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Abstract
With the popularity of new energy electric vehicles, more and more EV charging stations have appeared in cities. In the face of the intermittent and random access of distributed power sources, it brings problems such as voltage fluctuation and network loss to the distribution network. This paper proposes a configuration method for multi-objective collaborative optimization of distributed power generation under the premise that existing EV charging stations are connected to the distribution network. First, four typical wind-light operating scenarios and EV charging station working scenarios are constructed based on the K-means clustering algorithm. Secondly, based on the complementary evaluation mechanism to find the best ratio of wind and solar installations, create multi-objective functions from the economic and technical aspects of distributed power planning, and establish the Pareto optimization evaluation mechanism. Finally, based on the IEEE-33 node example, the adaptive hybrid annealing particle swarm algorithm is used to solve the above model, and the Pareto optimal solution set is obtained to verify that the method proposed in this paper can reasonably plan the distributed power generation and improve the power quality of the distribution network.
Introduction
With the development of the active distribution network, the penetration rate of DG in the network continues to increase, which greatly impacts the flow direction and operation of traditional distribution networks [1]. Many scholars have researched a large number of the distributed power network. The access ratio of wind power and photovoltaic power generation in distributed power generation will also affect the income of the grid side. The integration of renewable energy into the power system will affect its voltage stability. Wind and photovoltaic power generation's different quantities and capacities play a key role in voltage stability [2]. There are differences between the voltage stability of the traditional power grid and the voltage stability of the distributed power supply after it is connected to the distribution network [3]. Renewable energy sources such as wind power and photovoltaics have intermittency and volatility, both of which are related to timing characteristics. Therefore, some scholars have considered the impact of timing characteristics on distributed power generation and proposed a new, improved DC power flow model in the case of multi-scenario and multi-period operations [4]. After considering the timing characteristics, some scholars proposed to analyze the topology of the distribution network and plan the distributed power generation based on the clustered grid topology distribution network and the Copula theory [5]. Scholars continue to enrich the operation scenarios of distributed power generation and consider the regional electricity load to improve the voltage quality of the distribution network [6]. At the same time, economic factors also play a decisive role in the planning of distributed power. Therefore, it is also essential to plan distributed power with the constraints of minimum annual comprehensive cost, multiple active management constraints, distributed power investment restrictions, and electrical constraints [7]. With the popularity of new energy electric vehicles, more and more EV charging stations have appeared in cities, which greatly impacts the connection of distributed power to traditional distribution networks and its operation [8,9]. In addition, with the development of electric vehicles, the location and capacity of electric vehicle charging stations will impact the distribution network and transportation network [10]. The above issues should also be considered when planning distributed power sources. When studying the sequence characteristics of distributed power generation, the two factors of distributed power supply supplying power to the distribution network load and charging station are considered. The electric vehicle charging station and the distributed power supply constant capacity location model with the nominal total cost, the most negligible network loss, and the highest traffic satisfaction are constructed. Some scholars will plan distributed power sources together with EV charging stations to invest in operating costs, meet microgrids' technical limitations, and determine the location and capacity of DG and EV charging stations based on genetic algorithms [11]. With the continuous improvement of the user's economic level, the distributed power supply provided by the user will also be continuously integrated into the power grid. Aiming at the open-loop operation of the distribution network, the sensitivity coefficient matrix is constructed by the sensitivity method, and the marginal capacity cost of the distribution network is calculated. Timing characteristics of multi-type DG and loads, and DG planning using particle swarm optimization algorithm [12]. Now that there is more and more electric vehicle charging stations in cities, it is also necessary to consider the case of integrating distributed power sources into the distribution network under the premise of charging stations.
There are few studies on the optimal planning of AHAPSO in distribution grids, especially in distributed power planning. A particle swarm optimization algorithm was used in [13] to reduce losses in distribution networks and improve voltage stability. Evolutionary programming (EP) is used in [14] for the optimal allocation of distributed power sources in the grid. The Firefly Algorithm (FA) is used in [15] to set the DG location and capacity in unbalanced networks. The Plant Growth Algorithm (PGA) was used in [16] for DG planning. The cuckoo search algorithm (CSA) was used in [17] for network reconfiguration to reduce losses and voltage bias. In [18], the manta ray foraging optimization (MRFO) algorithm was used to plan the DGSC to minimize the loss. Regarding the multi-objective planning model of distributed power generation, a multi-objective evaluation model is constructed in [19] to minimize carbon emissions, reduce node voltage deviation and maximize line capacity margin. Other literature proposes an optimization model that takes the maximum DG acceptance capacity as the objective function [20,21,22,23,24,25] or an optimization model that takes the minimum network loss, the minimum voltage deviation and the maximum voltage stability index as the goal[26,27].
In this paper, the K-means algorithm is used to cluster the wind speed, light radiation, and charging station load, respectively, to obtain four typical operating scenarios and the daily charging load of the charging station. On the premise of not abandoning wind and solar, the optimal wind power installed capacity and photovoltaic established capacity ratio are obtained through the analysis of different wind power ratios and the output models of wind turbines and photovoltaic generators are constructed. Finally, under the premise of the existing distribution network connected to EV charging stations, the deployment of distributed power is multi-objective optimization based on the AHAPSO algorithm. The main contributions of this paper are as follows:
(1) Wind and photovoltaic power generation have intermittent and fluctuating characteristics, and there are differences in the maximum output time. Therefore, based on the complementarity of wind and solar, this paper finds the best wind and solar installed capacity ratio.
(2) The AHAPSO algorithm is used to solve the multi-objective optimization model. Finally, the relatively optimal solution (including the access node and capacity configuration of DG) is selected through the Pareto optimal solution set.
Construction of typical scenes of DG and EV charging stations
DG operation scene construction



