
High-Frequency K-mer Counting at Low
Memory Footprint

Li Mocheng,1 Liu Yang,1 Xiao Nong,1 and Chen Zhiguang2

1Institute for Quantum Information & State Key Laboratory of High
Performance Computing, College of Computer, National University of
Defense Technology, Changsha, China
2School of Computer, Sun Yat-sen University, Guangzhou, China
Email: chenzhg29@mail.sysu.edu.cn

Genomics data analysis requires efficient tools to address the vast
amount of data generated by current next-generation sequencing tech-
nologies. K-mer counting works face difficulties in balancing high
memory overhead with statistical precision. We designed a high-
frequency k-mer statistical computation based on the Space Saving
algorithm and a novel hash table structure, which reduces the memory
overhead by 46% while ensuring high computational efficiency.

Introduction: Data analysis in genomics relies on efficient k-mer anal-
ysis algorithms. With the development of next-generation sequencing
(NGS) technology, the size of datasets has expanded dramatically, result-
ing in memory-intensive. With the application of high-performance
computing devices, macro-genomic research parallelization schemes are
widely used for sequence indexing [1][2], sequence alignment [3][4] and
genome assembly [5] [6]. However, the simple parallelization of tradi-
tional algorithms poses significant performance problems. Targeted opti-
mization schemes for storing short read sequences in large-scale scenar-
ios are lacking. Instead, traditional hash tables or sketches are used, with
a large room for optimization.

Short-read sequences suffer from high error rates. K-mer is a data
type split from short-read sequences based on sliding windows. The tra-
ditional hash table-based k-mer storage structure keeps a large number
of low-frequency error k-mer precisely, which leads to a more severe
memory shortage. The sketch-based storage structure can effectively fil-
ter out low-frequency k-mer, but it needs to be composed of two parts,
filtering and hashing, increasing the computational overhead. The k-mer
counters are divided into two categories: exact indexing based on hash
tables and coarse indexing by filters.

Pan[7] combines the cache-friendly Robinhood algorithm to achieve
fast and accurate k-mer counting. However, it does not filter low-
frequency k-mers, resulting in unnecessary data taking up much memory
space. BFCounter [8] is a counter based on Bloom filters. It uses the filter
to discard low-frequency data and stores only k-mers with frequencies
greater than a threshold into the hash table. Similar is SWAPCounter
[9], which chooses to sketch instead of Bloom filters. SWAPCounter
is the most advanced technique for applying Count-min Sketch to k-
mer counting. It roughly counts low-frequency k-mers by Count-min
Sketch, and those exceeding the threshold enter the hash table for accu-
rate counting, effectively reducing the memory occupation of the hash
table. However, it suffers from false positives and extra memory access
overhead, resulting in inefficient item access.

We completed the insertion in 82 seconds for 174GB fastq files. The
query for one million k-mers in a batch is 1 second. Compared to cutting-
edge k-mer hash tables, we reduce memory footprint by 46% with no
performance loss.

Hash Table Structure: Figure 1 shows the structure of a bucket hash
table and its access method. The hash table reduces the computational
load through the bucket structure. Each item of the hash table consists
of a bucket with 𝑀 slots, each of which is a < 𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 > pair.

When a k-mer needs to be inserted or queried, it is hashed 𝑁 (𝑁 = 3
in figure 1) times to match the 𝑁 corresponding buckets that make up
the candidate space. Then all the 𝑀 × 𝑁 slots are traversed, and the
insertion or query algorithm is executed. The selected 𝑁 buckets are
used as candidates for the k-mer to be accessed. The 𝑀 × 𝑁 slots are
called candidate slots.

The hash function uses Murmurhash, which has fast and uniform
hashing properties and works well to support k-mer hash tables. The
bucket traversal is designed to be depth-first, which can better guarantee

Fig 1 Bucket Hash Table And Its Access Method

the cache hit rate.

