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Abstract

The purpose of this paper is to investigate a class of nonconvex constrainted

differential hemivariational inequalities consisting of nonlinear evolution equations

and evolutionary hemivariational inequalities. The admissible set of constraints is

closed and star-shaped with respect to a certain ball in a reflexive Banach space.

We construct an auxiliary inclusion problem and obtain the existence results by

applying a surjectivity theorem for multivalued pseudomonotone operators and

the properties of Clarke subgradient operator. Moreover, the existence of solution

of original problem is established by hemivariational inequality approach and a

penalization method in which a small parameter does not have to tend to zero.

Finally, an application of the main results is provided.
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1 Introduction

Let E, X, Y and V be reflexive, separable Banach spaces, H be a reflexive Hilbert space.

The dual of V is denoted by V ∗ and denote the dual pair between V ∗ and V by 〈·, ·〉. Let

C ⊂ V be a nonempty, closed and star-shaped set. I denotes a bounded interval [0, b]

with b > 0. Let A : D(A) ⊆ E → E be the infinitesimal generator of a C0−semigroup

{T (t)}t≥0 on E and f : I × E × Y → E, ω : V → Y , B : I × E → V ∗, g : I × V → V ∗,

J : I × X → R and ϑ : V → X be given functions. With these data, we consider a

class of differential hemivariational inequalities consisting of nonlinear abstract evolution

equations and evolutionary hemivariational inequalities as follows.

Problem P. Find a pair of functions (x, u) with x : I → E and u : I → V such that
x′(t) = Ax(t) + f(t, x(t), ωu(t)) for a.e. t ∈ I,
u(·) ∈ SOL(C,B, g, J, x, u0),

x(0) = x0.

(1.1)

Here, the notation SOL(C,B, g, J, x, u0) stands for the set of solutions for evolution-

ary hemivariational inequality constrained on nonconvex star-shaped set, consisting of

functions u : I → V such that
u(t) ∈ C for all t ∈ I,
〈u′(t) +B(t, x(t)) + g(t, u(t)), v〉+ J0(t, ϑu(t), ϑv) ≥ 0 for a.e. t ∈ I,∀v ∈ TC(u(t)),

u(0) = u0.

(1.2)

We note that Problem P represents a system which couples the evolution equation

(1.1) with the hemivariational inequality (1.2) of parabolic type, associated to the initial

conditions. So we refer to Problem P as a differential hemivariational inequality which

follows the terminology such as [14, 15, 21]. Also, the solution of problem P is understood

in the following sense.

Definition 1.1 A pair of functions (x, u), with x ∈ C(I;E), u ∈ L2(I;V ) and u′ ∈
L2(I, V ∗), is said to be a mild solution of Problem P if

x(t) = T (t)x0 +

∫ t

0

T (t− s)f(s, x(s), ωu(s))ds for all t ∈ I,

where u(t) ∈ C solves inequality (1.2) for a.e. t ∈ I.

It is well known that the theory of variational inequalities began in the early 1960s,

based on arguments of convexity and monotonicity. If the corresponding energy func-

tionals are nonconvex, it arises another type of inequalities as variational formulation

of a problem. Which is called hemivariational inequalities and based on properties of
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the Clarke subgradient defined for locally Lipschitz functions. The study of hemivari-

ational inequality started with the pioneering works of Panagiotopoulos in the context

of applications in engineering problems [26, 27]. The analysis of hemivariational in-

equality mainly uses the properties of the subdifferential in the sense of Clarke, which

defined for locally Lipschitz functions which may be nonconvex. Some significant re-

sults on variational/hemivariational inequalities and their application can be found in

[2, 6, 7, 8, 19, 20, 21, 22, 23, 30, 32, 33, 34, 35] and its references.

The notion of differential variational inequalities was introduced in [1] by Aubin

and Cellina. Differential variational inequalities are systems which couple differential

or partial differential equations with a time-dependent variational inequality. Various

mathematical models arising in the study of contact and impact problems lead to dif-

ferential variational inequalities. Since a systematic study was carry out by Pang and

Stewart [29], there is a number of papers have been dedicated to the development of the-

ory of differential variational inequalities and their applications [3, 11, 13, 14, 17, 18, 24].

Furthermore, differential hemivariational inequalities was firstly introduced by Liu et al.

[15]. Interest in differential hemivariational inequalities and, more general, differential

variational-hemivariational inequalities, represent an important extension, originated,

similarly as in differential variational inequalities. Over the past decade, the theory of

this topic grew rapidly. We refer the reader to some recent references [9, 10, 15, 16, 21, 37]

and their references.

It is remarkable that some basic results concerning the properties of solution set were

obtained under the assumption of compactness and convexity on constraint set [14].

Later, by relaxing the compactness of constraint set K, the existence and properties of

solution set are obtained [12]. Also, in [15], the authors required that the constraint set

K is bounded. Furthermore, Liu et al. [11] established a general existence theorem for a

differential variational inequality with constrainted on closed convex set. So far, in many

of the existing articles, the authors obtained the existence and unique solution of differ-

ential variational inequality, hemivariational inequalities problems involving constraints

on nonempty convex subset of Banach spaces. However, there are very few results con-

cerning nonconvex constrained differential variational/hemivariational inequalities.

So far as we known, there are some references which study only a single variational

or hemivariational inequalities constraints on nonconvex sets. we refer to [7, 22] for

stationary problems, and to [8, 31] for evolution problems. The proof of the existence

theorem in [8, 31] is based on the hemivariational inequality approach, surjectivity the-

orem and penalization method. This approach was initiated in [22, 23] to concern with

existence of solutions to a problem, which can be seen as a nonconvex counterpart of a

stationary problem. It was continued in [7] to nonconvex constrained problems in the

theory of von Kqárman plates. Inspired from the above work, we apply this approach to

study differential hemivariational inequality (1.1) involving constraint is not necessarily

convex, but it is star-shaped with respect to a ball.

The main novelties of the recent paper are follows: First, for the first time, we study
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a system of a nonlinear abstract evolution equation driven by a hemivariational inequal-

ity of parabolic type constrained on nonconvex star-shaped set. Until now, (1.1) has

not been studied in the literature. Second, there are a few papers devoted to this kind

problems consisting of abstract evolution equations and evolutionary hemivariational

inequalities (see e.g. [21]). Moreover, the main results can be applied to a special case

of Problem P , for instance, if the nonlinear function B is assumed to be independent

of the variable x, Problem P reduces to the hemivariational inequality constrained on

nonconvex star-shaped set. Third, the admissible set of constraints is closed and star-

shaped with respect to a certain ball, this allows one to use a discontinuity property of

the generalized Clarke subdifferential of the distance function. The existence of the solu-

tions will be proved by applying a surjectivity theorem for multivalued pseudomonotone

operators, a differential hemivariational inequality approach and a penalization method

in which a small parameter does not have to tend to zero. The penalty method in this

paper is unlike the recent literature [5, 10, 13, 16] and its references.

The rest of the paper is structured as follows. In Section 2 we state notations, basic

definitions and preliminaries. In Section 3 the necessary assumptions and the results

on existence of mild solution are given and proven. Finally, an example is provided in

Sections 4 and the proofs are based on our abstract results.

2 Notations and preliminaries

In this section, we review some notation, basic definitions and preliminaries that to be

used in the next sections. More details can be found in [4, 20, 23, 34, 36].

Let E, X, Y and V be reflexive, separable Banach spaces, H be a reflexive Hilbert

space with the norms ‖ · ‖E, ‖ · ‖X , ‖ · ‖Y , ‖ · ‖V and ‖ · ‖H , respectively. The dual of

V is denoted by V ∗ and denote the dual pair between V ∗ and V by 〈·, ·〉. 0V represents

the zero element of the space V , a similar definition of the zero element of other spaces.

