin plate
oscillator is controlled by the state feedback method.
The rest of this paper is arranged as the following order: in Section 2, by mechanical analysis and mathematical derivation,

the system governing equation of the thin plate oscillator is obtained. In Section 3, the relationship of amplitude-frequency
response is solved by the method of harmonic balance method(HBM), and the amplitude-frequency curves are drawing to analy-
sis the effects of various parameters and different vibration modes on amplitude-frequency characteristic. And then, conservative
chaotic property in the proposed oscillator is demonstrated by mathematical verification and numerical simulation in Section 4,
and by computing the dynamics maps analyzing the evolution process and laws of the system. Further, the chaos mechanism is
expound by analyzing the effects of force fields and energy progressively. Meaningfully, the appeared chaos is controlled by the
state feedback. Finally, some conclusions are given in the last Section.
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2 SYSTEM GOVERNING EQUATION

As an important mean of non-contact acoustic manipulation33, revelation of complex dynamics behaviors of vibrating thin plate
system plays a great practical value in some engineering problems. In this paper, the modeling analysis is based on the physical
thin plate as shown in the Fig.1(a). The Silicon thin plate is fixed on a Piezoelectric actuator (shown as Fig.1(b)) and driven
by sinusoidal signal source, and the two axis slider is used to adjust the horizontal position of the plate. Driven by different
acoustic waves, the thin plate oscillator will vibrate variously, such as the chaotic vibration and regular vibration reflected by
microparticles shown in Fig.1(c-d). In this working system, the chaotic vibration is undesirable and needs to be controlled, but
the regular motion is favorable. Therefore, chaotic phenomenon in this system needs to be controlled or suppressed.

(a) Physical thin plate. (b) Piezoelectric actuator.

(c) Disordered vibration mode. (d) Regular vibration mode.

FIGURE 1 The thin plate vibration system.

The forced vibration thin plate undergoes small displacements. What is the rationale behind the displacements, essentially,
the conditions that complex stress of the system play a decisive role. Homoplastically, the geometry and material properties of
the thin plate are also the key factors for the vibration deflection of thin plate. In this paper, on the basis of Kirchhoff-Love thin
plate theory, fully considering the stress conditions of the thin plate, the governing equation for a thin plate system is formulated
as Eq.(1). Notably, the form of the external load p and the reaction force f will directly affect the dynamic characteristics of the
vibration thin plate system.
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D∇4w + �ℎ)
2w
)t2

+ �)w
)t

= f + p(x, y, t) (1)

in which ∇4 is the double Laplace operator, defined as ∇4 = ∇2(∇2w), D is the bending rigidity of plate, � is the plate density,
h is the plate thickness. p(x, y, t) is the external drive mechanism with the form that , and A, !, ' are amplitude, frequency
and phase respectively of the driving signal. It is particularly worth mentioning, for a thin plate of elastic materials under the
external excitation, the reaction force is considered as f = � |w| which is defined by analogy with Hooke’s law in this system,
and � indicates the coupling strength of thin plate and driver.

FIGURE 2 Diagram of simply supported thin plates on four edges.

The following boundary conditions should be met for a simply supported square thin plate.
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Accordingly, the midplane deflection function of square thin plate is assumed as
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∞
∑
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∞
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l

) (4)

of note, m, n are positive integers, l is the side length of square thin plate.

The residual function R for the forced vibration dynamic equation (1) is
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Substitute Eq.(4) into Eq.(5), one gets
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For a two-dimensional thin plate continuum, the Bubnov-Galerkin integral method is applied, furnishes
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in which, a = b = l.
After partial derivative calculation and integration, the ordinary differential equation of the square thin plate vibration system

is cast in the form
�4D[m

2 + n2

l2
]qmn(t) + �ℎq̈mn(t) + �q̇mn(t) = � |

|

qmn(t)|| + Pmn(t) (8)

with D = Eℎ3

12(1−�2)
, E and �, respectively, indicate the Young’s modulus and the Poisson’s ratio,

Pmn(t) =
a
∫
0

b
∫
0
sin(m�x

a
) sin( n�y

b
)p(x, y, t)dxdy.