[bookmark: MTBlankEqn]Due to the intermittent and fluctuating characteristics of wind speed and light intensity and a large number of operating scenarios, to improve the planning efficiency and reduce the computational workload in the planning stage, this paper selects K-means clustering to cluster the regional wind speed and light intensity. First, count the wind speed and light intensity data for each day of the year, divide the data into units of 24 hours and divide the year into typical work scenarios in four seasons: spring, summer, autumn, and winter. Second, divide the 24 hours daily into 96 parts at 15min intervals. Construct a multi-dimensional data vector , which contains the wind speed  and the light intensity data  at 96 moments in the i-th day, as shown in (1).

	 	

1) Determine the number of clusters K, and randomly select a scene from the sample as the first initial cluster center .

2) Calculate the Euclidean distance between the remaining scenes in the sample and the initial cluster center according to formula (2), select the scene with the largest Euclidean distance from the cluster center in the remaining scenes as the next initial cluster center, and calculate K Initial cluster center .

	 	








Where:  is the Euclidean distance between scene  and the j-th initial cluster center ; , are the data in column  of the initial clustering center  of scene  .
3) After determining the initial cluster center, calculate the Euclidean distance between all sample scenes and each cluster center, and classify each sample scene and the nearest cluster center into one class.
4) After clustering, all sample scenes are divided into K categories, containing several scenes. Calculate the average value of each one-dimensional data in the scene to obtain a new cluster center.
5) Take the new cluster center as the initial cluster center and repeat steps 3) and 4) until the clustering result is no longer changed.
Construction of charging station operation scenarios

To build a scenario model of the location and load of regional charging stations. First, this paper cleans the historical data of similar days given by the new energy vehicle charging station and leaves data with little interference. Then take the cleaned data as the data vector . Finally, the single-day load of the charging station is clustered using the K-means clustering method introduced above, as shown in Figure 1.
[image: ]
Figure 1: Charging station load cluster data
DG installed proportion configuration
DG output model
According to the statistical analysis of the data, without considering the control mode, there is a certain linear relationship between the output mode of the fan and the photovoltaic generator, the wind speed and the light intensity. The simplified mathematical model of the fan is shown in (3):

	 	







Where:  is the rated power of the fan.  is the wind speed under the typical operation scenario.  is the power generation of the fan when the wind speed is.  is the cut-in wind speed.  is the rated wind speed.  is the cut-out wind speed.
The output characteristics of the photovoltaic generator are shown in the formula:

	 	



[bookmark: OLE_LINK3]Where:  is the rated power of photovoltaic generator.  is the light intensity under typical operation scenarios.  is the rated light intensity.
Wind-solar complementarity analysis and capacity allocation
Figure 2 (a) shows the actual power data on a certain day in the wind-solar combined power generation system. It can be seen that only the wind turbines output during the night time, and the wind power generation decreases during the period of 07:30-15:30. Still , the total power generation can equal the output power at night due to the addition of photovoltaic work. From this, it can be seen that with the addition of photovoltaic power generation, the shortage of wind power generation in specific periods can be supplemented, and there is complementarity between wind power generation and photovoltaic power generation.
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Figure 2: Study on complementary characteristics of scenery and wind
In view of the above situation, when there is no curtailment of wind and solar power, this section uses the real-time complementarity evaluation index [28] that takes into account the fluctuation of wind power generation power, and the photovoltaic power generation power will supplement it when the wind power decreases. In the operation stage of the combined power generation system, the complementary calculation method of wind and solar power in the corresponding time analysis scale T is shown in (5).