I = [0, b] denotes a bounded interval with 0 < b < +∞. In the sequel, we use the

standard Bochner-Lebesgue function spaces V = L2(I;V ), H = L2(I;H), X = L2(I;X),

V∗ = L2(I;V ∗). The duality pairing between V∗ and V is given by

〈u, v〉V∗×V =

∫ b

0

〈u(t), v(t)〉dt, u ∈ V∗, v ∈ V .

Besides, C(I;E) and C(I;V ) represent the space of continuous functions on I with values

in E and V , respectively. We say that V is embedded in Y if, V is a vector subspace

of Y , and the embedding operator ω : V → Y defined by ω(x) = x for all x ∈ V is

continuous. Moreover, we say that V is compactly embedded in Y if the embedding

operator ω is compact. Since the embedding operator is linear, the continuity condition

is equivalent to the existence of a constant c > 0 such that

‖x‖Y ≤ c‖x‖V for all x ∈ V.
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Consider an evolution triple of spaces (V,H, V ∗), which means that V is a reflexive

separable Banach space, H is a separable Hilbert space, The embedding V ⊂ H is

continuous and V is dense in H. Now, introduce the space W defined by W := {ν ∈
V|ν ′ ∈ V∗}, where the time derivative ν ′ = ∂ν/∂t is understood in the sense of vector-

valued distributions. It is well known that the space W endowed with the graph norm

‖ν‖W = ‖ν‖V + ‖ν ′‖V∗ is a Banach space, which is separable and reflexive due to the

separability and reflexivity of V and V∗. Furthermore, we have the following continuous

embeddings W ⊂ V ⊂ H ⊂ V∗ and the embedding W ⊂ C(I;H) is continuous.

In what follows, we will assume that V is densely and compactly embedded in Y .

Let Y = L2(I;Y ) and Y∗ = L2(I;Y ∗). Since the embedding V ⊂ Y is compact, then by

the Lions-Aubin lemma, we know that the embedding W ⊂ Y is also compact. All the

limits and upper limits are considered as n→∞, even if we do not mention it explicitly.

We now proceed with the notions of pseudomonotonicity for multivalued operators.

Definition 2.1 An operator A : V → V ∗ is said to be:

(a) bounded, if A maps bounded sets of V into bounded sets of V ∗;

(b) monotone, if 〈Au− Av, u− v〉 ≥ 0 for all u, v ∈ V ;

(c) pseudomonotone, if A is a bounded operator and for every sequence {xn} ⊆ V with

xn → x weakly in V , such that lim sup〈Axn, xn − x〉 ≤ 0, we have 〈Ax, x − y〉 ≤
lim inf〈Axn, xn − y〉 for all y ∈ V .

(d) demicontinuous, if un → u in V implies Aun → Au weakly in V ∗.

Definition 2.2 Let L : V ⊃ D(L) → V ∗ be a linear, maximal monotone operator. An

operator A : V → V ∗ is said to be L-pseudomonotone, if for any sequence {vn} ⊆ V

with vn → v weakly in V , such that lim sup〈Avn, vn − v〉 ≤ 0, it follows that Avn → Av

weakly in V ∗ and lim〈Avn, vn〉 = 〈Av, v〉.

Definition 2.3 Let L : V ⊃ D(L) → V be a linear, maximal monotone operator. A

multivalued operator A : V → 2V
∗

is said to be L-pseudomonotone if

(a) for all v ∈ V the set Av is a nonempty, bounded, closed, and convex subset of V ∗.

(b) A is upper semicontinuous from each finite dimensional subspace of V into w-V ∗

(c) for any sequences {vn} ⊂ D(L) with vn → v weakly in V , Lvn → Lv weakly in

V ∗, v∗n ∈ Avn is such that v∗n → v∗ weakly in V ∗ and lim sup〈v∗n, vn − v〉 ≤ 0, then

v∗ ∈ Av and lim〈v∗n, vn〉 = 〈v∗, v〉.

The following surjectivity result will be crucial in our proof of the existence theorem.
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Theorem 2.4 ([28, Theorem 2.1]) Assume that V is a reflexive and strictly convex

Banach space. Let L : D(L) ⊂ V → V ∗ be a linear, maximal monotone operator,

and A : V → 2V
∗

be a multivalued operator, which is bounded, L-pseudomonotone and

coercive, i.e.,

lim
‖u‖V→+∞

inf{〈u∗, u〉 | u∗ ∈ Au}
‖u‖

= +∞.

Then L+ A is a surjective operator.

Now, we review the definition of generalized gradient in the Clarke sense and their

properties.

Assume that j : V → R be a locally Lipschitz functional. From [4], we denote by

j0(x; v) the Clarke generalized directional derivative of j at x in the direction v, that is

j0(x; v) = lim sup
y→x, λ→0+

j(y + λv)− j(y)

λ
.

And the generalized Clarke subdifferential of j at x is a subset of V ∗ given by

∂j(x) = {x∗ ∈ V ∗ | j0(x; v) ≥ 〈x∗, v〉, for all v ∈ V }.

Lemma 2.5 ([4, Proposition 2.1.2]) If the functional j : V → R is a locally Lips-

chitz continuous, then we have the following statements.

(i) There holds j0(x; v) = max { 〈 ξ, v〉 | ξ ∈ ∂j(x) } for all x, v ∈ V .

(ii) For each x ∈ V , ∂j(x) is a nonempty, convex, weak∗-compact subset of V ∗.

(iii) For each x ∈ V , the function U 3 v 7→ j0(x; v) ∈ R is positively homogeneous and

subadditive, i.e., j0(x;λv) = λj0(x; v) for all λ ≥ 0, v ∈ U and j0(x; v1 + v2) ≤
j0(x; v1) + j0(x; v2) for all v1, v2 ∈ V , respectively.

Lemma 2.6 ([8, Lemma 2.1]) If V is a Banach space and j : V → R be a locally

Lipschitz continuous function with a Lipschitz constant k > 0, then

‖∂j(v)‖V ∗ ≤ k for all v ∈ V.

The following result provides an example of a multivalued pseudomonotone operator

which is a superposition of the Clarke subgradient with a compact operator.

Lemma 2.7 ([2, Proposition 5.6]) Let V and X be two reflexive Banach spaces, ϑ :

V → X be a linear, continuous, and compact operator. We denote by ϑ∗ : X∗ → V ∗ the

adjoint operator to ϑ. Let j : X → R be a locally Lipschitz functional such that

‖∂j(v)‖X∗ ≤ cj(1 + ‖v‖X) for all v ∈ V
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with cj > 0. Then the multivalued operator G : V → 2V
∗

defined by

G(v) = ϑ∗∂j(ϑ(v)) for all v ∈ V

is pseudomonotone.

Let BV (v0, r) denote the closed ball in V with centre v0 ∈ V and radius r > 0, i.e.,

BV (v0, r) := {v ∈ V | ‖v − v0‖V ≤ r}.

Definition 2.8 Let C be a subset of V . We say that C is star-shaped with respect to a

ball BV (v0, r), iff

λv + (1− λ)z ∈ C for all v ∈ C, z ∈ BV (v0, r), λ ∈ [0, 1].

For a nonempty set C ⊂ V , by d̄ : V → R, we denote the distance function of C,

i.e.,

d(z) := inf
v∈C
‖v − z‖V for all z ∈ V.

The Clarke tangent cone to C at a point u ∈ V , denoted by TC(u), is defined by

TC(u) := {v ∈ V : d
0
(u; v) = 0}.

