REFERENCES
Albers, D., Schaefer, M. & Scheu, S. (2006). Incorporation of plant
carbon into the soil animal food web of an srable system.Ecology , 87, 235–245.
Attiwill, P.M. & Adams, M.A. (1993). Nutrient cycling in forests.New Phytol. , 124, 561–582.
Averill, C., Turner, B.L. & Finzi, A.C. (2014). Mycorrhiza-mediated
competition between plants and decomposers drives soil carbon storage.Nature , 505, 543–545.
Baccini, A., Walker, W., Carvalho, L., Farina, M., Sulla-Menashe, D. &
Houghton, R.A. (2017). Tropical forests are a net carbon source based on
aboveground measurements of gain and loss. Science , 358,
230–234.
Bardgett, R.D. & van der Putten, W.H. (2014). Belowground biodiversity
and ecosystem functioning. Nature , 515, 505–511.
Bardgett, R.D. & Wardle, D.A. (2010). Aboveground-belowground
linkages: biotic interactions, ecosystem processes, and global change .
Oxford series in ecology and evolution. Oxford University Press, Oxford.
Bates, D., Mächler, M., Bolker, B. & Walker, S. (2015). Fitting Linear
Mixed-Effects Models Using lme4. J. Stat. Softw. , 67, 1–48.
Bluhm, S.L., Eitzinger, B., Bluhm, C., Ferlian, O., Heidemann, K.,
Ciobanu, M., et al. (2021). The Impact of Root-Derived Resources
on Forest Soil Invertebrates Depends on Body Size and Trophic Position.Front. For. Glob. Change , 4, 622370.
Bluhm, S.L., Eitzinger, B., Ferlian, O., Bluhm, C., Schröter, K., Pena,
R., et al. (2019a). Deprivation of root-derived resources affects
microbial biomass but not community structure in litter and soil.PLOS ONE , 14, e0214233.
Bluhm, S.L., Potapov, A.M., Shrubovych, J., Ammerschubert, S., Polle, A.
& Scheu, S. (2019b). Protura are unique: first evidence of specialized
feeding on ectomycorrhizal fungi in soil invertebrates. BMC
Ecol. , 19, 10.
Bradford, M.A. (2016). Re-visioning soil food webs. Soil Biol.
Biochem. , 102, 1–3.
Briones, M.J.I. (2014). Soil fauna and soil functions: a jigsaw puzzle.Front. Environ. Sci. , 2.
Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. & West, G.B.
(2004). TOWARD A METABOLIC THEORY OF ECOLOGY. Ecology , 85,
1771–1789.
Butenschoen, O., Krashevska, V., Maraun, M., Marian, F., Sandmann, D. &
Scheu, S. (2014). Litter mixture effects on decomposition in tropical
montane rainforests vary strongly with time and turn negative at later
stages of decay. Soil Biol. Biochem. , 77, 121–128.
Chen, Y., Cao, J., He, X., Liu, T., Shao, Y., Zhang, C., et al.(2020). Plant leaf litter plays a more important role than roots in
maintaining earthworm communities in subtropical plantations. Soil
Biol. Biochem. , 144, 107777.
Clough, Y., Krishna, V.V., Corre, M.D., Darras, K., Denmead, L.H.,
Meijide, A., et al. (2016). Land-use choices follow profitability
at the expense of ecological functions in Indonesian smallholder
landscapes. Nat. Commun. , 7.
Díaz-Pinés, E., Schindlbacher, A., Pfeffer, M., Jandl, R.,
Zechmeister-Boltenstern, S. & Rubio, A. (2010). Root trenching: a
useful tool to estimate autotrophic soil respiration? A case study in an
Austrian mountain forest. Eur. J. For. Res. , 129, 101–109.
Drescher, J., Rembold, K., Allen, K., Beckschafer, P., Buchori, D.,
Clough, Y., et al. (2016). Ecological and socio-economic
functions across tropical land use systems after rainforest conversion.Philos. Trans. R. Soc. B-Biol. Sci. , 371.
Endlweber, K., Ruess, L. & Scheu, S. (2009). Collembola switch diet in
presence of plant roots thereby functioning as herbivores. Soil
Biol. Biochem. , 41, 1151–1154.
Erktan, A., Or, D. & Scheu, S. (2020). The physical structure of soil:
Determinant and consequence of trophic interactions. Soil Biol.
Biochem. , 148, 107876.
Frey, S.D., Six, J. & Elliott, E.T. (2003). Reciprocal transfer of
carbon and nitrogen by decomposer fungi at the soil–litter interface.Soil Biol. Biochem. , 35, 1001–1004.