	 	



Where:  is the actual total wind and solar power of the co-generation system at time t. is the wind power at time t. is the photovoltaic power at time t.
Based on the complementarity evaluation index, calculate the average complementarity ratio of wind-solar combined power generation systems under different ratios, and then plan the wind-solar installed capacity ratio of the locality. Figure 2 (b) shows the effect of other wind and solar ratios on the complementarity of the combined power generation system.
It can be seen from Figure 2 (b) that with the increase in the proportion of photovoltaics, the average complementarity rate of the system shows a trend of rising first and then decreasing. When the ratio of photovoltaics is 40%, the average complementarity rate of the combined power generation system is the largest, and complementarity is the best. It can be seen that when planning the ratio of wind and solar installed capacity in this area, if complementarity is used as a measure, the balance of wind power installed capacity to photovoltaic installed capacity is optimal at 6:4, and the average complementarity ratio of the system at this time is 0.153.
Optimal Planning Model of Distributed Power Comprehensive Benefit
Economic objective function
Taking the minimum investment, operation, and maintenance cost as the economic objective function, as shown in the following (6):

		



Where:  is the economic cost.  is the investment cost of DG.  is the operation and maintenance cost of DG.
1) DG investment and construction cost

		






[bookmark: _Hlk107407129]Where:  is the discount rate.  is the number of construction nodes to be selected for wind power generation.  number of nodes to be selected for photovoltaic power generation.  investment cost per unit capacity of wind power.  photovoltaic unit capacity investment cost.  annual salary for equipment use.
2) DG operation and maintenance cost

		




Where:  is the number of days corresponding to typical operation scenario .  operation and maintenance cost per unit capacity of wind power.  photovoltaic unit capacity operation and maintenance cost.
Technical objective function
Taking the maximum comprehensive utilization rate as the technical objective function, as shown in (9):

		







Where:  is the comprehensive utilization rate.  is the reduction rate of network loss.  is the load peak clipping rate.  and  is the weight factor of  and  respectively, which can be determined by analytic hierarchy process.
1) Network loss reduction rate

		



[bookmark: _Hlk99803078]Where:  is the active power loss of distribution network in the -th operation stage in the -th typical scenario under the premise of no DG operation.
2) Load peak clipping rate

		

		




Where:  is the load reduced due to DG power supply at node  in the  operation stage in the  typical scenario.
Evaluation mechanism
Since the output values of the economic objective function and the technical objective function are not in a unified measurement unit, this paper first adds a certain weight to the objective function so that the difference between the results of the two objective operations cannot be too significant. Because the value of one objective function is much larger than the value of another part, the result will be biased towards the objective function with the most significant value.
Then the objective function is brought into Pareto optimality to obtain the optimal solution, as shown in Figure 3. The evaluation model is shown in (13), and the optimal solution will also be used as the fitness solution of the AHAPSO algorithm.

		


Where:  is the planned location of the distributed power supply, and  is the constraint set of the distributed power supply.
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Figure 3: Pareto optimal solution diagram
Constraint condition
1) DG quantity constraint

		

		






Where:  and  are the minimum allowable quantity and maximum allowable quantity of DPV installed at node  respectively.  and  is the minimum allowable quantity and maximum allowable quantity of DWG installed at node  respectively.
2) Power flow balance constraint

		

		

		




















Where:  and  are the active power and reactive power generated by the generator at node  in the  operation phase of the -th typical scenario respectively.  and  is the active power and reactive power emitted by DG at node  in the -th operation stage in the -th typical scenario.  and  is the active power and reactive power consumed by the power load at node  in the -th operation stage in the -th typical scenario.  and  is the upper limit and lower limit of node voltage at node  in the -th operation stage in the -th typical scenario.
Multi-objective solution based on adaptive hybrid annealing particle swarm optimization
The traditional PSO algorithm has problems such as premature convergence, slow late speed, and low convergence accuracy because its inertia weight and acceleration coefficient are constants that do not change. In contrast, the AHAPSO algorithm will adaptively adjust the inertia weight and acceleration coefficient. And introduce simulated annealing operator and hybrid mutation operator to improve the accuracy of the algorithm [29]. They will be introduced separately below.
Adaptive inertia weights and acceleration coefficients

The sigmoid function has a good balance between linearity and nonlinearity, and can meet the needs of inertia weights in all stages of the algorithm. Therefore, this paper selects the Sigmoid function between  to adaptively control the inertia weight, which is expressed as:

		




Where  and  are the maximum and minimum values of inertia weight respectively,  is the maximum number of iterations, and  is the current number of iterations.