Besides, we recall the discontinuity property of the generalized Clarke derivative of

the distance function for a star-shaped set.

Assume that V ⊂ Y and the embedding operator ω : V → Y is dense and continuous.

Let C ⊂ V be a nonempty set. In what follows, we will write ωC and ωu instead of

ω(C) (i.e. the image of the set C) and ω(u) (i.e. the value of u), respectively. We denote

by d̃ : Y → R the distance function of ωC in Y , i.e.,

d̃(z) := inf
v∈ωC

‖v − z‖Y for all z ∈ Y.

Let d : V → R be defined by

d := d̃|V = d ◦ ω.
It is easy to see that both functions d and d̃ are Lipschitz continuous, with Lipschitz

constants equal to one and ‖ω‖, respectively(see, e.g., [28, Proposition 2.4.1]). For any

v ∈ V , we also have

d(v) = d̃(ωv) = inf
y∈C
‖ωv − ωy‖Z ≤ ‖ω‖ inf

y∈C
‖v − y‖V = ‖ω‖d̃(v) (2.1)

and for any u, v ∈ V , we have

d0(u; v) ≤ d̃0(ωu;ωv), (2.2)

see, e.g., [20, Proposition 3.37, p. 61].

The following property of the Clarke directional derivative of the distance function

(see, e.g., [22, Lemma 2.1], [23, Lemma 7.2 and (7.2.47)]), will be crucial in our main

theorem.
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Lemma 2.9 Let V and Y be reflexive Banach spaces with the continuous and dense

embedding ω : V → Y . Let C ⊂ V be a closed set, which C ⊂ V is star-shaped with

respect to a ball BV (v0, r) for some v0 ∈ C and r > 0. Let d be the function defined by

(2.1), then

d0(u; v0 − u) ≤ −d(u)− r‖ω‖ for all u /∈ C,
d0(u; v0 − u) ≤ 0 for all u ∈ C.

Finally, for every u ∈ C, we introduce the following cone in V

TC(u) : = {v ∈ V : d̃0(ωu;ωv) = 0} (2.3)

= {v ∈ V : ωv ∈ T YωC(ωu) = 0} = ω−1T
Y

ωC(ωu).

For this cone, we have the following property.

Lemma 2.10 ([8, Lemma 2.3]) If C is a nonempty and convex subset of a Banach

space V , then TC(u) ⊂ TC(u) for all u ∈ C.

3 Hypothesis and main results

In this section, we establish the existence results for the Problem P . For this goal, we

first state the following hypothesis.

{
A : D(A) ⊂ E → E is the generator of a C0-semigroup of

linear and continuous operators {T (t)}t≥0 on the space E.
(3.1)



f : I × E × Y → E is such that :

(a) f(·, x, y) is measurable on I for all (x, y) ∈ E × Y ;

(b) f(·, 0E, 0Y ) ∈ L2(I;E);

(c) ‖f(t, x1, y)− f(t, x2, y)‖E ≤ l1‖x1 − x2‖E
for a.e. t ∈ I and all x1, x2 ∈ E, y ∈ Y with l1 ≥ 0;

(d) f(t, x, ·) is α-Hölder continous, i.e.,

‖f(t, x, y1)− f(t, x, y2)‖E ≤ l2‖y1 − y2‖αY
for a.e. t ∈ I and all x ∈ E, y1, y2 ∈ Y with 0 < α < 1, l2 ≥ 0.

(3.2)

{
The embedding V ⊂ Y is compact and ω : V → Y is

a embedded compact operatot from V to Y.
(3.3)
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B : I × E → V ∗ is such that:

(a) B(·, x) is measurable on I for all x ∈ E;

(b) B(t, ·) is continous for a.e. t ∈ I;

(c) ‖B(t, x)‖V ∗ ≤ b0(t) + b1‖x‖E for a.e. t ∈ I,
and all x ∈ E with b0 ∈ L2(I,R+) and b1 ≥ 0.

(3.4)



g : I × V → V ∗ is such that:

(a) g(·, u) is measurable on I for all u ∈ V ;

(b) g(t, ·) is pesudomonotone on V for a.e. t ∈ I;

(c) ‖g(t, u)‖V ∗ ≤ a0(t) + a1‖u‖V for a.e. t ∈ I, and all u ∈ V
with a0 ∈ L2(I, R+) and a1 > 0;

(d) 〈g(t, u), u〉 ≥ mg‖u‖2
V −m0‖u‖V −m1 for a.e. t ∈ I

and all u ∈ V with mg > 0 and m0, m1 ≥ 0.

(3.5)



J : I ×X → R is such that:

(a) J(·, v) is measurable on I for all v ∈ X;

(b) J(t, ·) is locally Lipschitz continous on X for a.e. t ∈ I;

(c) ‖ξ‖X∗ ≤ cJ(1 + ‖v‖X) for a.e. t ∈ I and all

v ∈ X, ξ ∈ ∂J(t, v) with cJ > 0.

(3.6)

{
ϑ : V → X is a linear, continuous and compact operator and

and ϑ∗ : X∗ → V ∗ is its adjoint operator.
(3.7)

mg > 2cJ‖ϑ‖2. (3.8)

{
C is star-shaped set with respect to a ball BV (v0, r)

with v0 ∈ C and r > 0.
(3.9)

Firstly, we provide the follows preliminary lemma.

Lemma 3.1 Assume that (3.1)-(3.3) hold. Then, for each u ∈ C(I;V ), there exists a

unique function x ∈ C(I;E) such that

x(t) = T (t)x0 +

t∫
0

T (t− s)f(s, x(s), ωu(s))ds for all t ∈ I. (3.10)

Define a solution operator R : C(I;V ) → C(I;E) of (3.10) as x = Ru. Then R is a

history-dependent operator, i.e. there exists a constant Mf > 0 such that

‖Ru1(t)−Ru2(t)‖E ≤Mf

∫ t

0

‖u1(s)− u2(s)‖αV ds for all t ∈ I.

for any u1, u2 ∈ C(I;V ).
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Proof. Firstly, for given u ∈ C(I;V ), from [25, Theorem 6.1.2], it is well-known that

there exists a unique solution x ∈ C(I;E) to (3.10).

Next, assume that x1, x2 ∈ C(I;E) represent the solution of problem (3.10) corre-

sponding to the functions u1, u2 ∈ C(I;V ). Then for t ∈ I, we have

Rui(t) = T (t)x0 +

∫ t

0

T (t− s)f(s, xi(s), ωui(s))ds for i = 1, 2.

From assumption (3.2), we derive

‖Ru1(t)−Ru2(t)‖E = ‖x1(t)− x2(t)‖E

≤
∫ t

0

‖T (t− s)‖‖f(s, x1(s), ωu1(s))− f(s, x2(s), ωu2(s))‖Eds

≤MALf

∫ t

0

‖x1(s)− x2(s)‖Eds+MALf‖ω‖α
∫ t

0

‖u1(s)− u2(s)‖αV ds.

Above inequality and the Gronwall argument (see [34, Lemma 2]) yields that

‖Ru1(t)−Ru2(t)‖E ≤Mf

∫ t

0

‖u1(s)− u2(s)‖αV ds,

where Mf = MALf‖ω‖αeMALf b with MA = sup
t∈[0,b]

‖T (t)‖. It completes the proof. �

Moreover, from Lemma 3.1, we can see that there exist two constants c1 and c2 such

that

‖Ru(t)‖E ≤ c1 + c2

∫ t

0

‖u(s)‖αV ds for all t ∈ I and any u ∈ C(I, V ). (3.11)

To obtain the existence results for Problem P , we will consider the auxiliary dif-

ferentail hemivariational inequality as follows.

