REFERENCES
- Burghardt RC, Bowen JA, Newton GR, Bazer FW. Extracellular matrix and
the implantation cascade in pigs. J Reprod Fertil.1997;52:151-164.
- Spencer TE, Bazer FW. Conceptus signals for establishment and
maintenance of pregnancy. Reprod Biol Endocrinol. 2004:2:1-15.
- Diskin MG, Murphy JJ, Sreenan JM. Embryo survival in dairy cows
managed under pastoral conditions. Anim Reprod Sci .
2006;96:297-311.
- Walker CG, Meier S, Littlejohn MD, Lehnert K, Roche JR, Mitchell MD.
Modulation of the maternal immune system by the pre-implantation
embryo. BMC Genomics . 2010;11:474.
- Bazer FW, Song G, Thatcher WW. Roles of conceptus secretory proteins
in establishment and maintenance of pregnancy in ruminants.Asian-Aust J Ani Sci 2012;25(1):1-16.
- Farin CE, Imakawa K, Roberts RM. In situ localization of mRNA for
interferon, ovine trophoblast protein-1, during early embryonic
development of the sheep. Mol Endocrinol. 1989;3:1099-1107.
- Uze G, Lutfalla G, Mogensen KE. Alpha and beta interferons and their
receptor and their friends and relations. J Interferon Cytokine
Res. 1995;15:3–26.
- Parent J, Chapdelaine P, Sirois J, Fortier MA. Expression of
microsomal prostaglandin E synthase in bovine endometrium:
coexpression with cyclooxygenase type 2 and regulation by
interferon-tau. Endocrinol. 2002;143:2936–2943.
- Short EC, Geisert RD, Helmer SD, Zavy MT, Fulton RW. Expression of
antiviral activity and induction of 2’,5’-oligoadenylate synthetase by
conceptus secretory proteins enriched in bovine trophoblast protein-1.Biol Reprod . 1991;44:261-268.
- Schmitt RA, Geisert RD, Zavy MT, Short EC, Blair RM. Uterine Cellular
Changes in 2’,5’-Oligoadenylate Synthetase during the Bovine Estrous
Cycle and Early Pregnancy. Biol Reprod . 1993;48:460-466.
- Johnson GA, Stewart MD, Gray CA, Choi Y, Burghardt RC, Yu-Lee LY,
Bazer FW, Spencer TE. Effects of the Estrous Cycle, Pregnancy, and
Interferon Tau on 2’,5’-Oligoadenylate Synthetase Expression in the
Ovine Uterus. Biol Reprod . 2001;64:1392-1399.
- Lengyel P. Tumor-suppressor genes: news about the interferon
connection. Proc Natl Acad Sci U S A . 1993;90:5893-5895.
- Salzberg S, Hyman T, Turm H, Kinar Y, Schwartz Y, Nir U, Lejbkowicz F,
Huberman E. Ectopic expression of 2-5A synthetase in myeloid cells
induces growth arrest and facilitates the appearance of a myeloid
differentiation marker. Cancer Res . 1997;57:2732-2740.
- Li XL, Blackford JA, Judge CS, Liu M, Xiao W, Kalvakolanu DV, Hassel
BA. RNase-L-dependent destabilization of interferon-induced mRNAs. A
role for the 2-5A system in attenuation of the interferon response.J Biol Chem . 2000;275:8880-8888.
- Benech P, Mory Y, Revel M, Chebath J. Structure of two forms of the
interferon-induced (2’-5’) oligo A synthetase of human cells based on
cDNAs and gene sequences. EMBO J . 1985;4:2249-2456.
- Saunders ME, Gewert DR, Tugwell ME, McMahon M, Williams BR. Human
2–5A synthetase: characterization of a novel cDNA and corresponding
gene structure. EMBO J . 1985;4:1761-1768.
- Chebath J, Benech P, Hovanessian A, Galabrus J, Revel M. Four
different forms of interferon-induced 2’-5’ oligo(A) synthetase
identified by immunoblotting in human cells. J Biol Chem . 1987;
262:3852-3857.
- Hovanessian AG. Interferon-induced and double-stranded RNA-activated
enzymes: a specific protein kinase and 2’,5’-oligoadenylate
synthetases. J Interferon Res . 1991;11:199-205.
- Marie I, Hovanessian AG. The 69-kDa 2-5A synthetase is composed of two
homologous and adjacent functional domains. J Biol
Chem . 1992;267:9933-9.
