References
[1] C. Colas, A.M. Pajor, A. Schlessinger, Structure-Based identification of inhibitors for the SLC13 Family of Na+/Dicarboxylate cotransporters, Biochemistry 54 (2015) 4900-4908.
[2] P. Srisawang, A. Chatsudthipong, V. Chatsudthipong, Modulation of succinate transport in Hep G2 cell line by PKC, Biochimica et Biophysica Acta (BBA)-Biomembranes 1768 (2007) 1378-1388.
[3] M.E. Mycielska, A. Patel, N. Rizaner, M.P. Mazurek, H. Keun, A. Patel, V. Ganapathy, M.B. Djamgoz, Citrate transport and metabolism in mammalian cells: prostate epithelial cells and prostate cancer, Bioessays 31 (2009) 10-20.
[4] V. Jaramillo-Martinez, I.L. Urbatsch, V. Ganapathy, Functional distinction between human and mouse sodium-coupled citrate transporters and its biologic significance: an attempt for structural basis using a homology modeling approach, Chemical Reviews 121 (2020) 5359-5377.
[5] J. Yang, S. Li, M.A. Kabir Khan, V. Garre, W. Vongsangnak, Y. Song, Increased lipid accumulation in Mucor circinelloides by overexpression of mitochondrial citrate transporter genes, Industrial & Engineering Chemistry Research 58 (2019) 2125-2134.
[6] J. Yang, J.T. Cánovas-Márquez, P. Li, S. Li, J. Niu, X. Wang, Y. Nazir, S. López-García, V. Garre, Y. Song, Deletion of Plasma Membrane Malate Transporters Increased Lipid Accumulation in the Oleaginous Fungus Mucor circinelloides WJ11, Journal of Agricultural and Food Chemistry 69 (2021) 9632-9641.
[7] K.M. Pos, P. Dimroth, Functional properties of the purified Na+-dependent citrate carrier of Klebsiella pneumoniae: evidence for asymmetric orientation of the carrier protein in proteoliposomes, Biochemistry 35 (1996) 1018-1026.
[8] D.B. Sauer, J. Song, B. Wang, J.K. Hilton, N.K. Karpowich, J.A. Mindell, W.J. Rice, D.-N. Wang, Structure and inhibition mechanism of the human citrate transporter NaCT, Nature 591 (2021) 157-161.
[9] A.A. Starkov, C. Chinopoulos, N.N. Starkova, C. Konrad, G. Kiss, A. Stepanova, V.N. Popov, Divalent cation chelators citrate and EDTA unmask an intrinsic uncoupling pathway in isolated mitochondria, Journal of bioenergetics and biomembranes 49 (2017) 3-11.
[10] M. Bergeron, B. Clemençon, M. Hediger, D. Markovich, SLC13 family of Na+-coupled di-and tri-carboxylate/sulfate transporters, Molecular aspects of medicine 34 (2013) 299-312.
[11] V. Jaramillo-Martinez, V. Ganapathy, I.L. Urbatsch, A home run for human NaCT/SLC13A5/INDY: cryo-EM structure and homology model to predict transport mechanisms, inhibitor interactions and mutational defects, Biochemical Journal 478 (2021) 2051-2057.
[12] R. Mancusso, G.G. Gregorio, Q. Liu, D.-N. Wang, Structure and mechanism of a bacterial sodium-dependent dicarboxylate transporter, Nature 491 (2012) 622-626.
[13] V.M. Ganapathy, GA 30907 (US); Inoue, Katsuhisa; Nagoya 467-0056 (JP); Fei, You-Jun North Augusta, SC 29841 (US), Nact as a target for lifespan expansion and weight reduction, European Patent Application EP 1 816 139 A1 (2007).
[14] A. Khamaysi, S. Aharon, H. Eini-Rider, E. Ohana, A dynamic anchor domain in slc13 transporters controls metabolite transport, Journal of Biological Chemistry 295 (2020) 8155-8163.
[15] C. Mulligan, C. Fenollar-Ferrer, G.A. Fitzgerald, A. Vergara-Jaque, D. Kaufmann, Y. Li, L.R. Forrest, J.A. Mindell, The bacterial dicarboxylate transporter VcINDY uses a two-domain elevator-type mechanism, Nature structural & molecular biology 23 (2016) 256-263.