Problem Pρ : For ρ > 0, find a pair of function (xρ, uρ) with xρ : I → E and uρ : I → V

such that:
x′ρ(t) = Axρ(t) + f(t, xρ(t), ωuρ(t)), a.e. t ∈ I,
uρ(·) ∈ SOL(B, g, x, u0, ρ, d),

xρ(0) = x0.

(3.12)

Here, SOL(B, g, x, u0, ρ, d) means the set of solution of the evolutionary hemivariational

inequality: find uρ(t) ∈ V such that 〈u′ρ(t) +B(t, xρ(t)) + g(t, uρ(t)), v〉+ J0(t, ϑuρ(t), ϑv) +
1

ρ
d0(uρ(t); v) ≥ 0,

uρ(0) = u0
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for all v ∈ V and a.e. t ∈ I. From Lemma 3.1, for each ρ > 0, the Problem Pρ can

be converted into the following hemivariational inequality: find a function uρ ∈ W such

that 〈u′ρ(t) +B(t,Ruρ(t)) + g(t, uρ(t)), v〉+ J0(t, ϑuρ(t), ϑv) +
1

ρ
d0(uρ(t); v) ≥ 0,

uρ(0) = u0

(3.13)

for all v ∈ V and a.e. t ∈ I, where R is the solution operator of evolution equation of

(3.12). Moreover, to obtain the solution of (3.13), we shall study the following auxiliary

inclusion problem:
Find uρ ∈ W such that

u′ρ(t) +B(t,Ruρ(t)) + g(t, uρ(t)) + ϑ∗∂J(t, ϑuρ(t)) +
1

ρ
∂d(uρ(t)) 3 0, t ∈ I,

uρ(0) = u0.

(3.14)

We claim that every solution to (3.14) is also a solution to (3.13). In fact, according

to the definition of solutions for (3.14), if uρ is a solution of (3.14), it means that there

exist ξ ∈ X ∗, ζ ∈ V∗ such that ξ(t) ∈ ∂J(t, ϑuρ(t)), ζ(t) ∈ ∂d(uρ(t)) for a.e. t ∈ I and u′ρ(t) +B(t,Ruρ(t)) + g(t, uρ(t)) + ϑ∗ξ(t) +
1

ρ
ζ(t) = 0V ∗ a.e. t ∈ I,

uρ(0) = u0,

which turns out 〈u′ρ(t) +B(t,Ruρ(t)) + g(t, uρ(t)) + ϑ∗ξ(t) +
1

ρ
ζ(t), v〉 = 0,

u(0) = u0

for all v ∈ V and a.e. t ∈ I. Since ξ(t) ∈ ∂J(ϑuρ(t)) implies that 〈ϑ∗ξ(t), v〉V =

〈ξ(t), ϑv〉X ≤ J0(t, ϑuρ(t);ϑv) a.e. t ∈ I, and also ζ(t) ∈ ∂d(uρ(t)) implies 〈ζ(t), v〉 ≤
d0(uρ(t); v) a.e. t ∈ I, we obtain 〈u′ρ(t) +B(t,Ruρ(t)) + g(t, uρ(t)), v〉+ J0(t, ϑuρ(t), ϑv) +

1

ρ
d0(uρ(t); v) ≥ 0,

u(0) = u0

for all v ∈ V and a.e. t ∈ I. Therefore, in order to study the existence of the Problem

Pρ, we only need to deal with the inclusions (3.14).

Next, we introduce the operators Ĵ : V → 2V
∗

and N̂ : V → 2V
∗

by

Ĵ (u) = {w ∈ V∗ : w(t) = ϑ∗ξ(t) with ξ(t) ∈ ∂J(t, ϑu(t)) a.e. t ∈ I} for u ∈ V ,
N̂ (u) = {w ∈ V∗ : w(t) ∈ ∂d(u(t)) a.e. t ∈ I} for u ∈ V .

By virtue of Lemma 2.5, Lemma 2.6 and [19, Lemma 11], we have the following lemmas

by a similar proof.
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Lemma 3.2 For each u ∈ V, the sets Ĵ (u) and N̂ (u) have nonempty, convex, bounded

and weakly compact values.

Lemma 3.3 The operator N̂ satisfies: if un → u in V, wn → w weakly in V∗ and

wn ∈ N̂ (un), then we have w ∈ N̂ (u). The operator Ĵ also has this property.

From the hypothesis (3.4)–(3.6), we introduce the operators G : V → V∗, B : V → V∗,
J : V → 2V

∗
and N : V → 2V

∗
by

Bu(t) = B(t,R(u(t) + u0)) for all u ∈ V ,

Gu(t) = g(t, u(t) + u0) for all u ∈ V ,

J u(t) = ϑ∗∂J(ϑ(u(t) + u0)) for all u ∈ V ,

Nu(t) =
1

ρ
∂d(u(t) + u0) for all u ∈ V ,

and define the following operator F : V → 2V
∗

that assigns

Fu := Bu+ Gu+ J u+Nu for all u ∈ V .

Carrying out the same arguments as in the proof of [20, Lemma 5.5], we have the

following results.

Lemma 3.4 If (3.5) hold, then the operator G : V → V∗ has the following properties:

(i) G is L-pesudomonotone;

(ii) ‖Gu‖V∗ ≤ â0 + â1‖u‖V for all u ∈ V with â0 ≥ 0, â1 > 0;

(iii) 〈Gu, u〉V∗×V ≥
1

2
mg‖u‖2

V − m̂1‖u‖V − m̂2 for all u ∈ V with m̂1, m̂2 ≥ 0;

(iv) G is demicontinous.

Now, we present the first existence results.

Theorem 3.5 If (3.1)-(3.8) hold, then the inclusion problem (3.14) has at least a solu-

tion uρ ∈ W for any ρ > 0.

Proof. Firstly, we define an operator L : D(L) ⊂ V → V∗ by

Lu := u′ for all u ∈ D(L) = {u ∈ W | u(0) = 0}.

Then, it is well known, see [36, Proposition 32.10, p. 855], that the operator L is linear

and maximal monotone and therefore D(L) is dense in V and L is graph closed (see [36,
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Theorem 32.L, p. 897]). Using above notation, it follows, that auxiliary problem (3.14)

is equivalent to the following problem

Find u ∈ D(L) such that Lu+ Fu 3 0V∗ . (3.15)

Then, uρ = u + u0 ∈ W solves problem (3.14) if and only if u ∈ D(L) solves problem

(3.15). In order to show that (3.15) has a solution, we apply a surjectivity result of

Theorem 2.4. For this purpose, we need to prove that F is bounded, coercive and

L-pseudomonotone.

Next, we divide the rest of the proof into three steps.

Step (i). F is bounded, i.e., F maps bounded sets of V into bounded sets of V∗.

Firstly, taking advantage of (3.4)(c) and (3.11), the Minkowski inequality and Hölder

inequality guarantee that

‖Bu‖V∗ =

(∫ b

0

‖B(t,R(u(t) + u0))‖2
V ∗ds

) 1
2

≤
(∫ b

0

[b0(t) + b1‖R(u(t) + u0)‖E]2ds

) 1
2

≤ ‖b0‖L2(I,R+) + b1

(∫ b

0

[c1 + c2‖(u(t) + u0)‖αV ]2ds

) 1
2

≤ ‖b0‖L2(I,R+) + b1c1

√
b+ b1c1

(∫ b

0

‖u(t) + u0‖2α
V ds

) 1
2

= ‖b0‖L2(I,R+) + b1c1

√
b+ b1c1b

1−α
2 ‖u(·) + u0‖αV .