- Hovanessian AG, Laurent AG, Chebath J, Galabru J, Robert N, Svab J.
Identification of 69-kd and 100-kd forms of 2-5A synthetase in
interferon-treated human cells by specific monoclonal antibodies.EMBO J . 1987;6:1273-1280.
- Marie I, Blanco J, Rebouillat D, Hovanessian AG. 69-kDa and 100-kDa
isoforms of interferon-induced (29-59) oligoadenylate synthetase
exhibit differential catalytic parameters. Eur J Biochem .
1997;248:558-566.
- Bandyopadhyay S, Ghosh A, Sarkar SN, Sen GC. Production and
purification of recombinant 2’,5’ oligoadenylate synthetase and its
mutants using the Baculovirus system. Biochemistry .
1998;37:3824-3830.
- Mirando MA, Short EC Jr, Geisert RD, Vallet JR, Bazer FW. Stimulation
of 2’,5’-oligoadenylate synthetase activity in sheep endometrium
during pregnancy, by intrauterine infusion of ovine trophoblast
protein-one, and by intramuscular injection of recombinant bovine
interferon-alpha II. J Reprod Fertil . 1991;93:599-607.
- Kashyap K, Jain A, Kasyap S, Verma U, Yadav A, Dubey A, Sori S.
Genetic resources on goat in India: A review. Int J Fauna Biol
Stud. 2020;7(2):27-33.
- Islam MM, Shabana A, Modi RJ, Wadhwani KN. Scenario of livestock and
poultry in India and their contribution to national economy. Int
J Sci Env Tech. 2016;5(3):956-965.
- Singh NS, Gawande PG, Mishra OP, Nema RK, Mishra UK, Singh M. Accuracy
of ultrasonograph in early pregnancy diagnosis in does.Asian-Aust J Anim Sci . 2004;17(6):760-768.
- Jain T, Jain T, Chandrakar K, Tripathi SM, Mukherjee K, Shakya S,
Tiwari SK, Mishra OP. Cathepsin L gene: Molecular characterization,
functional analysis and expression profile in the endometrium of goat
(Capra hircus). Animal Gene . 2021;200116.
- Gill SC, von Hippel PH. Calculation of protein extinction coefficients
from amino acid sequence data. Anal Biochem . 1989;182:319-326.
- Bachmair A, Finley D, Varshavsky A. In vivo half-life of a protein is
a function of its amino-terminal residue. Science .
1986;234:179-186.
- Guruprasad K, Reddy BVB, Pandit MW. Correlation between stability of a
protein and its dipeptide composition: a novel approach for predicting
in vivo stability of a protein from its primary sequence.Protein Eng. 1990;4:155-161.
- Ikai AJ. Thermostability and aliphatic index of globular proteins.J Biochem. 1980;88:1895-1898.
- Kyte J, Doolittle RF. A simple method for displaying the hydropathic
character of a protein. J Mol Biol. 1982;157:105-132.
- Almagro AJJ, Tsirigos KD, Sønderby CK et al. SignalP 5.0
improves signal peptide predictions using deep neural
networks. Nat Biotechnol. 2019;37:420–423.
- Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting
transmembrane protein topology with a hidden Markov model: application
to complete genomes. J Mol Biol. 2001;305(3):567-580.
- Geourjon C, Deléage G. SOPMA: significant improvements in protein
secondary structure prediction by consensus prediction from multiple
alignments. Comput Appl Biosci. 1995;11(6):681-684.
- Klausen MS, Jespersen MC, Nielsen H, Jensen KK, Jurtz VI, Sønderby CK,
Sommer MOA, Winther O, Nielsen M, Petersen B, Marcatili
P. NetSurfP-2.0: Improved prediction of protein structural features by
integrated deep learning. Proteins: Struct Funct Bioinf.
2019;87(6):520-527.
- Geertz-Hansen HM, Blom N, Feist A, Brunak S, Petersen TH. Cofactory: A
sequence-based prediction method of cofactor specificity of Rossmann
folds. Proteins . 2014;82(9):1819-28.
- Olsen TH, Yesiltas B, Marin FI, Pertseva M, García-Moreno PJ,
Gregersen S, Overgaard MT, Jacobsen C, Lund O, Hansen EB, Marcatili P.
AnOxPePred: Using deep learning for the prediction of antioxidative
properties of peptides. Sci Rep . 2020;10:21471.
