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Asymptotic estimations of eigenvalues and
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The nonlocal boundary value problem with eigenparameter dependent boundary conditions is studied in this paper. Firstly,

we give the asymptotic expressions of the general solution for the equation corresponding to the initial conditions with

eigenparameters, then we prove the multiplicity of eigenvalues some properties of the eigenvalues and eigenfunctions.

Finally, the asymptotic formulas of eigenvalues and eigenfunctions are obtained under certain mild conditions. Our method

is to incorporate the perturbation theory and asymptotic analysis in the framework of classical Sturm-Liouville problems,

which provides a new sight for the investigating of the Sturm-Liouville problems with eigenparameter in boundary conditions.
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1. Introduction

Eigenvalue problems with eigenparameter dependent boundary conditions is of great significance for dealing with a lot of

problems of mathematical physics and mechanics [4, 5]. It is well known that the Sturm-Liouville problem with eigenparameter

dependent boundary conditions is obtained by separating variables from partial differential equation such as wave mechanics

and thermodynamics [6]. The wide application of such problems in mechanics, physics and engineering has stimulated people’s

interest in research [6]-[9]. In [5], Fulton gave the asymptotic formulas for eigenvalues and eigenfunctions of the two-point

boundary value problems involving the eigenvalue parameter in the boundary condition at one end-point.

Browne and Sleeman [2] first studied the inverse nodal problem with eigenparameter dependent boundary conditions in the

following form:

−y ′′(x) + q(x)y(x) = λy(x), x ∈ [0, π]

(a0λ+ b0)y(0) = (c0λ+ d0)y ′(0),

(a1λ+ b1)y(1) = (c1λ+ d1)y ′(1).

Where q(x) is a real valued continuous function and δi = (−1)i(aidi − bici) < 0, i = 0, 1, c0c1 6= 0. The asymptotic properties of

eigenvalues and eigenfunctions of the Sturm-Liouville problem with eigenparameter dependent boundary conditions are introduced

in detail in [1] and [3].

More detailed studies on such problems can be found in various literatures [10]-[16]. In particular, the authors in [11] considered

a Sturm-Liouville operator with eigenparameter dependent boundary conditions and transmission conditions at two interior points.

They got the asymptotic formulas of eigenvalues and the characteristic function, the completeness of its eigenfunctions was
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also involved. The authors in [17] considered the Sturm-Liouville problem

−y ′′(x) + q(x)y(x) = λy(x), x ∈ [0, π]

subject to

y ′(0) = 0, y ′(π) + f (λ)y(π) = 0.

Here q ∈ [0, π] and

f (λ) = a1

√
λ+ a2

√
λ

2
+ · · ·+ am

√
λ
m
, ai ∈ R, am 6= 0, m ∈ Z+.

They gave the asymptotic expressions of the eigenvalues λn for n sufficiently large, and the classical Ambarzumyan’s theorem for

the regular Sturm-Liouville problem was extended to the case in which the boundary conditions are eigenparameter dependent.

By creating a new self-adjoint operator related to a Sturm-Liouville problem with eigenparameter dependent boundary conditions

and eigenparameter dependent transmission conditions, Sen constructed fundamental solutions and obtained the asymptotic

formulas for its eigenvalues and fundamental solutions in [18].

Nonlocal boundary value problems were abstracted from some practical problems in the fields of mathematical physics, biology

and biotechnology [19]-[23]. In recent years, the study of Sturm-Liouville problems with different types of nonlocal boundary

conditions has become a hot topic, more researchers have been devoted to such problems and obtained certain excellent results.

Eigenvalue problems with nonlocal boundary conditions of Bitsadze-Samarskii or integral type were considered in [24]-[26]. The

authors in [27, 28] investigated more complicated cases of the Sturm-Liouville problem with one classical boundary condition

and another nonlocal boundary condition. Typically, the Sturm-Liouville problem in three cases of nonlocal two-point boundary

conditions was considered in [27], Peciulyte and Stikonas proved general properties of eigenvalues and eigenfunctions. Besides,

the authors also described the qualitative behavior of all eigenvalues dependent on nonlocal boundary parameters. For the case

of q(t) ≡ 0, Stikonas in [29] obtained general properties of the characteristic function and spectrum for the Sturm-Liouville

problem with one classical and another nonlocal boundary condition. In order to obtain some new results of the spectrum of the

Sturm-Liouville problem with one Bitsadze-Samarskii type nonlocal boundary condition, the characteristic function method has

been used in [30].