Next, from the fact that the function d is Lipschitz continuous with Lipschitz constant

‖ω‖ (see Sect. 2) and Lemma 2.6, we derive

‖∂d(w)‖V ∗ ≤ ‖ω‖, for all v ∈ V,

and subsequently

‖Nu‖V∗ = sup

{
1

ρ

( ∫ b

0

‖ζ(t)‖2dt
) 1

2 |ζ ∈ V∗, ζ(t) ∈ ∂d(u(t) + u0) a.e. t ∈ I
}

≤ 1

ρ
‖ω‖
√
b. (3.16)

Moreover, by virtue of (3.6)(b) and a similar way as above, we conclude

‖J u‖V∗ = sup

{(∫ b

0

‖ϑ∗ξ(t)‖2dt
) 1

2 |ξ ∈ X ∗, ξ(t) ∈ ∂J(t, ϑ(u(t) + u0)) a.e. t ∈ I
}

≤ ‖ϑ‖cJ
√
b+ cJ‖ϑ‖2‖u(·) + u0‖V . (3.17)
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Here we used the equality ‖ϑ∗‖ = ‖ϑ‖, which is a consequence of [20, Proposition 1.51].

Therefore, applying above estimatation and Lemma 3.4(ii), we reach the estimate

‖Fu‖V∗ ≤ ‖Gu‖V∗ + ‖Bu‖V∗ + ‖J u‖V∗ + ‖Nu‖V∗
≤ â1‖u‖V + b1c1‖u(·) + u0‖αV + cJ‖ϑ‖2‖u(·) + u0‖V

+ â0 + ‖b0‖L2(I,R+) + b1c1

√
b+ cJ‖ϑ‖

√
b+

1

ρ
‖ω‖
√
b

for all u ∈ V , which proves that F is bounded.

Step (ii). F is coercive.

First, we can exploit hypotheses (3.4)(c), (3.11) and apply again the Hölder inequality

to obtain the estimate

|〈Bu, u〉V∗×V | ≤
∫ b

0

|〈B(t,R(u(t) + u0)), u(t)〉|dt

≤
∫ b

0

(b0(t) + b1‖R(u(t) + u0)‖E)‖u(t)‖V dt

≤ b1

∫ b

0

(c1 + c2

∫ t

0

‖u(τ) + u0‖αV )dτ‖u(t)‖V dt+

∫ b

0

b0(t)‖u(t)‖V dt

≤ b1c2

∫ b

0

‖u(t) + u0‖αV dt
∫ b

0

‖u(t) + u0 − u0‖V dt

+ b1c1

∫ b

0

‖u(t)‖V dt+ ‖b0‖L2(I,R+)‖u‖V

≤ b1c2

[
b

2−α
2 ‖u(·) + u0‖αV

(√
b‖u(·) + u0‖V + b‖u0‖V

)]
+ (b1c1

√
b+ ‖b0‖L2(I,R+))‖u‖V

= b1c2

[
b

3−α
2 ‖u(·) + u0‖α+1

V + b
5−α
2 ‖u0‖V ‖u(·) + u0‖αV

]
+ (b1c1

√
b+ ‖b0‖L2(I,R+))‖u‖V .

Then, through the fact that ‖u+ v‖α+1
V ≤ (‖u‖V + ‖v‖V)α+1 ≤ 2α(‖u‖α+1

V + ‖v‖α+1
V ), we

conclude

|〈Bu, u〉V∗×V | ≤ b1c2

[
b

3−α
2 2α(‖u‖α+1

V + (
√
b‖u0‖V )α+1) + ‖u0‖V b2−α

2 ‖u(·) + u0‖αV
]

+ (b1c1

√
b+ ‖b0‖L2(I,R+))‖u‖V

= b̂1‖u‖α+1
V + b̂2‖u‖V + b̂3‖u(·) + u0‖αV + b̂4 (3.18)

with b̂1 = 2αb1c2b
3−α
2 , b̂2 = b1c1

√
b+‖b0‖L2(I,R+), b̂3 = b1c2‖u0‖V b2−α

2 , b̂4 = 2αb1c2b
2‖u0‖α+1.

Finally, combining the inequalities (3.16), (3.17), (3.18) and Lemma 3.4(iii), for
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u∗ ∈ Fu, there exist z∗ ∈ J u and µ∗ ∈ Nu such that u∗ = Gu+ Bu+ z∗ + µ∗ and

〈u∗, u〉V∗×V = 〈Gu, u〉V∗×V + 〈Bu, u〉V∗×V + 〈z∗, u〉V∗×V + 〈µ∗, u〉V∗×V

≥ 1

2
mg‖u‖2

V − m̂1‖u‖V − m̂2

− (b̂1‖u‖α+1
V + b̂2‖u‖V + b̂3‖u(·) + u0‖αV + b̂4)− ‖z∗‖V∗‖u‖V − ‖µ∗‖V∗‖u‖V

≥ ‖u‖α+1
V
(
(
1

2
mg − cJ‖ϑ‖2)‖u‖1−α

V − b̂1

)
− b̂3‖u(·) + u0‖αV

−
(
m̂1 + b̂2 + cJ‖ϑ‖

√
b+

1

ρ
‖ω‖
√
b
)
‖u‖V − cJ‖ϑ‖2

√
b‖u0‖ −

(
m̂2 + b̂4

)
.

Thus above inequality and (3.8) imply that

lim
‖u‖V→+∞

inf{〈u∗, u〉V∗×V |u∗ ∈ Fu}
‖u‖V

≥ lim
‖u‖V→+∞

‖u‖αV
(
(
1

2
mg − cJ‖ϑ‖2)‖u‖1−α

V − b̂1

)
−
(
m̂1 + b̂2 + cJ‖ϑ‖

√
b+

1

ρ
‖ω‖
√
b
)

− b̂3 lim
‖u‖V→+∞

‖u(·) + u0‖αV
‖u‖V

− lim
‖u‖V→+∞

cJ‖ϑ‖2
√
b‖u0‖+ m̂2 + b̂4

‖u‖V
= +∞.

Therefore, we prove that F is coercive.

Step (iii). F is L-pseudomonotone.

As known from Lemma 3.2 and Step (i), J u and Nu are nonempty, bounded, closed

and convex subset of V∗ and so is the operator Fu for each u ∈ V .

Next, we prove that the operator F satisfies the condition (c) of the definition of

L-pseudomonotonicity (see Definition 2.3). Assume that the sequence {un} ⊂ D(L)

with un → u weakly in V , u′n → u′ weakly in V∗, u∗n ∈ Fun such that u∗n → u∗ weakly

in V∗ and lim sup〈u∗n, un − u〉V∗×V ≤ 0.

Then there exists two sequences {z∗n} ⊂ J un and {µ∗n} ⊂ Nun such that u∗n =

Gun + Bun + z∗n + µ∗n. Notice that un → u weakly in V , u′n → u′ weakly in V∗ and form

[20, Lemma 2.55(i)], we can see that un → u weakly inW and un(t)→ u(t) weakly in V

for all t ∈ I. From condition (3.3), it is obvious that ωun(t)→ ωu(t) in Y for all t ∈ I.

Moreover, Lemma 3.1 and assumption 3.4(b) guarantees that Run(t)→ Ru(t) in E for

all t ∈ I and

B(t,R(un(t) + u0))→ B(t,R(un(t) + u0)) in V ∗ for all t ∈ I.