As a result, differential equation of forced vibration of square thin plate is organized as

�4D[m
2 + n2

l2
]qmn(t) + �ℎq̈mn(t) + �q̇mn(t) = � |

|

qmn(t)|| +
4l2

mn�2
A cos(!t) (9)

3 ANALYSIS OF AMPLITUDE-FREQUENCY RESPONSE

In this section, the amplitude-frequency response of system (9) is derived by the method of harmonic balance method, and
a lot of numerical simulations are performed. As consequence, some conclusions that closely affect the amplitude frequency
characteristics are obtained, which is of vital significance for the vibration control of square thin plate system. Forced vibration
state is the response of the system to vibration under the action of continuous and uninterrupted excitation force. When the
excitation source is removed, the vibration is transformed into free vibration based on natural frequency. The system response
under simple harmonic excitation is consist of transient response and steady-state response. During the steady-state response,
the vibration frequency of the system is the same as that of the excitation force. When the frequency of the excitation force
is close to the natural frequency of the system, the vibration amplitude suddenly increases, that is, resonance occurs. In some
cases, the physical phenomenon of resonance will bring harm to mankind. However, in many cases, people can skillfully use it
to serve mankind. Hence, the amplitude-frequency characteristic is an important research content of oscillator.

3.1 Amplitude-frequency response
Relabel the coefficients of Eq.(9) for simplifying, one gets

mq̈mn(t) + �q̇mn(t) +K1qmn(t) = � |
|

qmn(t)|| +K2 cos(!t) (10)

in which m = �ℎ,K1 = �4D[m
2+n2

l2
], K2 =

4l2

mn�2
A.

Applying the harmonic balance method, the relationship of amplitude-frequency response can be solved as follows.
The response function is considered as

x = a cos(!t + ') (11)
And rewrite the external incentive force of the system as

p(x, y, t) = A cos(!t)
=A cos(') cos(!t + ') + A sin(') sin(!t + ')

(12)

Then, substitute the Eq.(11), Eq.(12) in the dynamic system Eq.(10), and consider the positive cos(!t + '), the following
equations is derived

{

−ma!2 + aK1 − � |a| = K2 cos(')
−�a! = A sin(')

(13)

Square both sides of the Eq.(13) and add them separately, consequently, one gets
(

−ma!2 + aK1 − � |a|
)2 + (−�a!)2 = K2

2 (14)
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The relationship of amplitude-frequency response is organized as

a = K2 ∗
(

K1
2 + m2!4 − 2K1m!

2 + �2 − 2K1� + 2m!2� + �2!2)−
1
2 (15)

3.2 Amplitude-frequency curves
In order to study the influence of system parameters to the amplitude-frequency response, numerical simulations are calculated
to summarize the evolution law of amplitude-frequency response for the proposed oscillator. This paper focuses the effects
under the distinct sheet thickness h, sheet side length l, amplitude of external excitation force A and vibration modes (m, n).
For all simulation conditions, the material parameters are set according to Silicon, which has a density 2329g∕m3 , a Young’s
modulus of 170 ∗ 109 Pa, and a Poisson’s ratio of 0.28, and � = 0.2, � = 1.

Case1: Analysis of the sheet thickness h

In this case, the amplitude-frequency response curves are computed with different sheet thickness h and under the vibration
modes (m=1, n=1), (m=1, n=3). Other parameters are selected as, sheet side length l=0.1m, excitation amplitude A=100.
From the amplitude-frequency response curves with distinct color shown in Fig.3(a, b), in which, the plate thickness are

selected as h=0.2mm, h=0.4mm and h=0.6mm respectively for different vibration modes(m=1, n=1) and (m=1, n=3). From
Fig.3(a, b), the conclusion is that with the increase of plate thickness, the amplitude of thin plate decreases, inversely, the
resonance frequency is increasing. The vibration mode changes from (m=1, n=1) to (m=1, n=3), but the amplitude decreases.
For engineering application, it suggested that the thinner plates and higher order vibration modes are considered to avoid large
resonance amplitude causing damage to the sheet system.
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FIGURE 3 Amplitude frequency characteristics under different vibration modes(m,n) and plate thickness(h).