[16] D.B. Sauer, B. Wang, J.C. Sudar, J. Song, J. Marden, W.J. Rice, D.N. Wang, The ups and downs of elevator‐type di‐/tricarboxylate membrane transporters, The FEBS Journal 289 (2022) 1515-1523.
[17] A.M. Pajor, Sodium-coupled dicarboxylate and citrate transporters from the SLC13 family, Pflügers Archiv-European Journal of Physiology 466 (2014) 119-130.
[18] K. Huard, J.R. Gosset, J.I. Montgomery, A. Gilbert, M.M. Hayward, T.V. Magee, S. Cabral, D.P. Uccello, K. Bahnck, J. Brown, Optimization of a dicarboxylic series for in vivo inhibition of citrate transport by the solute carrier 13 (SLC13) family, Journal of medicinal chemistry 59 (2016) 1165-1175.
[19] K. Inoue, L. Zhuang, D.M. Maddox, S.B. Smith, V. Ganapathy, Structure, function, and expression pattern of a novel sodium-coupled citrate transporter (NaCT) cloned from mammalian brain, Journal of Biological Chemistry 277 (2002) 39469-39476.
[20] K. Inoue, L. Zhuang, V. Ganapathy, Human Na+-coupled citrate transporter: primary structure, genomic organization, and transport function, Biochemical and biophysical research communications 299 (2002) 465-471.
[21] M. Wada, A. Shimada, T. Fujita, Functional characterization of Na+-coupled citrate transporter NaC2/NaCT expressed in primary cultures of neurons from mouse cerebral cortex, Brain research 1081 (2006) 92-100.
[22] J. Klotz, B.E. Porter, C. Colas, A. Schlessinger, A.M. Pajor, Mutations in the Na+/citrate cotransporter NaCT (SLC13A5) in pediatric patients with epilepsy and developmental delay, Molecular medicine 22 (2016) 310-321.
[23] S. Selch, A. Chafai, H. Sticht, A.L. Birkenfeld, M.F. Fromm, J. König, Analysis of naturally occurring mutations in the human uptake transporter NaCT important for bone and brain development and energy metabolism, Scientific reports 8 (2018) 1-12.
[24] M. Bandell, J.S. Lolkema, Stereoselectivity of the membrane potential-generating citrate and malate transporters of lactic acid bacteria, Biochemistry 38 (1999) 10352-10360.
[25] M. Bandell, J.S. Lolkema, The conserved C-terminus of the citrate (CitP) and malate (MleP) transporters of lactic acid bacteria is involved in substrate recognition, Biochemistry 39 (2000) 13059-13067.
[26] I. Sobczak, J.S. Lolkema, Loop VIII/IX of the Na+-citrate transporter CitS of Klebsiella pneumoniae folds into an amphipathic surface helix, Biochemistry 44 (2005) 5461-5470.
[27] K. Higuchi, J.J. Kopel, S. Sivaprakasam, V. Jaramillo-Martinez, R.B. Sutton, I.L. Urbatsch, V. Ganapathy, Functional analysis of a species-specific inhibitor selective for human Na+-coupled citrate transporter (NaCT/SLC13A5/mINDY), Biochemical Journal 477 (2020) 4149-4165.
[28] A.M. Pajor, C.A. de Oliveira, K. Song, K. Huard, V. Shanmugasundaram, D.M. Erion, Molecular basis for inhibition of the Na+/citrate transporter NaCT (SLC13A5) by dicarboxylate inhibitors, Molecular pharmacology 90 (2016) 755-765.
[29] J. Kopel, K. Higuchi, B. Ristic, T. Sato, S. Ramachandran, V. Ganapathy, The hepatic plasma membrane citrate transporter NaCT (SLC13A5) as a molecular target for metformin, Scientific reports 10 (2020) 1-12.
[30] A.M. Pajor, N.N. Sun, Nonsteroidal anti-inflammatory drugs and other anthranilic acids inhibit the Na+/dicarboxylate symporter from Staphylococcus aureus, Biochemistry 52 (2013) 2924-2932.
[31] S. Aluvila, J. Sun, D.H. Harrison, D.E. Walters, R.S. Kaplan, Inhibitors of the mitochondrial citrate transport protein: validation of the role of substrate binding residues and discovery of the first purely competitive inhibitor, Molecular pharmacology 77 (2010) 26-34.