By virtue of the Lebesgue-dominated convergence theorem, we are aware of

Bun → Bu in V∗ and 〈Bun, un〉V∗×V → 〈Bu, u〉V∗×V . (3.19)

From the compactness of embedding W ⊂ Y , we infer that un → u in Y . Since the

function d̃ is Lipschitz continuous with Lipschitz constant one, from Lemma 2.6, we note
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that

‖∂d̃(y)‖Y ∗ ≤ ‖ω‖ for all y ∈ Y.

Carrying out the same arguments as (3.16), it is true that

‖µ∗n‖Y∗ ≤ ‖Nun‖Y∗ ≤
1

ρ
‖ω‖
√
b.

Which implies that the sequence {µ∗n} ⊂ Y∗ is bounded, so passing to a subsequence if

necessary, we may assume that µ∗n → µ∗ weakly in Y∗. Because N has a closed graph

with respect to the strong topology in Y and weak topology in Y∗ (see Lemma 3.3), it is

immediate that N is upper semicontinuous in these topologies and µ∗ ∈ Nu. Moreover,

we have

〈µ∗n, un〉V∗×V = 〈µ∗n, un〉Y∗×Y → 〈µ∗, u〉Y∗×Y = 〈µ∗, u〉V∗×V . (3.20)

By a similar way, based on (3.6), (3.7) and Lemma 2.7, it follows that J is upper

semicontinuous from V to w-V∗ and there is an element z∗ ∈ J u such that

〈z∗n, un〉V∗×V → 〈z∗, u〉V∗×V . (3.21)

Besides, through (3.19), (3.20) and (3.21), we obtain

0 ≥ lim sup〈u∗n, un − u〉V∗×V
= lim sup〈Gun, un − u〉V∗×V + lim〈Bun, un − u〉V∗×V + lim〈z∗n + µ∗n, un − u〉V∗×V
= lim sup〈Gun, un − u〉V∗×V .

Next, the L-pseudomonotonicity of the operator G (see Lemma 3.4(i)) implies that

Gun → Gu weakly in V∗ and lim〈Gun, un〉V∗×V = 〈Gu, v〉V∗×V . Therefore, u∗n = Gun +

Bun + z∗n + µ∗n → Gu+ Bu+ z∗ + µ∗ = u∗ ∈ Fu and

〈u∗n, un〉V∗×V = 〈Gun, un〉V∗×V + 〈Bun, un〉V∗×V + 〈z∗n, un〉V∗×V + 〈µ∗n, un〉V∗×V
→ 〈Gu, u〉V∗×V + 〈Bu, u〉V∗×V + 〈z∗, u〉V∗×V + 〈µ∗, u〉V∗×V = 〈u∗, u〉V∗×V .

Finally, keeping in mind that B is continuous from w-V to V∗, G is demicontinuous, J
and N is upper semicontinuous from V to w-V∗, we can immediately conclude that F is

upper semicontinuous from each finite dimensional subspace of V into w-V ∗. Therefore,

we prove that the operator F is L-pseudomonotone.

According to the Step (i)-(iii), we can apply the surjectivity result of Theorem 2.4

to get that (3.15) has a solution uρ ∈ W . Thus it immediately to know that (3.14) has

a solution uρ ∈ W for ρ > 0. �

The main result in the section is the following.
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Theorem 3.6 If (3.1)-(3.9) hold, Problem P has at least a mild solution (x, u) with

x ∈ C(I;E) and u ∈ W. Moreover, there exists a constant M > 0 such that

‖u‖V ≤M and ‖x(t)‖E ≤M for all t ∈ I. (3.22)

Proof. The proof consists of three claims.

Claim 1. The solution uρ of (3.14) satisfying ‖uρ‖V ≤M0 with a constant M0 > 0.

From Theorem 3.5, we know that (3.14) has at least one solution and so is (3.13).

Thus assume that for ρ > 0, uρ ∈ W satisfies (3.13). Then the auxiliary inclusion

problem (3.14) implies that there is a function ζ ∈ V∗ such that ζ(t) ∈ ∂d(uρ(t)) and

〈ζ(t), v〉 ≤ d0(uρ(t); v) for a.e. t ∈ I, thus we have

〈u′ρ(t) + g(t, uρ(t)) +B(t,Ruρ(t)) + ϑ∗ξ(t), v〉+
1

ρ
d0(uρ(t); v) ≥ 0 (3.23)

for a.e. t ∈ I and all v ∈ V , where ξ ∈ X such that ξ(t) ∈ ∂J(t, ϑuρ(t)) for a.e. t ∈ I.

Inserting v = v0 − uρ(t) in (3.23), we reach that

〈u′ρ(t) + g(t, uρ(t)) +B(t,Ruρ(t)) + ϑ∗ξ(t), v0 − uρ(t)〉+
1

ρ
d0(uρ(t); v0 − uρ(t)) ≥ 0

for a.e. t ∈ I. Then it ensures that∫ b

0

〈g(t, uρ(t)) +B(t,Ruρ(t)) + ϑ∗ξ(t), uρ(t)− v0〉dt

≤
∫ b

0

(〈u′ρ(t), v0〉 − 〈u′ρ(t), uρ(t)〉)dt+
1

ρ

∫ b

0

d0(uρ(t); v0 − uρ(t))dt. (3.24)

Moreover, taking into account the identity, we obtain∫ b

0

〈u′ρ(t), uρ(t)〉dt =
1

2
‖uρ(b)‖2

H −
1

2
‖uρ(0)‖2

H =
1

2
‖uρ(b)‖2

H −
1

2
‖u0‖2

H∫ b

0

〈u′ρ(t), v0〉dt = 〈uρ(b), v0〉H×H − 〈u0, v0〉H×H

≤ 1

2
‖uρ(b)‖2

H +
1

2
‖v0‖2

H + ‖u0‖H‖v0‖H .

Combining (3.4)(c), (3.5)(d), (3.6)(c), (3.11) and using the Hölder inequality, we are led
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to ∫ b

0

〈g(t, uρ(t)) +B(t,Ruρ(t)) + ϑ∗ξ(t), uρ(t)− v0〉dt

≥mg

∫ b

0

‖uρ(t)‖2
V dt− ‖v0‖V

∫ b

0

‖g(t, uρ(t))‖V ∗dt

−
∫ b

0

(‖B(t,Ruρ(t))‖V ∗ + ‖ϑ∗ξ(t)‖)(‖uρ(t)‖V + ‖v0‖V )dt

≥mg‖uρ‖2
V − ‖v0‖V

∫ b

0

(a0(t) + a1‖uρ(t)‖V ])dt

−
∫ b

0

[b0(t) + b1(c1 + c2‖uρ(t)‖αV + ‖ϑ∗‖cJ(1 + ‖ϑuρ(t)‖)](‖uρ(t)‖V + ‖v0‖V )dt

≥(mg − cJ‖ϑ‖2)‖uρ‖2
V − κ1‖uρ‖α+1

V − κ2‖uρ‖V − κ3‖uρ‖αV − κ4,

where

κ1 = b1c2b
1−α
2 , κ2 =

√
b(a1‖v0‖V + b1c1 + cJ(‖ϑ‖+ ‖ϑ‖2‖v0‖) + ‖b0‖L2(I,R+),

κ3 = b1c2‖v0‖V b
2−α
2 , κ4 =

√
b(‖a0‖L2(I,R+)+‖b0‖L2(I,R+))‖v0‖V +(b1c1+cJ‖ϑ‖)b‖v0‖V ).