Case2: Analysis of the side length l

In Case2, based on the equation of amplitude-frequency response, the effect of the sheet side length l is simulated. The
side length l of the square thin plate are set as l=5cm, l=10cm and l=15cm for vibration modes (m=1, n=1) and (m=1, n=3)
separately. The plate thickness is fixed as 0.2mm, excitation amplitude A=100. And the corresponding amplitude-frequency
response curves are shown in Fig.4(a, b), with the increase of the side length of the thin plate, the amplitude of the thin plate also
increases. Instead, the resonance frequency becomes smaller, concurrently, the resonance amplitude is increasing. In addition,
the resonance frequency will enlarge with the increase of vibration mode evidently.
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FIGURE 4 Amplitude frequency characteristics under different vibration modes(m,n) and side length(l).
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FIGURE 5 Amplitude frequency characteristics under different vibration modes(m,n) and side length(A).

Case3: Analysis of the excitation amplitude A

The influence of the excitation amplitude A is analyzed in this case. The sheet thickness and the sheet side length, separately,
are chosen as h=0.4mm, l=0.1m. Amplitude-frequency response curves are shown in Fig.5(a, b) for the vibration modes (m=1,
n=1), (m=1, n=3).
According to the simulation results, the excitation amplitude A will not transform the resonance frequency but the vibra-

tion amplitude increases. Other parameter settings remain unchanged, the resonance frequency increases with the increase of
vibration mode. Hence, excitation amplitude A is an crucial factor to adjust the vibration amplitude of thin plate, which are
important application index in vibration system.

By analyzing the amplitude frequency response under different vibration conditions and vibration modes, some practical
conclusions can be obtained and further guide the application of vibration system, which closely related to the selection of
vibrating thin plate properties and adjustment of excitation force in engineering application. Summarize from the above three
type simulations, keeping other conditions unchanged, the increase of vibration mode will reduce the vibration amplitude of
thin plate vibration system. As consequence, referring to the results of the above analysis, the damage of vibration system can
be avoided and improve the application efficiency of vibration system.
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4 CHAOTIC PROPERTY AND ITS CONTROL

The phenomena of chaos exist extensively in all kinds of nonlinear systems, and apparently, chaos is inevitable in the vibration
system34,35. Where, the conservative chaos is rarely reported. The behavior of dynamic system in chaotic state shows strong ran-
domness. In some industrial production fields, such as chemical reaction and meteorological prediction, secret communication,
chaotic systems are advantageous and needed. Nevertheless, in the thin plate oscillator, chaos should be avoided to ensure the
stability and safety of the system. Generally, the methods for chaos controlling are divided into feedback control and non feed-
back control. Consequently, the chaotic phenomenon in the proposed thin plate oscillator is analyzed in detail through theoretical
and numerical simulation, and which is also controlled based on the method of state feedback.

4.1 Conservative chaos and dynamic evolution
Conservative chaos can be determined by Lyapunov exponents and the phase space trajectory of the system. In Eq.(9), the
relationship between the vibration response of the thin plate and the parameters is described. Simplify the system parameters
and relabel the variables, one gets the state equation form of system (9) as

{

ẋ = y
ẏ = a |x| + b cos(!t) − cy − dx

(16)

in which, x indicates the generalized displacement, and y means the generalized velocity. Set z = !t, a three-dimensional
autonomous dynamic system (17) can be obtained

⎧

⎪

⎨

⎪

⎩

ẋ = y
ẏ = a |x| + b cos(z) − cy − dx
ż = !

(17)

the corresponding Jacobian matrix is

J =
⎡

⎢

⎢

⎣

0 1 0
asign(x) − d −c −b sin(z)

0 0 0

⎤

⎥

⎥

⎦

. (18)

When the initial values x0, y0, z0 are set as (0.2,100,0.05), the parameters are set as a=2, b=300, c=0.001, n=1.5, d=2.1. The
proposed dynamic system (17) presents chaotic characteristic because the Lyapunov exponents is calculated as +0.0512, 0.0000,
-0.0522 shown in Fig.6(a). Using the results of Lyapunov exponents of the three-dimensional autonomous dynamic system (17),
the Lyapunov dimension can be obtained by

DL = 2 +
L1 + L2
|

|

L3
|

|

. (19)

as a result, DL = 2.98 ≈ 3, the calculation results tend to integer, which also shows the conservative chaotic characteristics of
the system.
Simultaneously, the divergence of system (17) can be calculated according to