Algorithm 1 Insertion

Require:
𝑘𝑚𝑒𝑟 to be inserted
Number of Hashes 𝑀

Ensure:
Hash Table 𝐻𝑇

1: 𝑚𝑖𝑛𝑃𝑜𝑠 ← (1, ℎ𝑎𝑠ℎ (𝑘𝑚𝑒𝑟 , 1));
2: 𝑚𝑖𝑛𝐸𝑙𝑒← 𝐻𝑇 [𝑏𝑢𝑐𝑘𝑒𝑡 [1]] [1]
3: 𝑘𝑒𝑦 ← 𝑔𝑒𝑡𝐾𝑒𝑦 (𝑘𝑚𝑒𝑟);
4: for 𝑖 ← 1 to 𝑀 do
5: 𝑏 ← ℎ𝑎𝑠ℎ (𝑘𝑚𝑒𝑟 , 𝑖)
6: for 𝑗 ← 1 to 𝑁 do
7: if 𝐻𝑇 [𝑏] [𝑗].𝑣𝑎𝑙𝑢𝑒 == 0 then
8: 𝐻𝑇 [𝑏] [𝑗] ← (𝑘𝑒𝑦, 1);
9: Return;

10: end if
11: if 𝐻𝑇 [𝑏] [𝑗].𝑘𝑒𝑦 == 𝑘𝑒𝑦 then
12: 𝐻𝑇 [𝑏] [𝑗].𝑣𝑎𝑙𝑢𝑒← 𝑎𝑏𝑠 (𝐻𝑇 [𝑏] [𝑗].𝑣𝑎𝑙𝑢𝑒) + 1;
13: Return;
14: end if
15: if 𝑎𝑏𝑠 (𝑚𝑖𝑛𝐸𝑙𝑒.𝑣𝑎𝑙𝑢𝑒) > 𝑎𝑏𝑠 (𝐻𝑇 [𝑏] [𝑗].𝑣𝑎𝑙𝑢𝑒) then
16: 𝑚𝑖𝑛𝑃𝑜𝑠 ← (𝑏, 𝑗);
17: 𝑚𝑖𝑛𝐸𝑙𝑒← 𝐻𝑇 [𝑏] [𝑗];
18: end if
19: end for
20: end for
21: 𝐻𝑇 [𝑚𝑖𝑛𝑃𝑜𝑠].𝑘𝑒𝑦 ← 𝐾𝑒𝑦;
22: 𝐻𝑇 [𝑚𝑖𝑛𝑃𝑜𝑠].𝑣𝑎𝑙𝑢𝑒← −𝑎𝑏𝑠 (𝑚𝑖𝑛𝐸𝑙𝑒.𝑣𝑎𝑙𝑢𝑒) − 1;

Insertion: The insertion algorithm is the core of this paper. We use the
Space Saving algorithm in the insertion algorithm to solve the problem
of full candidate buckets and allow the storage structure to be used prop-
erly with low memory overhead. As shown in Algorithm 1, we iterate
through all the candidate slots corresponding to the k-mer through two
levels and then find the empty slots to perform the insertion. When the
slot is full, the Space Saving algorithm eliminates the k-mer with the
lowest frequency and replaces it.

We have made specific improvements to make the filter more suitable
for application to k-mer counting. In lines 21-22 of the algorithm, the
new value is negative when the replacement strategy of Space Saving
is triggered. Furthermore, in line 12, the recurring value is updated to
a positive number. This improvement ensures that any positive number
occurs at least twice and reduces the impact of low-frequency data.

Query: A k-mer query is an iteration of candidate slots as shown in
algorithm 2. The main feature is identifying unique labels and avoid-
ing contamination of high-frequency k-mer by low trust data. When the
query result is less than 0(line 6), this k-mer is not trusted and returns 1.
The rest of the cases work as regular hash tables.