Therefore, it reads

(mg − cJ‖ϑ‖2)‖uρ‖2
V ≤κ1‖uρ‖α+1

V + κ2‖uρ‖V + κ3‖uρ‖αV

+ κ̂4 +
1

ρ

∫ b

0

d0(uρ(t); v0 − uρ(t))dt (3.25)

with κ̂4 = κ4 + 1
2
(‖u0‖H + ‖v0‖H)2. Moreover, Lemma 2.9 guarantees that d0(uρ(t); v0−

uρ(t)) ≤ 0 for t ∈ I. Thus the inequality (3.25) and (3.8) reveal that there exists a

constant M0 > 0 such that

‖uρ‖V ≤M0 for all ρ > 0. (3.26)

Claim 2. There exists a constant ε0 > 0 such that uρ(t) ∈ C for all t ∈ I and

ρ ∈ (0, ε0).

We proceed the by contradiction. Suppose that for any ε > 0, there exists a point

t0 ∈ I and a constant ρ0 ∈ (0, ε) such that uρ0(t0) /∈ C. Since uρ ∈ W ⊂ C(I;V ) for

any ρ > 0 and the set C is closed, we can find a set I0 ⊂ I with meas(I0) > 0 such that

t0 ∈ I0 and

uρ0(t) /∈ C for all t ∈ I0.

Now, we can choose ρ0 = 1
2

min
{
ε0, r‖ω‖meas(I0)(κ1M

α+1
0 +κ2M0 +κ3M

α
0 + κ̂4)−1

}
.

Obviously, ρ0 ∈ (0, ε0). Moreover, from Lemma 2.9, we know that

d0(uρ0(t); v0 − uρ0(t)) ≤ −r‖ω‖ for all t ∈ I0.
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Then, taking account of (3.25) and (3.26), we infer that

0 ≤ κ1M
α+1
0 + κ2M0 + κ3M

α
0 + κ̂4

+
1

ρ

(∫
I0

d0(uρ0(t); v0 − uρ0(t))dt+

∫
I\I0

d0(uρ0(t); v0 − uρ0(t))dt
)

≤ κ1M
α+1
0 + κ2M0 + κ3M

α
0 + κ̂4 −

r

ρ0

‖ω‖meas(I0),

which equivalent to

ρ0 ≥
r‖ω‖meas(I0)

κ1M
α+1
0 + κ2M0 + κ3Mα

0 + κ̂4

.

However, it is a contradiction to the choose of ρ0. Therefore, there exists a ε0 > 0 such

that uρ(t) ∈ C for all t ∈ I and ρ ∈ (0, ε0).

Claim 3. Problem P has a mild solution (x, u) ∈ C(I;E)×W satisfying (3.22).

Fix ρ ∈ (0, ε0) with ε0 > 0 defined in Claim 2. From Theorem 3.5, let u = uρ ∈ W
be a solution to Problem Pρ satisfying u(t) ∈ C for all t ∈ I. Moreover, Lemma 3.1

implies that there exists a solution x ∈ C(I;E) such that x(t) = Ru(t) corresponding

to u the intergal equation

x(t) = T (t)x0 +

t∫
0

T (t− s)f(s, x(s), ωu(s))ds for all t ∈ I.

Moreover, since ξ(t) ∈ ∂J(ϑuρ(t)) implies that 〈ϑ∗ξ(t), v〉V = 〈ξ(t), ϑv〉X ≤ J0(t, ϑuρ(t);ϑv)

a.e. t ∈ I, we now use (3.23) and (2.2) to derive
u(t) ∈ C,

〈u′(t) + g(t, u(t)) +B(t, x(t)), v〉+ J0(t, ϑuρ(t);ϑv) +
1

ρ
d̃0(ωu(t);ωv) ≥ 0,

u′(0) = u0.

(3.27)

for a.e. t ∈ I and all ∈ V . Next, we are in the position to choose v ∈ TC(u(t)) in (3.27).

Then the definition of TC(·) of (2.3) lead to d̃0(ωu;ωv) = 0 for any v ∈ TC(u) and the

follows
u(t) ∈ C,
〈u′(t) + g(t, u(t)) +B(t, x(t)), v〉+ J0(t, ϑuρ(t);ϑv) ≥ 0, t ∈ I, ∀v ∈ TC(u(t))

u(0) = u0.

Therefore, we obtain that (x, u) ∈ C(I;E)×W is a mild solution of Problem P . Finally,

Claim 1 allow us to invoke inequality (3.11) obtaining

‖x(t)‖E ≤ c1 + c2

∫ b

0

‖u(s)‖αV ds

≤ c1 + c2

√
bMα

0 for all t ∈ I.

Now, setting M = max{M0, c1 + c2

√
bMα

0 }, we infer that (3.22) holds. The proof of the

theorem is complete.

�
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4 An application

In this section, we provide an example of particular problem, for which our previous

result can be applied. Let I = [0, b] with 0 < b < ∞ and Ω be an open bounded

domain in Rn(n ≥ 2) with a Lipschitz continuous boundary Γ = ∂Ω. The boundary is

composed of two disjoint relatively open parts ΓD and ΓN , such that meas(ΓD) > 0.

Let ν denote the unit outward normal vector at the boundary Γ. We now consider the

following parabolic initial-boundary value problem.

Problem Q. Find x : [0, b]× Ω→ R and u : [0, b]× Ω→ R such that
xt(z, t)−∆x(z, t) = ε

(
z, t, x(z, t), u(z, t))

)
in Ω× I,

x(z, 0) = δ(z) in Ω,

x(z, t) = 0 in Γ× I
(4.1)



ut(z, t) + div$(z, t) + β(z, t, x(z, t)) = φ1(z, t) + h(z, t) in Ω× I,
$(z, t) = −ψ(z, t, u(z, t),∇u(z, t)) in Ω× I,
$(t) · ν = φ2(t) on ΓN × I,
∂u(z, t)

∂ν
= φ3(z, t) on ΓD × I,

−∂u(z, t)

∂ν
∈ ∂j(u(z, t)) on ΓN × I,

u(z, 0) = ζ(z) in Ω

(4.2)

In order to provide the differential hemivariational formulation of problem Q, we

need the Lebesgue spaces E = Y = L2(Ω), X = L2(ΓD) with standard norm and the

Sobolev space

V = { v ∈ H1(Ω) : v(z) = 0 a.e. z ∈ ΓD } (4.3)

endowed with the inner product

(u, v)V =

∫
Ω

∇u · ∇v dx (4.4)

and the associated norm ‖ · ‖V . It is well known that (V, ‖ · ‖V ) is a Hilbert space.

Moreover, as usual, we use V ∗ for the dual of V and 〈·, ·〉 for the duality pairing mapping

between V ∗ and V .

Moreover, from Rellich-Kondrachov compactness theorem, V is compactly embedded

into Y . This means the inclusion operator ω : V → Y is compact. Let γ : V → X

denote the trace operator, so γu stands for the trace of u ∈ V at the boundary ∂Ω.

Hence, the symbol u in the boundary conditions of Problem Q should be understood in

the sense of trace. Further, C ⊂ V is a nonempty, closed set of constraints which can
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be convex or nonconvex. We now provide the following hypotheses.

The function e : Ω× I × R× R→ R is such that

(a) e(·, ·, η, ξ) is measurable on Ω× I for all (η, ξ) ∈ R2;

(b) |e(z, t, 0, 0)| ≤ a0(z, t) for a.e. (z, t) ∈ Ω× I
with a0 ∈ L2

+(Ω× I);

(c) |e(z, t, η1, ξ1)− e(z, t, η2, ξ2)| ≤ l1(z)|η1 − η2|+ l2(z)|ξ1 − ξ2|α
for a.e. (z, t) ∈ Ω× I and all (η1, ξ1), (η2, ξ2) ∈ R2

with l1, l2 ∈ L2
+(Ω) and α ∈ [0, 1). This means e(z, t, η, ξ) is

Lipschitz continuous in η and is α-Hölder continous in ξ.