[32] C. Colas, A. Schlessinger, A.M. Pajor, Mapping functionally important residues in the Na+/dicarboxylate cotransporter, NaDC1, Biochemistry 56 (2017) 4432-4441.
[33] A.M. Pajor, N.N. Sun, Role of isoleucine-554 in lithium binding by the Na+/dicarboxylate cotransporter NaDC1, Biochemistry 49 (2010) 8937-8943.
[34] B.C. Burckhardt, J. Lorenz, C. Kobbe, G. Burckhardt, Substrate specificity of the human renal sodium dicarboxylate cotransporter, hNaDC-3, under voltage-clamp conditions, American Journal of Physiology-Renal Physiology 288 (2005) F792-F799.
[35] R. Mosaoa, A. Kasprzyk-Pawelec, H.R. Fernandez, M.L. Avantaggiati, The mitochondrial citrate carrier SLC25A1/CIC and the fundamental role of citrate in cancer, inflammation and beyond, Biomolecules 11 (2021) 141.
[36] R.M. Mosaoa, Role of the Mitochondrial Citrate Transporter, SLC25A1, in Cancer, Obesity and Liver Steatosis, Georgetown University, 2021.
[37] M. Tan, R. Mosaoa, G.T. Graham, A. Kasprzyk-Pawelec, S. Gadre, E. Parasido, O. Catalina-Rodriguez, P. Foley, G. Giaccone, A. Cheema, Inhibition of the mitochondrial citrate carrier, Slc25a1, reverts steatosis, glucose intolerance, and inflammation in preclinical models of NAFLD/NASH, Cell Death & Differentiation 27 (2020) 2143-2157.
[38] S.A. Patil, J.A. Mayor, R.S. Kaplan, Citrate transporter inhibitors: possible new anticancer agents, Future Medicinal Chemistry 14 (2022) 665-679.
[39] E.M. Geissler, Maria; Ruemmele, Petra, Plasma membrane citrate transporter for use in the diagnosis and treatment of cancer, European Patent Application (2016).
[40] E.K. Parkinson, J. Adamski, G. Zahn, A. Gaumann, F. Flores-Borja, C. Ziegler, M.E. Mycielska, Extracellular citrate and metabolic adaptations of cancer cells, Cancer and Metastasis Reviews (2021) 1-19.
[41] A. Devi Khwairakpam, M. Singh Shyamananda, B. Lalduhsaki Sailo, S. Raju Rathnakaram, G. Padmavathi, J. Kotoky, A. B Kunnumakkara, ATP citrate lyase (ACLY): a promising target for cancer prevention and treatment, Current drug targets 16 (2015) 156-163.
[42] I. Philippe, L. Hubert, The reduced concentration of citrate in cancer cells: An indicator of cancer aggressiveness and a possible therapeutic target, Drug Resistance Updates 29 (2016) 47-53.
[43] R. Kumari, R.S. Deshmukh, S. Das, Caspase-10 inhibits ATP-citrate lyase-mediated metabolic and epigenetic reprogramming to suppress tumorigenesis, Nature communications 10 (2019) 1-15.
[44] K. Drexler, K.M. Schmidt, K. Jordan, M. Federlin, V.M. Milenkovic, G. Liebisch, A. Artati, C. Schmidl, G. Madej, J. Tokarz, Cancer-associated cells release citrate to support tumour metastatic progression, Life science alliance 4 (2021).
[45] P. Icard, A. Coquerel, Z. Wu, J. Gligorov, D. Fuks, L. Fournel, H. Lincet, L. Simula, Understanding the central role of citrate in the metabolism of cancer cells and tumors: An update, International Journal of Molecular Sciences 22 (2021) 6587.
[46] J.-G. Ren, P. Seth, H. Ye, K. Guo, J.-i. Hanai, Z. Husain, V.P. Sukhatme, Citrate suppresses tumor growth in multiple models through inhibition of glycolysis, the tricarboxylic acid cycle and the IGF-1R pathway, Scientific reports 7 (2017) 1-13.
[47] P. Icard, L. Simula, Z. Wu, D. Berzan, P. Sogni, A. Dohan, R. Dautry, A. Coquerel, H. Lincet, M. Loi, Why may citrate sodium significantly increase the effectiveness of transarterial chemoembolization in hepatocellular carcinoma?, Drug Resistance Updates (2021) 100790.