Fujii, S., Berg, M.P. & Cornelissen, J.H.C. (2020). Living Litter:
Dynamic Trait Spectra Predict Fauna Composition. Trends Ecol.
Evol. , 35, 886–896.
Fujii, S., Mori, A.S., Kominami, Y., Tawa, Y., Inagaki, Y., Takanashi,
S., et al. (2016). Differential utilization of root-derived
carbon among collembolan species. Pedobiologia , 59, 225–227.
Gessner, M.O., Swan, C.M., Dang, C.K., McKie, B.G., Bardgett, R.D.,
Wall, D.H., et al. (2010). Diversity meets decomposition.Trends Ecol. Evol. , 25, 372–380.
Gilbert, K.J., Fahey, T.J., Maerz, J.C., Sherman, R.E., Bohlen, P.,
Dombroskie, J.J., et al. (2014). Exploring carbon flow through
the root channel in a temperate forest soil food web. Soil Biol.
Biochem. , 76, 45–52.
Glavatska, O., Müller, K., Butenschoen, O., Schmalwasser, A., Kandeler,
E., Scheu, S., et al. (2017). Disentangling the root- and
detritus-based food chain in the micro-food web of an arable soil by
plant removal. PLOS ONE , 12, e0180264.
Goncharov, A.A., Tsurikov, S.M., Potapov, A.M. & Tiunov, A.V. (2016).
Short-term incorporation of freshly fixed plant carbon into the soil
animal food web: field study in a spruce forest. Ecol. Res. , 31,
923–933.
Guerra, C.A., Bardgett, R.D., Caon, L., Crowther, T.W.,
Delgado-Baquerizo, M., Montanarella, L., et al. (2021). Tracking,
targeting, and conserving soil biodiversity. Science , 371,
239–241.
Guillaume, T., Kotowska, M.M., Hertel, D., Knohl, A., Krashevska, V.,
Murtilaksono, K., et al. (2018). Carbon costs and benefits of
Indonesian rainforest conversion to plantations. Nat. Commun. , 9,
2388.
Hättenschwiler, S. & Jørgensen, H.B. (2010). Carbon quality rather than
stoichiometry controls litter decomposition in a tropical rain forest:
Decomposition in a tropical rain forest. J. Ecol. , 98, 754–763.
Hoang, N.T. & Kanemoto, K. (2021). Mapping the deforestation footprint
of nations reveals growing threat to tropical forests. Nat. Ecol.
Evol. , 5, 845–853.
Högberg, P., Nordgren, A., Buchmann, N., Taylor, A.F.S., Ekblad, A.,
Högberg, M.N., et al. (2001). Large-scale forest girdling shows
that current photosynthesis drives soil respiration. Nature , 411,
789–792.
Jones, D.L., Nguyen, C. & Finlay, R.D. (2009). Carbon flow in the
rhizosphere: carbon trading at the soil–root interface. Plant
Soil , 321, 5–33.
Kempson, D., Lloyd, M. & Ghelardi, R. (1963). A new extractor for
woodland litter. Pedobiologia , 3, 1–21.
Kögel-Knabner, I. (2002). The macromolecular organic composition of
plant and microbial residues as inputs to soil organic matter.Soil Biol. Biochem. , 34, 139–162.
Krashevska, V., Klarner, B., Widyastuti, R., Maraun, M. & Scheu, S.
(2015). Impact of tropical lowland rainforest conversion into rubber and
oil palm plantations on soil microbial communities. Biol. Fertil.
Soils , 51, 697–705.
Krause, A., Sandmann, D., Potapov, A., Ermilov, S., Widyastuti, R.,
Haneda, N.F., et al. (2021). Variation in community-level trophic
niches of soil microarthropods with conversion of tropical rainforest
into plantation systems as indicated by stable isotopes (15N, 13C).Front. Ecol. Evol. , 9, 592149.
Kudrin, A.A., Zuev, A.G., Taskaeva, A.A., Konakova, T.N., Kolesnikova,
A.A., Gruzdev, I.V., et al. (2021). Spruce girdling decreases
abundance of fungivorous soil nematodes in a boreal forest. Soil
Biol. Biochem. , 155, 108184.
Laurance, W.F., Sayer, J. & Cassman, K.G. (2014). Agricultural
expansion and its impacts on tropical nature. Trends Ecol. Evol. ,
29, 107–116.
Lenth, R.V. (2021). emmeans: Estimated Marginal Means, aka
Least-Squares Means .
Li, Z. (2021). The flux of root-derived carbon via fungi and bacteria
into soil microarthropods (Collembola) differs markedly between cropping
systems. Soil Biol. Biochem. , 10.