(4.5)



H(ψ) : The function ψ : Ω× I × R× Rn → Rn, ψ = (ψ1, · · · , ψn)

is such that, for k = 1, · · · , n,

(a) ψk(·, ·, η, ξ) is measurable on Ω× I for all (η, ξ) ∈ R× Rn;

ψk(z, t, ·, ·) is continuous on R× Rn for a.e. (z, t) ∈ Ω× I;

(b) |ψk(z, t, η, ξ)| ≤ m0

(
a(z, t) + |η|+

∑n
k=1 |ξk|

)
for a.e. (z, t) ∈ Ω× I

and all (η, ξ) ∈ R× Rn with m0 > 0, a ∈ L2(Ω× I);

(c)
∑n

k=1

(
(ψk(z, t, η, ξ

1)− ψk(z, t, η, ξ2))(ξ1
k − ξ2

k)
)
≥ 0

for all η ∈ R, ξ1, ξ2 ∈ Rn and for a.e. (z, t) ∈ Ω× I,

(d)
∑n

k=1 ψk(z, t, η, ξ)ξk ≥ m1(|η|2 +
∑n

k=1 |ξk|2) for all ξ ∈ Rn

and for a.e. (z, t) ∈ Ω× I with m1 > 0.

(4.6)



H(β) : The function β : Ω× I × R→ R is such that

(a) β(·, ·, η) is measurable on Ω× I for all η ∈ R;

(b) β(z, t, ·) is continuous on R for a.e. (z, t) ∈ Ω× I;

(c) |β(z, t, η)| ≤ b0(z, t) + b1|η| for a.e. (z, t) ∈ Ω× I
and all η ∈ R with b0 ∈ L2(Ω× I) and b1 ≥ 0.

(4.7)



H(j) : The function j : Ω× I × R→ R is such that

(a) j(·, ·, η) is measurable on Ω× I for all η ∈ R;

(b) j(z, t, ·) is locally Lipschitz continuous on R;

(c) ‖ξ| ≤ cj(1 + |η|), ξ ∈ ∂j(z, t, η), for a.e. (z, t) ∈ Ω× I
and all η ∈ R with cj > 0.

(4.8)

φ1 ∈ L2(Ω× I), φ2 ∈ L2(I;L2(ΓN)), φ3 ∈ L2(I;L2(ΓD)). (4.9)

δ ∈ E, ζ ∈ V. (4.10)

Define the operator A : D(A) ⊂ E → E as follows

D(A) = H2(Ω) ∩H1
0 (Ω) ⊂ L2(Ω), Ax = ∆x ∀x ∈ D(A). (4.11)
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Obviously, one can see that A generates a C0-semigroup semigroup {T (t)}t≥0 on E (see

[25], for instance). Assume now that u is sufficiently smooth solution to (4.2) and v ∈ V.
We multiply the first equation of (4.2) by v and use the Green formula to find∫

Ω

u′(t)v dz +

∫
Ω

ψ(t, u(t),∇u(t)) · ∇v dz +

∫
Ω

β(t, x(t))v dz +

∫
ΓN

j0(z, t, γu(t)); γv)dΓ

≥
∫

Ω

φ1(t)v dz +

∫
Ω

h(t)v dz +

∫
ΓN

φ2(t)v dΓ +

∫
ΓD

fN(t)v dΓ

(4.12)

Under above assumptions, let f : I × E × Y → E, g : I × V → V ∗, B : I × E → V ∗,

J : I ×X → R and ϕ : I → V ∗ be defined as follows:

f(t, x, y)(z) = e(z, t, x(z), y(z)) ∀ t ∈ I, x ∈ E, y ∈ Y, a.e. z ∈ Ω, (4.13)

〈g(t, u), v〉 =

∫
Ω

ψ(t, u(t),∇u) · ∇v dz −
∫

Ω

φ1(t)v dz −
∫

ΓN

φ2(t)v dΓ

−
∫

ΓN

φ3(t)v dΓ ∀ t ∈ I, u, v ∈ V, (4.14)

〈B(t, x), v〉 =

∫
Ω

β(t, x)v dz ∀ t ∈ I, x ∈ E, v ∈ V, (4.15)

J(t, u) =

∫
ΓN

j(z, t, u(z)) dΓ for all u ∈ X, (4.16)

〈ϕ(t), v〉 =

∫
Ω

h(t)v dz ∀ t ∈ I, v ∈ V. (4.17)

We are in a position to formulate more general problem.

Problem QI. Find x : [0, T ]→ E and u : [0, T ]→ V such that
x′(t) = Ax(t) + f(t, x(t), ωu(t)), for t ∈ I,
u′(t) + g(t, u(t)) +B(t, x(t)) + γ∗∂J(t, γu(t)) 3 ϕ(t) a.e. t ∈ I,
x(0) = δ, u(0) = ζ.

(4.18)

In fact, let (x, u) be a solution of QI and let v ∈ V . Then, there exists η ∈ X∗, such

that{
〈u′(t) + g(t, u(t)) +B(t, x(t)), v〉+ 〈η(t), γv〉X∗×X = 〈ϕ(t), v〉 a.e. t ∈ I,
η(t) ∈ ∂J(γu(t)) for a.e. t ∈ I. (4.19)

Hence, by Theorem 3.47 of [20] , it follows that for a.e.t ∈ (0, b) , η(t) can be treated as

a function η(t) : ΓN → R , such that η(t) ∈ L2(ΓN) and it satisfies

〈η(t), γv〉X∗×X =

∫
ΓN

η(z, t) · v(z)dΓ ≤
∫

ΓN

j0(γu(z, t)); γv(z))dΓ.
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Next, we suppose that ϕ(t) ∈ V is a function of u(t), introduced in order to incor-

porate constraints to the model. We will assume that u(t) ∈ C and −ϕ(t) ∈ NC(u(t)),

where NC(u(t)) is Clarke’s normal cone to C at u. Therefore

〈ϕ(t), v〉 ≥ 0 for all t ∈ I and v ∈ TC(u(t)), (4.20)

where TC(v) is Clarke’s tangent cone of C at v. Therefore, from (4.12)–(4.17), (4.20),

the problem (4.1)–(4.2) can be transformed into the following abstract differential hemi-

variational inequality:

Problem QV . Find x : [0, T ]→ E and u : [0, T ]→ V such that

x′(t) = Ax(t) + f(t, x(t), ωu(t)), for t ∈ I,
x(0) = δ,

u(t) ∈ C,
〈u′(t) + g(t, u(t)) +B(t, x(t)), v〉+ J0(t, γu(t), γv) ≥ 0, t ∈ I, ∀v ∈ TC(u(t)),

u(0) = ζ.

(4.21)

Now, we can consider the concept of mild solution following Definition 1.1 for problem

QV . Moreover, we have the following existence result.

Theorem 4.1 Assume that (4.5)–(4.10) hold. If m0 > 2cj, then the Problem QV has

at least a mild solution (x, u) ∈ C(I, E)×W.

Proof. The proof can be obtained by using the abstract result of Theorem 3.6 with

E = Y = L2(Ω), X = L2(ΓD), V defined above. Let x0 = δ, u0 = ζ. ϑ = γ, and A, f ,

g, B and J given by (4.11), (4.13)–(4.16). Indeed, it is easy to check that in this case

assumptions (3.1)–(3.9) are satisfied. Therefore, we obtain the conclusion and omit the

detail of proof. �
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