[48] V. Infantino, C.L. Pierri, V. Iacobazzi, Metabolic routes in inflammation: the citrate pathway and its potential as therapeutic target, Current Medicinal Chemistry 26 (2019) 7104-7116.
[49] V. Infantino, P. Convertini, L. Cucci, M.A. Panaro, M.A. Di Noia, R. Calvello, F. Palmieri, V. Iacobazzi, The mitochondrial citrate carrier: a new player in inflammation, Biochemical Journal 438 (2011) 433-436.
[50] M. Ashbrook, K. McDonough, J. Pituch, P. Christopherson, T. Cornell, D. Selewski, T. Shanley, N. Blatt, Citrate modulates lipopolysaccharide-induced monocyte inflammatory responses, Clinical & Experimental Immunology 180 (2015) 520-530.
[51] E.-Y. Choi, H.-J. Kim, J.-S. Han, Anti-inflammatory effects of calcium citrate in RAW 264.7 cells via suppression of NF-κB activation, Environmental toxicology and pharmacology 39 (2015) 27-34.
[52] A. Santarsiero, P. Leccese, P. Convertini, A. Padula, P. Abriola, S. D’Angelo, F. Bisaccia, V. Infantino, New insights into Behçet’s syndrome metabolic reprogramming: citrate pathway dysregulation, Mediators of Inflammation 2018 (2018).
[53] N.C. Williams, L.A. O’Neill, A role for the Krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation, Frontiers in immunology 9 (2018) 141.
[54] Y.D. Bhutia, J.J. Kopel, J.J. Lawrence, V. Neugebauer, V. Ganapathy, Plasma membrane Na+-coupled citrate transporter (SLC13A5) and neonatal epileptic encephalopathy, Molecules 22 (2017) 378.
[55] C. Henke, K. Töllner, R.M. van Dijk, N. Miljanovic, T. Cordes, F. Twele, S. Bröer, V. Ziesak, M. Rohde, S.M. Hauck, Disruption of the sodium-dependent citrate transporter SLC13A5 in mice causes alterations in brain citrate levels and neuronal network excitability in the hippocampus, Neurobiology of disease 143 (2020) 105018.
[56] M.J. Rigby, N.S. Orefice, A.J. Lawton, M. Ma, S.L. Shapiro, S.Y. Yi, I.A. Dieterich, A. Frelka, H.N. Miles, R.A. Pearce, SLC13A5/sodium-citrate co-transporter overexpression causes disrupted white matter integrity and an autistic-like phenotype, Brain communications 4 (2022) fcac002.
[57] N. Westergaard, H.S. Waagepetersen, B. Belhage, A. Schousboe, Citrate, a ubiquitous key metabolite with regulatory function in the CNS, Neurochemical Research 42 (2017) 1583-1588.
[58] A. Kumar, T. Cordes, A.E. Thalacker-Mercer, A.M. Pajor, A.N. Murphy, C.M. Metallo, NaCT/SLC13A5 facilitates citrate import and metabolism under nutrient-limited conditions, Cell reports 36 (2021) 109701.
[59] E. Napoli, F. Tassone, S. Wong, K. Angkustsiri, T.J. Simon, G. Song, C. Giulivi, Mitochondrial citrate transporter-dependent metabolic signature in the 22q11. 2 deletion syndrome, Journal of Biological Chemistry 290 (2015) 23240-23253.
[60] L. Siculella, L. Giannotti, M. Testini, G.V. Gnoni, F. Damiano, In steatotic cells, ATP-citrate lyase mRNA is efficiently translated through a cap-independent mechanism, contributing to the stimulation of de novo lipogenesis, International Journal of Molecular Sciences 21 (2020) 1206.
[61] L. Guo, Y.-Y. Guo, B.-Y. Li, W.-Q. Peng, X.-X. Chang, X. Gao, Q.-Q. Tang, Enhanced acetylation of ATP-citrate lyase promotes the progression of nonalcoholic fatty liver disease, Journal of Biological Chemistry 294 (2019) 11805-11816.
[62] Q. Wang, L. Jiang, J. Wang, S. Li, Y. Yu, J. You, R. Zeng, X. Gao, L. Rui, W. Li, Abrogation of hepatic ATP‐citrate lyase protects against fatty liver and ameliorates hyperglycemia in leptin receptor‐deficient mice, Hepatology 49 (2009) 1166-1175.