Recently, Sen and Stikonas in [31] studied the asymptotic properties of eigenvalues and eigenfunctions for the following second

order nonlocal boundary value problems with potential function q(t) in differential equation

−u′′(t) + q(t)u(t) = λu(t), t ∈ (0, 1)

u(0) = 0,

u(1) = γu(ξ),

where γ ∈ R and ξ ∈ (0, 1). The asymptotic formulas for eigenvalues and eigenfunctions of nonlocal boundary value problems

were obtained in [31] where general properties of eigenvalues were proved. However, there were relatively few studies on the

asymptotic distribution for eigenvalues and eigenfunctions of the Sturm-Liouville problem with one eigenparameter dependent

and another nonlocal boundary condition.

In this paper, we investigate the equation

− u′′(t) + q(t)u(t) = λu(t), t ∈ [0, 1] (1)

associated with three-point boundary conditions
u(0)

u′(0)
=
aλ+ b

cλ+ d
, (2)

u(1) = ru(ξ). (3)

Here q ∈ C[0, 1], a, b, c, d are real numbers. Suppose r ∈ R, ξ ∈ (0, 1), ρ = ad − bc 6= 0.

This paper is organized as follows. In Section 2, the basic solution is estimated and it is obtained that the geometric multiplicity

of eigenvalues of problem (1)-(3) is simple. In Section 3, we calculate the asymptotic formulas of eigenvalues and eigenfunctions

of problem (1)-(3) under certain mild conditions.

In this paper, we will use the following symbols:

R−s = {s = x + iy ∈ C : x = 0, y > 0}, R+
s = {s = x + iy ∈ C : x > 0, y = 0},

C+
s = {s = x + iy ∈ C : x > 0, y > 0}, C−s = {s = x + iy ∈ C : x > 0, y < 0},

R0
s = {s = 0}.

where Rs = R−s ∪ R+
s ∪ R0

s , Cs = Rs ∪ C+
s ∪ C−s .

2 Copyright c© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1–9

Prepared using mmaauth.cls



Y. Gan, Z. Zheng, K.Li

Mathematical
Methods in the
Applied Sciences

2. Preliminaries

Lemma 1 If ϕλ(t) is a solution of Eq.(1) satisfying the initial conditions

ϕλ(0) = aλ+ b, ϕ′λ(0) = cλ+ d, (4)

then ϕλ(t) is uniquely determined by the existence and uniqueness theorem of the solution, and the function ϕ(t, λ) = ϕλ(t) is

an entire function with respect to λ by the continuous differentiability of the solution to the initial value parameter.

We denote the Wronskians W (y, z ; t) = y ′(t)z(t)− y(t)z ′(t), according to Liouville theorem, W (y, z ; t) does not depend

on t and it is constant on [0, 1].

Lemma 2 Let λ = s2, s = x + iy . Then

for a 6= 0,

dk

dtk
ϕλ(t) = as2 d

k

dtk
cos(st) +O(|s|k+1e |y |t), (5)

whereas if a = 0,

dk

dtk
ϕλ(t) = sc

dk

dtk
sin(st) +O(|s|ke |y |t), k = 0, 1. (6)

Each of these estimations holds uniformly for t as |λ| → ∞.

Proof: According to the constant variation formula, the solution of Eq.(1) satisfying the initial conditions (4) is

ϕλ(t) = (as2 + b) cos(st) +
cs2 + d

s
sin(st) +

1

s

∫ t

0

sin(s(t − τ))q(τ)ϕλ(τ)dτ. (7)

For k = 0, a 6= 0, let ϕλ(t) = e |y |tF (t, λ) and substitute it into (7), we get

F (t, λ) =(as2 + b) cos(st)e−|y |t +
cs2 + d

s
sin(st)e−|y |t

+
1

s

∫ t

0

sin(s(t − τ))q(τ)e−|y |(t−τ)F (τ, λ)dτ.

Let u(λ) = max0≤t≤1 |F (t, λ)|, we note that

| cos st| ≤ e |y |t , | sin st| ≤ e |y |t .