- Julenius K. NetCGlyc 1.0: Prediction of mammalian C-mannosylation
sites. Glycobiology. 2007;17:868-876.
- Kiemer L, Bendtsen JD, Blom N. NetAcet: Prediction of N-terminal
acetylation sites. Bioinformatics. 2005;21:1269-1270.
- Gíslason MH, Nielsen H, Armenteros JJA, Johansen AR. Prediction of
GPI-anchored proteins with pointer neural networks. Curr Res
Biotechnol. 2021;3:6-13.
- Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB,
Schjoldager KT, Lavrsen K, Dabelsteen S, Pedersen NB, Marcos-Silva L,
Gupta R, Bennett EP, Mandel U, Brunak S, Wandall HH, Levery SB,
Clausen H. Precision mapping of the human O-GalNAc glycoproteome
through simple cell technology. EMBO J . 2013;32(10):1478-88.
- Johansen MB, Kiemer L, Brunak S. Analysis and prediction of mammalian
protein glycation. Glycobiology. 2006;16(9):844-853.
- Blom N, Gammeltoft S, Brunak S. Sequence- and structure-based
prediction of eukaryotic protein phosphorylation sites. J Mol Biol.
1999;294:1351-1362.
- Duckert P, Brunak S, Blom N. Prediction of proprotein convertase
cleavage sites. Protein Eng Des Sel . 2004;17:107-112.
- Li A, Xue Y, Jin C, Wang M, Yao X. Prediction of Nepsilon-acetylation
on internal lysines implemented in Bayesian Discriminant Method.
Biochem Biophys Res Commun. 2006;350(4):818-824.
- Zhao Q, Xie Y, Zheng Y, Jiang S, Liu W, Mu W, Zhao
Y, Xue Y, Ren J. GPS-SUMO: a
tool for the prediction of sumoylation sites and SUMO-interaction
motifs. Nucleic Acids Res .2014;42(W1):W325-W330.
- Webb B, Sali A. Comparative Protein Structure Modeling Using Modeller.Current Protocols in Bioinformatics . 2016:5.6.1-5.6.37.
- Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R,
Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T.
SWISS-MODEL: homology modelling of protein structures and complexes.Nucleic Acids Res . 2018;46:W296-W303.
- Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web
portal for protein modeling, prediction and analysis. Nature
Protocols . 2015;10:845-858.
- Combet C, Jambon M, Deléage G, Geourjon C. Geno3D: automatic
comparative molecular modelling of protein. Bioinformatics .
2002;18(1):213-4. doi:10.1093
- Colovos
C, Yeates TO. Verification of protein structures: patterns of
nonbonded atomic interactions. Protein Sci .
1993;2(9):1511-9. doi:10.1002/pro.5560020916
- Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK - a program
to check the stereochemical quality of protein structures. J App
Cryst . 1993;26:283-291.
- Eisenberg D, Lüthy R, Bowie JU. VERIFY3D: assessment of protein models
with three-dimensional profiles. Methods Enzymol .
1997;277:396-404.
- Ramachandran GN, Ramakrishnan C, Sasisekharan V. Stereochemistry of
polypeptide chain configurations. J Mol Biol . 1963;7:95-99.
- Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC,
Ferrin TE. UCSF Chimera-A visualization system for exploratory
research and analysis. J Comput Chem . 2004;25:1605-1612.
- Letunic I, Bork P. 20 years of the SMART protein domain annotation
resource. Nucleic Acids Res . 2018;4:46(D1):D493-D496.
- Chandrakar K, Jain A, Khan JR, Jain T, Singh M, Mishra OP. Molecular
characterization and expression profile of interferon stimulated gene
15 (ISG15) in the endometrium of Goat. Theriogenol. 202;142,
348-354.
- Livak KJ, Schmittgen TD. Analysis of relative gene expression data
using real time quantitative PCR and the 2 Delta Delta C(T) method.Methods . 2001;25:402–408.
- Rios JJ, Perelygin AA, Long MT, Lear TL, Zharkikh AA et al .
Characterization of the equine 2’-5’ oligoadenylate synthetase 1
(OAS1) and ribonuclease L (RNASEL) innate immunity genes, BMC
Genomics . 2007;7(8):313.
- Eskildsen S, Justesen J, Schierup M H & Hartmann R, Characterization
of the 2′-5′-oligoadenylate synthetase ubiquitin-like family.Nucleic Acids Res . 2003;31:3166-3173.