[63] B. van de Wier, J.M. Balk, G.R. Haenen, D. Giamouridis, J.A. Bakker, B.C. Bast, G.J. den Hartog, G.H. Koek, A. Bast, Elevated citrate levels in non-alcoholic fatty liver disease: the potential of citrate to promote radical production, FEBS letters 587 (2013) 2461-2466.
[64] Q. Sun, Q. Niu, Y. Guo, Y. Zhuang, X. Li, J. Liu, N. Li, Z. Li, F. Huang, Z. Qiu, Regulation on citrate influx and metabolism through inhibiting SLC13A5 and ACLY: a novel mechanism mediating the therapeutic effects of curcumin on NAFLD, Journal of Agricultural and Food Chemistry 69 (2021) 8714-8725.
[65] S. Arefhosseini, H. Tutunchi, S. Golzar, S. Mahboob, Z. Pouretedal, M. Ebrahimi-Mameghani, The Effect of Hydroxy Citric Acid Supplementation with Calorie-restricted Diet on Metabolic, Atherogenic and Inflammatory Biomarkers in Women with Non-alcoholic Fatty Liver Disease: A Randomized Controlled Clinical Trial, Food & Function (2022).
[66] Y. Chen, D.K. Deb, X. Fu, B. Yi, Y. Liang, J. Du, L. He, Y.C. Li, ATP‐citrate lyase is an epigenetic regulator to promote obesity‐related kidney injury, The FASEB Journal 33 (2019) 9602-9615.
[67] M. Tomar, R.P. Rao, P. Dorairaj, A. Koshta, S. Suresh, M. Rafiq, R. Kumawat, R. Paramesh, K. Venkatesh, A clinical and computational study on anti-obesity effects of hydroxycitric acid, RSC advances 9 (2019) 18578-18588.
[68] M. Christe, E. Hirzel, A. Lindinger, B. Kern, M. von Flüe, R. Peterli, T. Peters, A.N. Eberle, P.W. Lindinger, Obesity affects mitochondrial citrate synthase in human omental adipose tissue, International Scholarly Research Notices 2013 (2013).
[69] A.F. Spencer, J. Lowenstein, Citrate and the conversion of carbohydrate into fat. Citrate cleavage in obesity and lactation, Biochemical Journal 99 (1966) 760.
[70] J.G. Leandro, J.M. Espindola-Netto, M.C.F. Vianna, L.S. Gomez, T.M. DeMaria, M.M. Marinho-Carvalho, P. Zancan, H.A.P. Neto, M. Sola-Penna, Exogenous citrate impairs glucose tolerance and promotes visceral adipose tissue inflammation in mice, British Journal of Nutrition 115 (2016) 967-973.
[71] W. Sui*, J.K. Calvert, N.L. Kavoussi, J. Asplin, N.L. Miller, C.A. Bejan, R.S. Hsi, MP03-05 URINARY CITRATE WASTING AMONG NEPHROLITHIASIS PATIENTS ASSOCIATES WITH OBESITY AND DIABETES MELLITUS, The Journal of Urology 203 (2020) e23-e23.
[72] G.B. Zahn, Steve; Yarnold, Chris; Schaertl, Sabine; Khor, Someina, Inhibitors of citrate transporter and their use in therapy, World Intellectual Property Organization; Patent Cooperation Treaty (PCT) WO 2018/172251 A1 (2018).
[73] Y. Alhindi, L.M. Vaanholt, M. Al-Tarrah, S.R. Gray, J.R. Speakman, C. Hambly, B.S. Alanazi, B.M. Gabriel, A. Lionikas, A. Ratkevicius, Low citrate synthase activity is associated with glucose intolerance and lipotoxicity, Journal of nutrition and metabolism 2019 (2019).
[74] E. MOHAMED, N.G. HANAN, R.A.N. Imam, E.M.S. BASMA, Possible Protective Role of Citrate Against Apoptosis and Disruption of Intercalated Disc Integrity in a Rat Model of Diabetic Cardiomyopathy, The Medical Journal of Cairo University 88 (2020) 589-597.
[75] G.V. Gnoni, A.M. Giudetti, E. Mercuri, F. Damiano, E. Stanca, P. Priore, L. Siculella, Reduced activity and expression of mitochondrial citrate carrier in streptozotocin-induced diabetic rats, Endocrinology 151 (2010) 1551-1559.