∇V = )ẋ
)x

+
)ẏ
)y

+ )ż
)z

= 0 + c + 0 (20)

consequently, the degree of dissipation for system (17) is determined by the value of parameter c, in this proposed chaotic state,
c=0.001, which is close to 0, that means the volume of phase space of system (17) is constant, and the spatial trajectories are
neither divergent nor convergent. Combined with the calculation results of Lyapunov exponents (+,0,-), Lyapunov dimension
(tend to integer, 2.98 ≈ 3), divergence (approximate to 0), the chaotic phenomenon with all these characteristics can be classified
as the conservative chaos. And the corresponding chaotic attractor is displayed in Figs.6(b), which is formed by complex spatial
trajectories and shows the chaotic property of the proposed thin plate oscillator.
In addition, the evolution process of dynamic system directly reflects the characteristics of the system. For the purpose of

investigating the dynamic evolution process, the dynamics maps of system(17) is drawn with various parameter and initial
condition. As system(17) is a three dimensional dynamic system, meanwhile, there is always 0 LE during the calculation process
to keep the stability of the system. Thus, the first LE is a key indicator reflecting the dynamic evolution process. In which, the
positive first LE indicates the chaotic motion, inversely, the negative or zero first LE represent the regular motion of the system.
Based on the first LE, the dynamics maps for system(17) are shown in Figs.7(a-b).With the steps of 0.1, the variable parameter

and initial value in Fig.7(a) are a ⊂ [0, 10], x0 ⊂ [5, 15] , and Fig.7(b) are b ⊂ [−5, 5], z0 ⊂ [−5, 5] respectively. From Fig.7(a),
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(a) Lyapunov exponent spectrum. (b) Chaotic attractor in x-y plane

FIGURE 6 Chaotic property of system (17).

the region of yellow surface refers to the chaotic states with the positive first LE, other region shows the regular motion with
the negative first LE. Concurrently, the change of x0 does not affect the system evolution process, but the system will evolve
differently with the change of parameter a. Fig.7(b) displays the dynamic evolution with varying b and z0, from which, the
evolution process is depicted by the calculation results first LEs. From Fig.7(b), the dynamic evolution process is symmetry
about the parameter axis b = 0. Simultaneously, the system evolves in various degrees under changing b and z0 according to
the color bar, the areas marked red have higher randomness, but the areas marked blue have lower randomness. The method of
drawing dynamics maps provides an useful tool to analyze the evolution law of the system based on the parameter and initial
condition intuitively.

(a) Dynamics map with varying a and x0. (b) Dynamics map with varying b and z0.

FIGURE 7 Dynamics map of system(17) with varying parameters and initial values.
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4.2 Analysis of chaos mechanism
Any chaotic or hyperchaotic systems can be represented by the generalized Hamiltonian system, which can be described as the
Kolmogorov type further. In this way, the dynamic system is decomposed into three force fields including conservative force
field, dissipative force field and external force field. And then, by analyzing the effect of these force fields acting on the system
and the variation of system energy, the mechanism of the emergence of chaos could be explained. Accordingly, system (17) has
the following form

ẋ = {x,H} + fd + fe (21)
Go a step further

{x,H} =
⎡

⎢

⎢

⎣

y
a |x|
0

− dx
⎤

⎥

⎥

⎦

, fd =
⎡

⎢

⎢

⎣

0
−cy
0

⎤

⎥

⎥

⎦

, fe =
⎡

⎢

⎢

⎣

0
b cos(z)
!

⎤

⎥

⎥

⎦

(22)

in which, {x,H} is the conservative force field, the dissipative force field is indicated by fd , fe means the external force field.
As consequence, the chaotic mechanism of the proposed thin plate oscillator can be analyzed gradually. The system parameters
and initial conditions are also set as sub-section 4.1.
Firstly, only the conservative force {x,H} works on the system, the system keeps energy conservation, there is no energy

exchanged between the inside and outside of the system. Thus, the system has the stable evolution. Combined with the numerical
simulations shown in Figs.8(a-b), the corresponding phase space portrait is a closed periodic ring, and the state variable of
the system change uniformly. Next, the dissipative force is added, in this case, the conservative characteristic of the system is
destroyed, and the spatial trajectory of the system becomes quasi-periodic shown in Figs.9(a) instead of the simple periodic
motion. Under the condition of long enough time, the systemwill gradually dissipate as the time history curve shown in Figs.9(b).
Finally, the external force fe is also added. All the force fields exert on the system. And especially, owing to the external force
fe, there is energy exchanged between the inside and outside of the system. Consequently, chaos appears in the system due to
the fluctuation of system energy. As the chaotic attractor in three-dimensional space shown in Fig.10(a). And the time history
curve of variable x in Fig.10(b) shows disorder. In a word, the effect of force fields and system energy provide an useful channel
for explaining the occurrence of chaos in the thin plate oscillator.
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FIGURE 8 Only the conservative term works.