ELECTRONICS LETTERS wileyonlinelibrary.com/iet-el 1

Algorithm 2 Query

Require:
𝑘𝑚𝑒𝑟 to be found

Ensure:
query result

1: 𝑘𝑒𝑦 ← 𝑔𝑒𝑡𝐾𝑒𝑦 (𝑘𝑚𝑒𝑟);
2: for 𝑖 ← 1 to 𝑀 do
3: 𝑏 ← ℎ𝑎𝑠ℎ (𝑘𝑚𝑒𝑟 , 𝑖)
4: for 𝑗 ← 1 to 𝑁 do
5: if 𝐻𝑇 [𝑏] [𝑗].𝑘𝑒𝑦 == 𝑘𝑒𝑦 then
6: if 𝐻𝑇 [𝑏] [𝑗].𝑣𝑎𝑙𝑢𝑒 < 0 then
7: return 1;
8: else
9: return 𝐻𝑇 [𝑏] [𝑗].𝑣𝑎𝑙𝑢𝑒;

10: end if
11: end if
12: end for
13: end for
14: return 0;

Table 1. Experimental Datasets

Id File Count Size(GB) Source Accession

D1 1 2.9 NCBI SRP072055

D2 11 13.8 NCBI SRP004241

D3 3 54.3 NCBI SRP003680

D4 3 174.1 NCBI SRP003680

Results: Our selected datasets are shown in Table 1 with D1, D2, D3
and D4. Due to the large size of the data, we completed the experi-
ments in the Tianhe-2 distributed parallel environment. One compute
node on Tianhe-2 has 2 Intel Ivy Bridge CPUs, each with 12 cores and
32GB of memory, for 24 cores and 64GB of memory. We use up to 32
nodes for insert and query. We chose Robinhood hashing from Pan [7]
and Count-min sketch from SWAPCounter [9] as the benchmark. Our
goal is a smaller memory footprint than Robinhood hashing and faster
data access than the sketch-based counter. We use SS as the short for
our Space Saving-based counter, CM as the short for Count-min sketch-
based counter, and RH as the short for Robinhood hashing. In the whole
experiment, the k-mer has k = 31.

Table 2. Performance

Memory Method Frequency Deviation

(% of D1) 1 (1, 22] (22 , 24] (24 , +)

130% RH 0(133681) 0(143318) 0(143137) 0(579800)

130% CM -636 +384 +192 +60

130% SS -74 -19 +2 0

70% RH -28083 -50042 -56271 -232713

70% CM -4088 2522 +1491 +75

70% SS -6084 -1176 +105 0

35% CM -21014 +11787 +9054 +173

35% SS -62174 -14499 +3836 -1406

We take the memory occupation of the k-mer list extracted from D1
as 100% and compare the counting quality at 130%, 70%, and 35%
memory occupation, which affects the number of slots in the storage
structure. For example, the minimum memory footprint for D1 to run
properly in RH is 2.6GB, so 130% memory footprint means 3.4GB of
memory is used at all methods. The query results for the 1 million k-
mers can be seen in Table.2. At 130% memory occupation, RH usually

behaves, and we use it as the baseline for the following comparison. The
number of k-kmers corresponding to the frequency is in the parentheses.
At 70%, the RH data suffer from memory shortage and thus does not
work, and the CM shows 0.2% false positive data. While SS maintained
a false positive rate of less than 0.02%, the insert and query algorithm
ensured that the frequency of these data must be greater than 2. At 35%,
both CM and SS were plagued by insufficient memory, but the false pos-
itive rate was about 1% for CM and 0.3% for SS. In conclusion, if k-mers
in (4, +∞) interval is required to be counted at the error rate less than
2‰, TopKmer’s workable memory footprint is 54% of Robinhood’s and
70% of SWAPCounter’s.

Table 3. Order Impact

Memory Usage Shuffle Number of different k-mers in different frequencies

(% of D1) 4 5 6 7 8 (8, +)

130% S1 0 0 0 0 0 0

130% S2 0 0 0 0 0 0

130% S3 0 0 0 0 0 0

70% S1 4 0 0 0 0 0

70% S2 4 0 0 0 0 0

70% S3 4 0 0 0 0 0

35% S1 192 18 0 0 0 0

35% S2 192 18 0 0 0 0

35% S3 193 19 0 0 0 0

The order of the inputs influences the Space Saving algorithm’s sta-
tistical results. We shuffle the dataset and analyze the content differences
that appear under different insertion orders. Table 3 counts the number
of different k-mers under different shuffles, and the comparison object is
D1 without shuffling under 130% memory usage. Data discarding when
conflict happens, and the discarded data are affected by the insertion
order.