In this paper, the hyperbolic tangent function between  is selected to adaptively control  and , which is expressed as:

		

		




Where  and  are the maximum and minimum values of self acceleration coefficient.  and  are the maximum and minimum values of social acceleration coefficient.
Simulated Annealing Operator
First, determine the temperature according to the initialized distributed power location, the number of fans, the number of photovoltaic generators and other information, as shown in formula (22):

		




Where  is the temperature in each iteration,  is the cooling coefficient, and  is the fitness value of the group optimal particle in the -th iteration.
Then, the probability of accepting the difference solution is calculated according to the temperature determined by equation (23):

		


Where,  is the fitness value of the individual optimal position after the -th iteration of the particle.
Finally, the optimal population is updated according to the Metropolis criterion, which is expressed as:

		


Among them, r is a random number evenly distributed among , and  is the group optimal information matrix of distributed power generation. The matrix contains information such as the location of distributed power sources, the number of wind turbines, and the number of photovoltaic generators, which will be collectively referred to as the joint planning information matrix below.
Hybrid mutation operator
First, the diversity of the population is judged according to the average center distance of the particle population, which is formed by multiple joint planning information matrices, expressed as:

		


Where Div is the average center distance of particle population, and  is the average value of all particles in dimension . When the Div value decays to a certain threshold and meets the hybridization probability. As shown in formula (26):

		







When the above formula is satisfied, the population shall be hybridized and mutated. Where  is the average center distance at iteration ,  is the initial average center distance,  is the hybridization probability,  is the random number evenly distributed between , and  is the threshold coefficient.


Then, according to the hybridization ratio ,  particles are randomly selected from the original population for hybridization, and the generated offspring particles are stored in the hybridization pool. The position and speed of the offspring are generated by the random crossover of the parents, which is expressed as:

		






Where  is a random number uniformly distributed among ,  and  are the joint planning information matrix and speed of the child, respectively,  and  are the joint planning information matrix d and speed of the parent, respectively.
The flow chart of DG location and volume determination based on an adaptive hybrid annealing particle swarm algorithm is shown in the figure.
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Figure 4: AHAPSO algorithm flow chart
Case analysis
In this paper, on the premise that the capacity and location of EV charging stations are known, combined with the IEEE33 node power distribution system, the simulation analysis of DG capacity and location is configured. The structure of the IEEE33 node distribution network is shown in Figure 5.
[image: ]
Figure 5: IEEE33 node distribution network diagram
The maximum load of the system is 3715+j2300kV·A, and the voltage level is 12.6kV. The rated power of a single DG is set to 100kW, the number of DG power supplies connected to a node to be planned is not more than 20, and four nodes are selected for planning. EV charging stations are located on nodes 2 and 15 of the IEEE33 node. The cut-in wind speed, rated wind speed, and cut-out wind speed of the fan are 2.5m/s, 9m/s, and 19m/s, respectively. The unit capacity investment costs of wind power and photovoltaics are 5381 and 4375 yuan/kW, respectively. The economic service life of DG is discounted. The operation and maintenance costs of wind power and photovoltaic unit capacity are 0.03 and 0.01 yuan/(kW·h), respectively [30].
The K value is selected as 4, representing four typical work scenarios: spring, summer, autumn, and winter. The wind speed and radiation intensity are shown in Figure 6. It can be seen that the spring wind speed and light intensity in this area are relatively high, and the wind speed fluctuates strongly in the four seasons. It can also be seen from the figure that wind speed and radiation intensity have prominent time series characteristics, which are suitable for use in four typical work scenarios. Four working scenarios are used to reflect the diversity of the working environment so that the subsequent planning results of distributed power generation can be consistent with the actual situation.
[image: ]
Figure 6: (a) is the wind speed under four typical working scenarios. (b) is the irradiance intensity under four typical working scenarios.
The wind and photovoltaic data of four typical operating scenarios are clustered based on the improved K-means algorithm and then brought into the wind-solar output model to obtain the daily work of a single typhoon photovoltaic generator in the four typical operating scenarios power, the power generation of a single typhoon and photovoltaic generator is between 0-100kW, as shown in Figure 7. The power results are used for subsequent calculation of the impact of distributed generation access to the distribution network on the voltage quality of the grid and to do reasonable planning.
[image: ]
Figure 7: (a) is the working power of the fan in four working scenarios. (b) is the working power of photovoltaic power generation in four working scenarios.
This paper compares the AHAPSO algorithm with the traditional PSO algorithm, as shown in Figure 8. It can be seen from the figure that the speed difference between the two algorithms is slight in the early stage of operation. After running for a while, the AHAPSO algorithm will have a process of accelerating the descent, and the particle population that restores diversity in AHAPSO can speed up the process of optimization. When dealing with more complex high-latitude multimodal functions, the AHAPSO algorithm, like the PSO algorithm, can maintain a fast convergence speed, and can further approach the convergence in the middle and late stages so that the optimal results can be better obtained in the entire operation process.
[image: ]
Figure 8: AHAPSO and PSO comparison chart
According to the complementarity evaluation mechanism, a 6:4 ratio configuration is selected for the wind-solar joint deployment. This configuration method not only improves the energy utilization efficiency, but also improves the running speed of the algorithm. Deploy distributed power sources based on known charging station locations and loads, and configure them at the same time. The configuration results are shown in Table 1.
Table.1: Distributed Power Configuration Results
	Node number
	6
	24
	28
	33