4.3 Chaos control based on state feedback
The dynamic motion resulted by chaos is violent oscillation. Unfortunately, the appearance of chaos will make the system
undergo an unstable state, whereas in the actual project, that is harmful. Engineers hope the system work steadily on the steady-
state to avoid any bifurcation and chaotic behavior. Chaos control is to make the controlled chaotic system break away from the
chaotic state and achieve the expected periodic dynamic behavior, such as equilibrium state, periodic motion or quasi periodic
motion36,37. The goal of chaos control is to eliminate the bifurcation behavior and chaos of the system. As consequence, fast
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FIGURE 9 Add dissipative term.
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FIGURE 10 Conservative, dissipative and external force terms work.

suppression of chaos is a control task in engineering. Chaos control mainly refers to eliminate chaos and suppress the occurrence
of chaos, which means to stabilize the system to the desired equilibrium point or periodic state.
In sub-section 4.1, the conservative chaotic property of the proposed thin plate oscillator, a class of chaos with higher ran-

domness, is analyzed in detail. The method of state feedback is used to suppress the chaos in this sub-section. For system (17),
the displacement feedback controller u1 and velocity feedback controller u2 are designed to control the chaos appeared in last
sub-section. Under the action of the controllers, the governing equation of the system becomes

⎧

⎪

⎨

⎪

⎩

ẋ = y + u1
ẏ = a |x| + b cos(z) − cy − dx + u2
ż = !

, (23)

in which, the controllers are set as u1 = −k1x , u2 = −k2x. Set the system parameters according to sub-section 4.1, let u2 = 0 ,
and the displacement state feedback u1 is set as u1 = −2x . The governing equation of system becomes

⎧

⎪

⎨

⎪

⎩

ẋ = y − 2x
ẏ = a |x| + b cos(z) − cy − dx
ż = !

(24)

The spatial trajectory and time series of variable x are obtained through simulations, as shown in the Figs.11(a-b). From the
simulation results, the spatial trajectory in x-y plane shown in Fig.11(a) is a purple closed curve illustrating that the control result
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is periodic state, and the time series are changing regularly and evenly as the light blue sequence diagram shown in Fig.11(b),
which show that the chaotic behavior of the system is effectively eliminated under the action of the displacement feedback
controller u1.
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FIGURE 11 Control results of the displacement feedback controller u1.
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FIGURE 12 Control results of the velocity feedback controller u2.

And next, let u1 = 0 , and the velocity state feedback u2 is set as u2 = −3y . The governing equation of system becomes

⎧

⎪

⎨

⎪

⎩

ẋ = y
ẏ = a |x| + b cos(z) − cy − dx − 3y
ż = !

(25)

Accordingly, the phase portrait and time series of variable x are shown in the Figs.12(a-b). From the simulation results above,
the phase portrait and the time series explain the periodic state of system (25), which also verify the effectiveness of the designed
velocity feedback controller u2 for controlling the chaotic behavior of the proposed thin plate oscillator.
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5 CONCLUSIONS

The thin plate system driven by acoustic waves has a promising application prospect in the fields of micro nano manipulation,
tissue culture and self-assembly. In this paper, a micro thin plate vibration system driven by the acoustic waves is modeled and
analyzed comprehensively. Firstly, the governing equation of the system is obtained by analyzing the mechanical conditions of
thin plate micro element and detailed mathematical derivation. Secondly, solving the amplitude-frequency response function
of the thin plate oscillator and drawing the corresponding amplitude-frequency curves, the influences of three different sys-
tem parameters and two vibration modes on amplitude frequency characteristics are summarized to further guide the practical
application. And the phenomenon of the conservative chaotic motions appeared in the thin plate oscillator is revealed utilizing
mathematical calculation and numerical simulations. For analyzing the evolution process of the system, the evolution laws are
illustrated by drawing the dynamics maps. And then, explicate the occurrence of chaos through analyzing the effect of force
fields and system energy. Finally, designing the displacement and velocity state feedback controllers, the control of chaos is
performed, with the results of periodic state to further avoid the inexpectant engineering damages.
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