- Batra K, Nanda T, Kumar A, Kumari R, Kumar V, Maan S. Molecular
characterization of OAS1 as a biomarker molecule for early pregnancy
diagnosis in Bubalus bubalis. Indian J
Biotechnol. 2019;19:97-107.
- Dubchak I, Muchnik I, Mayor C, Dralyuk I, Kim SH. Recognition of a
protein fold in the context of the Structural Classification of
Proteins (SCOP) classification. Proteins . 1999;35:401-407.
- Cai CZ, Han LY, Ji ZL, Chen X, Chen YZ. SVM-Prot: Web-based support
vector machine software for functional classification of a protein
from its primary sequence. Nucleic Acids Res .
2003;31:3692-3697.
- Bock JR, Gough DA. Whole-proteome interaction mining.Bioinformatics . 2003;19:125-134.
- Chou KC, Cai YD. Prediction of protein subcellular locations by
GO-FunD-PseAA predictor. Biochem Biophys Res Commun .
2004;320:1236-1239.
- Schneider G, Wrede P. The rational design of amino acid sequences by
artificial neural networks and simulated molecular evolution: de novo
design of an idealized leader peptidase cleavage site. Biophys
J . 1994;66:335-344.
- Brown MP, Grundy WN, Lin D, Cristianini N, Sugnet CW, et al.
Knowledge-based analysis of microarray gene expression data by using
support vector machines. Proc Natl Acad Sci U S A .
2000;97:262-267.
- Ward JJ, McGuffin LJ, Buxton BF, Jones DT. Secondary structure
prediction with support vector machines. Bioinformatics.2003;19:1650-1655.
- Shen HB, Yang J, Chou KC. Fuzzy KNN for predicting membrane protein
types from pseudo-amino acid composition. J Theor Biol .
2006;240(1):9-13.
- Chou KC, Shen HB. MemType-2L: a web server for predicting membrane
proteins and their types by incorporating evolution information
through Pse-PSSM. Biochem Biophys Res Commun .
2007;360(2):339-345.
- Besse S, Rebouillat D, Marie I, Puvion-Dutilleul F, Hovanessian AG.
Ultrastructural localization of interferon-inducible double-stranded
RNA-activated enzymes in human cells. Exp Cell
Res . 1998;239(2):379-392.
- Kjaer KH, Pahus J, Hansen MF, et al. Mitochondrial localization of the
OAS1 p46 isoform associated with a common single nucleotide
polymorphism. BMC Cell Biol . 2014;15:33.
- Breda A, Valadares N F, Norberto de Souza O & Garratt R C, Protein
Structure, Modelling and Applications, 2006 May 1 [Updated 2007 Sep
14]. In: Gruber A, Durham AM, Huynh C, et al , editors.
Bioinformatics in Tropical Disease. Research: A Practical and
Case-Study Approach [Internet]. Bethesda (MD): National Center for
Biotechnology Information (US) 2008. Chapter
A06.
- Momen-Roknabadi A, Sadeghi M, Pezeshk H, Marashi SA. Impact of residue
accessible surface area on the prediction of protein secondary
structures. BMC Bioinformatics . 2008;9: 357.
- Ali S, Hassan MD, Islam A, Ahmad F. A review of methods available to
estimate solvent-accessible surface areas of soluble proteins in the
folded and unfolded states. Curr Protein Pept
Sci . 2014;15:456-476.
- Singh RR. The potential use of peptides and vaccination to treat
systemic lupus erythematosus. Curr Opin Rheumatol .
2000;12:399-406.
- Haselden BM, Kay AB, Larche M. Peptide-mediated immune responses in
specific immunotherapy. Int Arch Allergy Immunol .
2000;122:229-37.
- Tong JC, Tan TW, Ranganathan S. Methods and protocols for prediction
of immunogenic epitopes. Briefings in Bioinformatics .
2007;8(2):96-108.
- Roy J. Posttranslational modifications and the immunogenicity of
biotherapeutics. J Immunol Res. 2016; 15.
- Jayaprakash NG, Surolia A. Role of glycosylation in nucleating protein
folding and stability. Biochem J . 2017;474:2333-2347.
- Hanisch FG. O-glycosylation of the mucin type. Biol Chem .
2001;382(2):143-9.
- Liu Y, Gu W, Zhang W, Wang J. Predict and Analyze Protein Glycation
Sites with the mRMR and IFS Methods. Biomed Res Int .