So

u(λ) ≤ |as2|+ |b|+ |cs|+
∣∣∣∣ds
∣∣∣∣+

1

|s|

∫ 1

0

|q(τ)|u(λ)dτ,

when |s| > 2
∫ 1

0
|q(τ)|dτ , we obtain

u(λ) ≤
|as2|+ |b|+ |cs|+

∣∣ d
s

∣∣
1− 1

|s|

∫ 1

0
|q(τ)|dτ

< M|s|2,

where M is a constant independent of λ, thus

ϕλ(t) = e |y |tF (t, λ) = O(|s|2e |y |t), (8)

substituting (8) into (7)

ϕλ(t) = as2 cos(st) +O(|s|e |y |t),

then (5) can be got by differentiating the above formula with respect to t. The proof for (6) is similar.

Theorem 1 The geometric multiplicity of eigenvalues of the problem (1)-(3) is simple.

Proof: Let λ be the eigenvalue of problem (1)-(3) and ψλ(t) be the corresponding eigenfunction. It follows from the

boundary condition (2) and the initial condition (4) that

W [ψλ, ϕλ](0) =

∣∣∣∣ ψλ(0) ϕλ(0)

(ψλ)′(0) (ϕλ)′(0)

∣∣∣∣ =

∣∣∣∣aλ+ b aλ+ b

cλ+ d cλ+ d

∣∣∣∣ = 0.

Therefore, ϕλ(t) and ψλ(t) are linearly dependent on [0, 1], so ϕλ(t) is also the eigenfunctions of problem (1)-(3).
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3. Main results

Suppose that q(t) ≡ 0. Eq.(1) becomes u′′(t) + λu(t) = 0. Accordingly, the characteristic equation is

b(s) = cos s − r cos(sξ) = 0. (9)

Next, we only consider the case |r | < 1.

Lemma 3 The roots of equation b(s) = 0 are all real.

Proof: Let s = x + iy(y 6= 0). By Euler formula, we get

cos x cosh y − r cos(ξx) cosh(ξy) = 0,

sin x sinh y + r sin(ξx) sinh(ξy) = 0.

Then we calculate (
r

cosh(ξy)

cosh y
cos(ξx)

)2

+

(
r

sinh(ξy)

sinh y
sin(ξx)

)2

= 1.

Since ∣∣∣∣r cosh(ξy)

cos hy

∣∣∣∣ < 1,

∣∣∣∣r sinh(ξy)

sinh y

∣∣∣∣ < 1.

Thus we get a contradiction, which completes the proof.

Remark 1 Using the intermediate value theorem and Lemma 3, equation b(s) = 0 has countable positive single roots mk

for |r | < 1. We see that the roots of equation b(s) = 0 is unique in the interval ((k − 1)π, π) and it can be expressed as

mk = mk(r) = kπ − fk(r), where 0 < fk(r) < π. Using Rolle theorem, there exists m̂k ∈ (mk , mk+1) such that b′(m̂k) = 0, that

is, the root of sin x − rξ sin(ξx) = 0.

For the case of q(t) 6= 0, substituting ϕλ(t) into (3), we get the characteristic function of problem (1)-(3)

4(λ) = ϕλ(1)− rϕλ(ξ).

Then λ is the eigenvalue of problem (1)-(3) if and only if 4(λ) = 0.

If a = 0,

41(s) := 4(s) = sc sin s − rsc sin(sξ) +O(e |y |).

Now we introduce a function

A(s) :=
1

sc
(ϕλ(1)− rϕλ(ξ)) = sin s − r sin(sξ) +O(|s|−1e |y |),

then the set of eigenvalues of problem (1)-(3) is identical with {λ : λ = s2, scA(s) = ϕλ(1)− rϕλ(ξ) = 0}. When |r | < 1, the

asymptotic formulas of eigenvalues and eigenfunctions of problem (1)-(3) can be similarly referred to [31].

If a 6= 0,

42(s) := 4(s) = as2 cos s − ras2 cos(sξ) +O(|s|e |y |),

next, we introduce a function

B(s) :=
1

as2
(ϕλ(1)− rϕλ(ξ)) = cos s − r cos(sξ) +O(|s|−1e |y |),

we see that B(s) is the analytic function of s and 42(0) = 0. Since we consider the asymptotic properties of eigenvalues, next

we only consider the zeros of B(s) = 0. For convenience, we write B(s) as follows:

B(s) = b(s) + b0(s) = cos s − r cos(sξ) +O(|s|−1e |y |), (10)

where b(s) = cos s − r cos(sξ), b0(s) = O(|s|−1e |y |).