	Equipment configuration
	WT
	PV
	WT
	PV
	WT
	PV
	WT
	PV

	Amount
	10
	7
	15
	16
	14
	9
	6
	4

	Cost type
	Invest
	Maintain
	Invest
	Maintain
	Invest
	Maintain
	Invest
	Maintain

	Amount(ten thousand yuan)
	85.99
	32.41
	126.77
	48.18
	116.83
	44.68
	50.70
	19.27


In the case of considering EV charging stations, the node voltage quality before and after DG access is compared, as shown in Figure 9. In Figure 9(a), it can be seen that the voltage of the distribution network in the four seasons after the distributed generation is connected to the distribution has increased to varying degrees, and the closer to the node at the end of the line, the more pronounced the voltage increase. It can be seen from Figure 9(b) that the voltage loss after the DG is connected is much lower than that before the connection, and the fluctuation of the voltage loss is much smaller. It seems that the voltage quality of the power grid can be improved after the DG is connected.
[image: ]
Figure 9: Comparison of results before and after distributed generation access in four seasons. (a) is the voltage comparison result of each node. (b) 24-hour distribution grid voltage loss comparison in four seasons.
The network loss reduction rate and peak clipping rate under the technical target are shown in Table 2.
Table.2: Network loss reduction rate and peak clipping rate in four seasons
	
	Spring
	Summer
	Autumn
	Winter

	Network loss reduction rate
	72.1%
	73.9%
	73.3%
	72.6%

	Peak-clipping rate
	5.3%
	4.5%
	4.3%
	3.9%


From Table 2, it can be seen that in the four seasons, the network loss reduction rate of distributed power generation into the power grid tends to be the same and compared with the case where only EV charging stations are connected to the power grid before the connection, it has a good effect on reducing network loss. Distributed power generation also has a good impact on peak clipping of the distribution network.
Conclusion
Based on the adaptive hybrid annealing particle swarm optimization algorithm, this paper proposes a multi-objective optimal configuration method for distributed power generation considering the location and load of the charging station. Combined with the IEEE33 node distribution network system, the proposed process is simulated and verified, and the conclusions are as follows:
1) When the distributed power source is connected to the distribution network, the impact of EV charging stations is considered so that it will complement the peak output of DG when the daily charging demand peaks, thereby effectively improving the system's consumption of clean energy. With the improvement of the absorption capacity, the power system can incorporate more clean energy, expanding the space for the development of clean energy.
2) The correlation between the time series of wind power and photovoltaic power generation power in the same region does not change with the change in the local wind and solar installed capacity ratio. The introduction of complementary evaluation indicators can allocate DG capacity more reasonably and make the utilization efficiency of DG higher. Access of the DG power supply can increase the network loss reduction rate and the peak clipping rate.
3) Joint configuration with economic and technical indicators is conducive to taking into account various needs and improving the comprehensive performance of the configuration scheme. With adding wind-solar complementary features, the effect of DG planning can be more ideal without expanding costs.
4) The adaptive hybrid annealing particle swarm optimization algorithm used in this paper improves the algorithm's ability to jump out of the local optimum and improves the later optimization speed. It has higher convergence accuracy than the PSO algorithm and can accurately find the convergence target. Increase the reliability of the results.
In the future, the following research work based on this paper: Firstly, consider the planning of distributed power generation in the case of multi-source information, such as the introduction of EV charging stations, and then the coordinated operation of thermal power, hydropower and biomass power generation. Secondly, enrich the scenery operation scenarios, and consider more DG types, such as batteries with charging and discharging, etc. [31]. Finally, regarding the algorithm, the introduction of parallel computing improves the running speed of multi-objective simulation, and the accuracy of convergence results is further enhanced.
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