Li, Z., Bluhm, S.L., Scheu, S. & Pollierer, M.M. (2022). Amino Acid
Isotopes in Functional Assemblages of Collembola Reveal the Influence of
Vertical Resource Heterogeneity and Root Energy Supply on Trophic
Interactions in Soil Food Webs. SSRN Electron. J.
Li, Z., Scheunemann, N., Potapov, A.M., Shi, L., Pausch, J., Scheu, S.,et al. (2020). Incorporation of root-derived carbon into soil
microarthropods varies between cropping systems. Biol. Fertil.
Soils , 56, 839–851.
Margono, B.A., Turubanova, S., Zhuravleva, I., Potapov, P., Tyukavina,
A., Baccini, A., et al. (2012). Mapping and monitoring
deforestation and forest degradation in Sumatra (Indonesia) using
Landsat time series data sets from 1990 to 2010. Environ. Res.
Lett. , 7, 034010.
Marian, F., Sandmann, D., Krashevska, V., Maraun, M. & Scheu, S.
(2018). Altitude and decomposition stage rather than litter origin
structure soil microarthropod communities in tropical montane
rainforests. Soil Biol. Biochem. , 125, 263–274.
Mitchard, E.T.A. (2018). The tropical forest carbon cycle and climate
change. Nature , 559, 527–534.
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P.,
McGlinn, D., et al. (2020). vegan: Community Ecology
Package .
Pinheiro, J., Bates, D., & R Core Team. (2022). nlme: Linear and
Nonlinear Mixed Effects Models .
Pollierer, M.M., Dyckmans, J., Scheu, S. & Haubert, D. (2012). Carbon
flux through fungi and bacteria into the forest soil animal food web as
indicated by compound-specific 13C fatty acid analysis. Funct.
Ecol. , 26, 978–990.
Pollierer, M.M., Langel, R., Körner, C., Maraun, M. & Scheu, S. (2007).
The underestimated importance of belowground carbon input for forest
soil animal food webs. Ecol. Lett. , 10, 729–736.
Pollierer, M.M., Langel, R., Scheu, S. & Maraun, M. (2009).
Compartmentalization of the soil animal food web as indicated by dual
analysis of stable isotope ratios (15N/14N and 13C/12C). Soil
Biol. Biochem. , 41, 1221–1226.
Post, D.M. (2002). Using stable isotopes to estimate trophic position:
Models, methods, and assumptions. Ecology , 83, 703–718.
Potapov, A., Beaulieu, F., Birkhofer, K., Bluhm, S.L., Degtyarev, M.I.,
Devetter, M., et al. (2022). Feeding habits and multifunctional
classification of soil‐associated consumers from protists to
vertebrates. Biol. Rev. , brv.12832.
Potapov, A., Dupérré, N., Jochum, M., Dreczko, K., Klarner, B., Barnes,
A.D., et al. (2020). Functional losses in ground spider
communities due to habitat structure degradation under tropical land‐use
change. Ecology , 101.
Potapov, A., Klarner, B., Sandmann, D., Widyastuti, R. & Scheu, S.
(2019a). Linking size spectrum, energy flux and trophic
multifunctionality in soil food webs of tropical land‐use systems.J. Anim. Ecol. , 88, 1845–1859.
Potapov, A., Tiunov, A.V. & Scheu, S. (2019b). Uncovering trophic
positions and food resources of soil animals using bulk natural stable
isotope composition: Stable isotopes in soil food web studies.Biol. Rev. , 94, 37–59.
Potapov, A.A., Semenina, E.E., Korotkevich, A.Yu., Kuznetsova, N.A. &
Tiunov, A.V. (2016a). Connecting taxonomy and ecology: Trophic niches of
collembolans as related to taxonomic identity and life forms. Soil
Biol. Biochem. , 101, 20–31.
Potapov, A.M. (2022). Multifunctionality of belowground food webs:
resource, size and spatial energy channels. Biol. Rev. ,
brv.12857.
Potapov, A.M., Goncharov, A.A., Tsurikov, S.M., Tully, T. & Tiunov,
A.V. (2016b). Assimilation of plant-derived freshly fixed carbon by soil
collembolans: Not only via roots? Pedobiologia , 59, 189–193.
Potapov, A.M., Klarner, B., Sandmann, D., Widyastuti, R. & Scheu, S.
(2019c). Linking size spectrum, energy flux and trophic
multifunctionality in soil food webs of tropical land-use systems.J Anim Ecol , 88, 1845–1859.
Potapov, A.M., Pollierer, M.M., Salmon, S., Šustr, V. & Chen, T.
(2021a). Multidimensional trophic niche revealed by complementary
approaches: Gut content, digestive enzymes, fatty acids and stable
isotopes in Collembola. J. Anim. Ecol. , 90, 1919–1933.