Theorem 2 The real eigenvalues of the problem (1)-(3) are bounded below.
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Proof: Suppose B̂(λ) = B(s) and s = iy , y > 0.

B̂(−y 2) =
e is + e−is

2
− r e

isξ + e−isξ

2
+O(|s|−1e |y |)

=
e−y + ey

2
− r e

−yξ + eyξ

2
+O(y−1e |y |)

=
ey (1 + e−2y − re−(ξ+1)y − re(ξ−1)y )

2
+O(y−1e |y |).

Since 0 < ξ < 1, we have

lim
y→∞

B̂(−y 2) =∞.

Notice that there exists a y0 such that B̂(−y 2) 6= 0 for y > y0, i.e. if λ < −y 2
0 , then B̂(λ) 6= 0. Hence λ > −y 2

0

Corollary 1 The number of negative eigenvalues of problem (1)-(3) is finite.

Theorem 3 Problem (1)-(3) has countable positive eigenvalues.

Proof: Let s = x , 0 < x ∈ R. Note that, for k large enough, since |r | < 1, we get

|r cos(sξ) +O(x−1)| < 1.

We know that cos x takes the local maximum at 2(k − 1)π and the local minimum at (2k − 1)π. According to the intermediate

value theorem, equation B(s) = 0 has at least one root in every interval ((k − 1)π, kπ) for k large enough, so equation B(s) = 0

has countable roots. Therefore, problem (1)-(3) has countable positive eigenvalues.

Lemma 4 For 0 < ξ < 1, β ≥ 0. If cos x − rξβ cos(ξx) = 0, then there exists k > 0 such that | sin x | − |r || sin(ξx)| ≥ κ > 0.

Proof: Suppose 0 < v < 1. If α :=
√

1− v 2, then 0 < α < 1. Let consider several possible cases.

(i) For the case of cos x = 0, then | sin x | = 1, we get

| sin x | − |r || sin(ξx)| ≥ 1− |r | =: κ1 > 0.

(ii) For the case of cos x 6= 0, then cos(ξx) 6= 0 and r 6= 0, so 0 < | cos x/ cos(ξx)| = |r |ξβ = 1− δ, where δ := 1− |r |ξβ, 0 <

δ < 1. Then we get cos2 x = cos2(ξx)(1− δ)2, correspondingly,

sin2 x = sin2(ξx) + δ(2− δ) cos2(ξx) ≥ sin2(ξx) + δ cos2(ξx), (11)

therefore, | sin x | > | sin(ξx)| and

0 < | sin x | − | sin(ξx)| ≤ | sin x | − |r || sin(ξx)|. (12)

1© If | cos x | ≥ v , suppose κ2 := δv2

3
> 0, since 0 < κ2 < 1 and | cos(ξx)| > | cos x |, then

δ cos2(ξx) > δ cos2 x ≥ δv 2 = 3κ2 ≥ 2κ2 + κ2
2 ≥ 2κ2| sin(ξx)|+ κ2

2,

and from (11)-(12), we obtain

sin2 x ≥ sin2(ξx) + 2κ2| sin(ξx)|+ κ2
2 = (| sin(ξx)|+ κ2)2,

thus | sin x | − | sin(ξx)| ≥ κ2 > 0, it follows from (12) that

| sin x | − |r || sin(ξx)| ≥ κ2 > 0.

2© If 0 < | cos x | < v , suppose κ3 := (1− |r |)α, by (12), we get

| sin x | − |r || sin(ξx)| ≥ (1− |r |)| sin x | ≥ κ3 > 0.

Therefore, taking κ = min{κ1, κ2, κ3} > 0, we have | sin x | − |r || sin(ξx)| ≥ κ > 0.

As | sinmk − rξ sin(ξmk)| ≥ | sinmk | − |r || sin(ξmk)|, we can get the following corollary.

Corollary 2 If mk is the root of Eq.(9), then there exists κ > 0 such that | sinmk − rξ sin(ξmk)| ≥ κ > 0 for k ∈ N.

Lemma 5 Suppose 0 < ξ < 1, β ≥ 0. If sin x − rξβ sin(ξx) = 0, then there exists κ̂ > 0 such that | cos x | − |r || cos(ξx)| ≥ κ̂ > 0.

(if β =∞, i .e.ξβ = 0, the conclusion still holds.)