Our algorithm is little affected by the insertion order because most
collisions and substitutions occur among low-frequency k-mers, and the
high-frequency data statistics remain highly stable. The difference in
insertion order will lead to the difference in the final statistics. However,
the statistical accuracy can be guaranteed if the high-frequency k-mers
do not switch frequently.

Fig 2 Time Cost

We compared the insertion and query time overheads at different
datasets. As shown in figure 2, we achieved a similar time overhead with
Robinhood hashing. Moreover, we achieved a lower time overhead than

2 ELECTRONICS LETTERS wileyonlinelibrary.com/iet-el

SWAPCounter. We used 8, 16, and 32 nodes for computation on D2, D3,
and D4 datasets, respectively, which resulted in different query times. On
dataset D4, we completed the statistics using Robinhood hashing 49%
of the memory with no performance degradation. We used the Count-
min Sketch-based counter 85% of the time to complete insertions and
31% of the time to complete searches. We achieve an efficient memory
access strategy and can outperform sketch-based structures and match
state-of-the-art hash table-based structures.

Conclusion: The current k-mer counter suffers from the problem that
computational efficiency and memory usage cannot be reconciled. To
solve this problem, we designed a multi-layer hash table based on the
Space Saving algorithm. We accomplish efficient data insertion and
retrieval on a 174GB dataset. We reduce the memory overhead by 46%
compared to the cutting-edge hash table structure and 30% compared to
the cutting-edge sketch structure.

Acknowledgments: Thanks to the reviewers for their dedication to this
paper. Thank you Guo Jiangyu, Gao Qianwen and Wang Yifeng for their
encouragement and support.

NSFC: U1811461 the Major Program of Guangdong Basic and
Applied Research: 2019B030302002 Supported by the Program for
Guangdong Introducing Innovative and Entrepreneurial Teams under
Grant NO. 2016ZT06D211. Guangdong Natural Science Foundation
(2018B030312002)

© 2022 The Authors. Electronics Letters published by John Wiley &
Sons Ltd on behalf of The Institution of Engineering and Technology

This is an open access article under the terms of the Creative Commons
Attribution License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited.
Received: 10 January 2021 Accepted: 4 March 2021
doi: 10.1049/ell2.10001

References
1. Pan, T., et al.: Kmerind: A flexible parallel library for k-mer indexing

of biological sequences on distributed memory systems. IEEE/ACM
transactions on computational biology and bioinformatics 16(4), 1117–
1131 (2017)

2. Fujimoto, M.S., Lyman, C.A., Clement, M.J.: Kcollections: A fast and
efficient library for k-mers. In: 2020 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW), pp. 193–198.
IEEE (2020)

3. Georganas, E., et al.: meraligner: A fully parallel sequence aligner. In:
2015 IEEE International Parallel and Distributed Processing Sympo-
sium, pp. 561–570. IEEE (2015)

4. Chan, Y., et al.: Punas: A parallel ungapped-alignment-featured seed ver-
ification algorithm for next-generation sequencing read alignment. In:
2017 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pp. 52–61. IEEE (2017)

5. Holley, G., Melsted, P.: Bifrost: highly parallel construction and index-
ing of colored and compacted de bruijn graphs. Genome biology 21(1),
1–20 (2020)

6. Ghosh, P., Krishnamoorthy, S., Kalyanaraman, A.: Pakman: A scal-
able algorithm for generating genomic contigs on distributed memory
machines. IEEE Transactions on Parallel and Distributed Systems 32(5),
1191–1209 (2020)

7. Pan, T.C., Misra, S., Aluru, S.: Optimizing high performance distributed
memory parallel hash tables for dna k-mer counting. In: SC18: Interna-
tional Conference for High Performance Computing, Networking, Stor-
age and Analysis, pp. 135–147. IEEE (2018)

8. Melsted, P., Pritchard, J.K.: Efficient counting of k-mers in dna
sequences using a bloom filter. BMC bioinformatics 12(1), 1–7 (2011)

9. Ge, J., et al.: Counting kmers for biological sequences at large scale.
Interdisciplinary Sciences: Computational Life Sciences 12(1), 99–108
(2020)

ELECTRONICS LETTERS wileyonlinelibrary.com/iet-el 3