Potapov, A.M., Rozanova, O.L., Semenina, E.E., Leonov, V.D., Belyakova,
O.I., Bogatyreva, V.Yu., et al. (2021b). Size
compartmentalization of energy channeling in terrestrial belowground
food webs. Ecology , 102.
R Core Team. (2020). R: A Language and Environment for Statistical
Computing . R Foundation for Statistical Computing, Vienna, Austria.
Rembold, K., Mangopo, H., Tjitrosoedirdjo, S.S. & Kreft, H. (2017).
Plant diversity, forest dependency, and alien plant invasions in
tropical agricultural landscapes. Biol. Conserv. , 213, 234–242.
Remén, C., Persson, T., Finlay, R. & Ahlström, K. (2008). Responses of
oribatid mites to tree girdling and nutrient addition in boreal
coniferous forests. Soil Biol. Biochem. , 40, 2881–2890.
Sayer, E.J., Tanner, E.V.J. & Lacey, A.L. (2006). Effects of litter
manipulation on early-stage decomposition and meso-arthropod abundance
in a tropical moist forest. For. Ecol. Manag. , 229, 285–293.
Scheu, S. & Setälä, H. (2002). Multitrophic interactions in decomposer
food-webs. In: Multitrophic Level Interactions (eds. Tscharntke,
T. & Hawkins, B.A.). Cambridge University Press, pp. 223–264.
Scheunemann, N., Digel, C., Scheu, S. & Butenschoen, O. (2015). Roots
rather than shoot residues drive soil arthropod communities of arable
fields. Oecologia , 179, 1135–1145.
Schmitz, O.J. & Leroux, S.J. (2020). Food Webs and Ecosystems: Linking
Species Interactions to the Carbon Cycle. Annu. Rev. Ecol. Evol.
Syst. , 51, 271–295.
Sokol, N.W., Kuebbing, Sara.E., Karlsen-Ayala, E. & Bradford, M.A.
(2019). Evidence for the primacy of living root inputs, not root or
shoot litter, in forming soil organic carbon. New Phytol. , 221,
233–246.
Susanti, W.I., Pollierer, M.M., Widyastuti, R., Scheu, S. & Potapov, A.
(2019). Conversion of rainforest to oil palm and rubber plantations
alters energy channels in soil food webs. Ecol. Evol. , 9,
9027–9039.
Tao, H.-H., Snaddon, J.L., Slade, E.M., Henneron, L., Caliman, J.-P. &
Willis, K.J. (2018). Application of oil palm empty fruit bunch effects
on soil biota and functions: A case study in Sumatra, Indonesia.Agric. Ecosyst. Environ. , 256, 105–113.
Veldkamp, E., Schmidt, M., Powers, J.S. & Corre, M.D. (2020).
Deforestation and reforestation impacts on soils in the tropics.Nat. Rev. Earth Environ. , 1, 590–605.
Vitousek, P.M. (1984). Litterfall, Nutrient Cycling, and Nutrient
Limitation in Tropical Forests. Ecology , 65, 285–298.
de Vries, F.T. & Caruso, T. (2016). Eating from the same plate?
Revisiting the role of labile carbon inputs in the soil food web.Soil Biol. Biochem. , 102, 4–9.
Wallander, H., Lindahl, B.D. & Nilsson, L.O. (2006). Limited transfer
of nitrogen between wood decomposing and ectomycorrhizal mycelia when
studied in the field. Mycorrhiza , 16, 213–217.
White, E.P., Ernest, S.K.M., Kerkhoff, A.J. & Enquist, B.J. (2007).
Relationships between body size and abundance in ecology. Trends
Ecol. Evol. , 22, 323–330.
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis .
Springer-Verlag New York.
Wolkovich, E.M. (2016). Reticulated channels in soil food webs.Soil Biol. Biochem. , 102, 18–21.
Zhou, Z., Krashevska, V., Widyastuti, R., Scheu, S. & Potapov, A.
(2022). Tropical land use alters functional diversity of soil food webs
and leads to monopolization of the detrital energy channel.eLife , 11, e75428.
Zieger, S.L., Ammerschubert, S., Polle, A. & Scheu, S. (2017).
Root-derived carbon and nitrogen from beech and ash trees differentially
fuel soil animal food webs of deciduous forests. PLOS ONE , 12,
e0189502.
Table 1. ANOVA table of F- and p-values of linear mixed-effects
models on the effect of litter removal, root trenching, land use system
(rainforest, rubber and oil palm plantations) and taxonomic groups
(total n = 24) on abundance of groups, with plot as random factor; num
DF, numerator degrees of freedom; den DF, denominator degrees of
freedom.