Math. Meth. Appl. Sci. 2009, 00 1–9 Copyright c© 2009 John Wiley & Sons, Ltd. 5
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Corollary 3 If m̂k is the root of sin x − rξβ sin(ξx) = 0, then there exists κ̂ > 0 such that | cos m̂k − r cos(ξm̂k)| ≥ κ̂ > 0.

Corollary 4 Suppose x = bk = kπ, k ∈ N (in this case sin bk = 0), then there exists κ̂ > 0 such that cos |bk | − |r || cos(ξbk)| ≥
κ̂ > 0.

Let Dk = {s : |x | ≤ bk = kπ, |y | ≤ bk}, Ds
k = Dk ∩ Cs . Define a counter Γsk = ∂Dk ∩ Cs , the corresponding counter Γλk is

simple closed curve in the plane Cλ, where λ = s2 is the bijection from Cs to Cλ.

Lemma 6 If |r | < 1, then there exists M > 0 such that all eigenvalues of problem (1)-(3) are positive in the domain

{s ∈ Cs : |s| > M}.

Proof: If s = bk + iy , y ∈ [−bk , bk ]. It follows from (12) that

Reb(s) = cos bk cosh y − r cos(ξbk) cosh(ξy),

then
|b(s)| ≥ |Reb(s)| ≥| cos bk | cosh y − |r || cos(ξbk)| cosh(ξy)

≥(| cos bk | − |r || cos(ξ(bk)|) cosh y,

From Corollary 4, we obtain |b(s)| ≥ κ̂ cosh y ≥ B1e
|y |, where B1 > 0.

If y = ±ak , x ∈ [0, bk ]. Since

| cos s| =

√
cos2 x cosh2 y + sin2 x sinh2 y =

√
cos2 x + sinh2 y =

√
cosh2 y − sin2 x,

we get

| cos s| ≥ | sinh y |, | cos(ξs)| ≤ cosh(ξy),

so

|b(s)| ≥ | sinh y | − |r | cosh(ξy) ≥ | sinh y | − cosh(ξy).

Let consider h(y) := (| sinh y | − cosh(ξy))e−|y |. It can be found that there exists y ∗(ξ) > 0 such that h(y) > 1/4 for |y | > y ∗

by analyzing the function h(y), so |b(s)| ≥ e|y |

4
. Taking B = min{B1, 1/4}, we have |b(s)| ≥ Be |y | for k large enough. And from

(9), |b0(s)| ≤ c1|s|−1e |y | < Be |y | ≤ |b(s)|. According to Rouche’s theorem, equation b(s) = 0 and B(s) = b(s) + b0(s) = 0

have the same number of zeros inside Γk . It has been discussed that b(s) = 0 has only one root between counters Γk−1 and Γk ,

combined with Theorem 3, the roots of B(s) = 0 in this region are positive.

Let sk be the root of B(s) = 0, according to Lemma ??, sk is positive for k large enough. Next, we only consider the case

s = x > 0, so

B(s) = cos s − r cos(ξx) +O(s−1). (13)

Since sk , mk ∈ ((k − 1)π, kπ), and when k →∞, sk , mk and kπ are equivalently infinite quantities. Define εk := sk −mk , it is

obvious that εk = o(1). Since eigenvalues are real, from (5), we get

ϕλ(t) = as2 cos(st) +O(|s|). (14)

Theorem 4 Suppose q ∈ C[0, 1] and |r | < 1, then the asymptotic formulas of eigenvalues and eigenfunctions of problem

(1)-(3) have the form

sk = mk +O(k−1), uk(t) = am2
k cos(mkt) +O(k)

for k large enough, respectively.

Proof: Substituting sk = mk + εk into (13), we obtain

cosmk(1 +O(ε2
k))− εk sinmk − r cos(ξmk)(1 +O(ε2

k)) + rξεk sin(ξmk) = O(k−1),

cosmk − r cos(ξmk)− εk(sinmk − rξ sin(ξmk)) +O(ε2
k) = O(k−1).

Since mk is the root of b(s) = 0, i.e. cosmk − r cos(ξmk) = 0, we get

[sinmk − rξ sin(ξmk) +O(εk)] (−εk) = O(k−1),

6 Copyright c© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1–9
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which implies that εk = O(k−1).

Substituting sk = mk + εk into (14), we get

uk(t) = ϕλk (t) =a(mk + εk)2 cos((mk + εk)t) +O(k)

=(am2
k + 2amkεk + aε2

k)
[
cos(mkt)(1 +O(ε2

k))− sin(mkt)(εkt)
]

+O(k)

=am2
k cos(mkt) +O(k).

Next, we will normalize uk(t):

α2
k =

∫ 1

0

u2
kdt =

∫ 1

0

[
a2m4

k cos2(mkt) +O(k3)
]

dt

=
a2m4

k

2

(
1 +O(

1

k
)

)
,

1

αk
=

√
2

|a|m2
k

+O(k−3).

Therefore, the normalized eigenfunctions have asymptotic formulas:

vk(t) =

( √
2

|a|m2
k

+O(k−3)

)(
am2

k cos(mkt) +O(k)
)

=

√
2

|a|m2
k

am2
k cos(mkt) +O(k−1).

If a > 0, then vk(t) =
√

2 cos(mkt) +O(k−1); If a < 0, then vk(t) = −
√

2 cos(mkt) +O(k−1).

In order to obtain more exact asymptotic formulas of eigenvalues and eigenfunctions, we assume that q ∈ C1[0, 1], then the

following formulas hold. ∫ t

0

q(τ) cos(2sτ)dτ = O(s−1),

∫ t

0

q(τ) sin(2sτ)dτ = O(s−1).

Suppose Q(t) = 1
2

∫ t
0
q(τ)dτ , Q(t) is obviously bounded. Substituting (14) into (7), we get

ϕλ(t) = (as2 + b) cos(st) +
cs2 + d

s
sin(st) +

1

s

∫ t

0

sin(s(t − τ))q(τ)(as2 cos(sτ) +O(|s|))dτ,

where
1

s

∫ t

0

sin(s(t − τ))q(τ)as2 cos(sτ)dτ

=as sin(st)

∫ t

0

cos2(sτ)q(τ)dτ − 1

2
as cos(st)

∫ t

0

sin(2sτ)q(τ)dτ

=as sin(st)Q(t) +O(1),

1

s

∫ t

0

sin(s(t − τ))q(τ)O(|s|))dτ = O(1).

So we get

ϕλ(t) = (as2 + b) cos(st) +
cs2 + d

s
sin(st) + as sin(st)Q(t) +O(1), (15)

then

B(s) = cos s − r cos(sξ) +
Q(1) sin s − rQ(ξ) sin(sξ)

s
+O(s−1). (16)

Next we define

F1(r, ξ, s) :=
Q(1) sin s − rQ(ξ) sin(sξ)

sin s − rξ sin(sξ)
.

Theorem 5 If q ∈ C1[0, 1] and |r | < 1, then the asymptotic formulas of eigenvalues and eigenfunctions of problem (1)-(3) have

the form

sk = mk + F1(r, ξ,mk)m−1
k +O(k−1), (17)

uk(t) = (am2
k + b) cos(mkt) +

(
cm2

k + d + am2
kQ(t)

mk
− amktF1

)
sin(mkt) +O(k) (18)

for k large enough, respectively.
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Proof: Substituting sk = mk + εk into (16), we get

cosmk − r cos(ξmk) +
Q(1) sinmk − rQ(ξ)r sin(ξmk)

mk

−
[
(sinmk − rξ sin(ξmk)− (Q(1) cos(mk)− rQ(ξ)ξ cos(ξmk))m−1

k

]
εk = O(k−1),

since cosmk − r cos(ξmk) = 0, we have

−(sinmk − rξ sin(ξmk) +O(k−1))εk = −Q(1) sinmk −Q(ξ)r sin(mk)

mk
+O(k−1),

or

εk =
F1(r, ξ,mk)

mk
+O(k−1).

Substituting sk = mk + εk into (15), we have

uk(t) =(am2
k + b) cos(mkt) +

(
cm2

k + d

mk

)
sin(mkt)

+amk sin(mkt)Q(t)− am2
kεkt sin(mkt) +O(1),

since εk = F1(r,ξ,mk )
mk

+O(k−1), we obtain (18).

4. Conclusion

This paper studied the nonlocal boundary value problem with eigenparameter dependent boundary conditions, the general

properties of the eigenvalues and eigenfunctions for such a problem were proved. Finally, we give the asymptotic formulas

of eigenvalues and eigenfunctions for second-order differential operator with eigenparameter dependent boundary conditions.
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