2015;12:1-6.
- Ardito F, Giuliani M, Perrone D, Troiano G, Muzio LL. The crucial role
of protein phosphorylation in cell signaling and its use as targeted
therapy (Review). Int J Mol Med . 2017;40(2):271-280.
- Faiola F, Liu X, Lo S, Pan S, Zhang K, Lymar E, Farina A, Martinez E.
Dual regulation of c-Myc by p300 via acetylation-dependent control of
Myc protein turnover and coactivation of Myc-induced transcription.
Mol Cell Biol. 2005 Dec;25(23):10220-34.
- Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H,
Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP,
Gygi SP, Sinclair DA, Alt FW, Greenberg ME. Stress-dependent
regulation of FOXO transcription factors by the SIRT1 deacetylase.
Science. 2004 Mar 26;303(5666):2011-5.
- Murr R, Loizou JI, Yang YG, et al. Histone acetylation by Trrap-Tip60
modulates loading of repair proteins and repair of DNA double-strand
breaks. Nat Cell Biol. 2006;8:91–99.
- Subramanian C, Opipari AW Jr, Bian X, Castle VP, Kwok RP. Ku70
acetylation mediates neuroblastoma cell death induced by histone
deacetylase inhibitors. Proc Natl Acad Sci U S A.2005;102(13):4842-4847.
- Cohen HY, Lavu S, Bitterman KJ, Hekking B, Imahiyerobo TA, Miller C,
Frye R, Ploegh H, Kessler BM, Sinclair DA. Acetylation of the C
terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis.Mol Cell . 2004;13(5):627-638.
- Yuan ZL, Guan YJ, Chatterjee D, Chin YE. Stat3 dimerization regulated
by reversible acetylation of a single lysine residue. Science .
2005;307(5707):269-273.
- Bannister AJ, Miska EA, Görlich D, Kouzarides T. Acetylation of
importin-alpha nuclear import factors by CBP/p300. Curr Biol .
2000;10(8):467-470.
- Han ZJ, Feng YH, Gu BH, Li YM, Chen H. The post-translational
modification, SUMOylation, and cancer (Review). Int J Oncol .
2018;52:1081-1094.
- Wiedemann C, Kumar A, Lang A, Ohlenschläger O. Cysteines and Disulfide
Bonds as Structure-Forming Units: Insights from Different Domains of
Life and the Potential for Characterization by NMR. Front Chem .
2020;8:280.
- Zhang Y. Protein Structure Prediction: Is It Useful? Curr Opin
Struct Biol . 2009;19(2):145-155.
- Joshi I, Kumar S, Kaur A, Mukhopadhyay C S, Kumar D. Homology modeling
of buffalo (Bubalus bubalis ) interferon- tau protein, Am
J Bioinform. 2012;1:79-86.
- Dawson N, Sillitoe I, Marsden RL, Orengo CA. The classification of
protein domains. Bioinformatics. Springer. 2017;137-164 p.
- Wang Y, Zhang H, Zhong H, Xue Z. Protein domain identification methods
and online resources. Comput Struct Biotechnol J .
2021;19:1145-1153.
- Hartmann R, Justesen J, Sarkar SN, Sen GC, Yee VC. Crystal structure
of the 2’-specific and double-stranded RNA-activated
interferon-induced antiviral protein 2’-5’-oligoadenylate synthetase.Mol Cell . 2003;12:1173-1185.
- Ghosh SK, Kusari J, Bandyopadhyay SK, Samanta H, Kumar R, Sen GC.
Cloning, sequencing, and expression of two murine 2’-5’-oligoadenylate
synthetases. Structure-function relationships. J Biol Chem .
1991;266(23):15293-15299.
- Hovanessian AG, Justesen J. The human 2’-5’oligoadenylate synthetase
family: unique interferon-inducible enzymes catalyzing 2’-5’ instead
of 3’-5’ phosphodiester bond formation. Biochimie .
2007;89:779-88.
- Kumar M, Gouw M, Michael S, Sámano-Sánchez H, Pancsa R, Glavina J,
Diakogianni A, Valverde JA, Bukirova D, Čalyševa J, Palopoli N, Davey
NE, Chemes LB, Gibson TJ. ELM-the eukaryotic linear motif resource in
2020. Nucleic Acids Res. 2020; 48(D1):D296-D306.
- Dinkel H, Van Roey K, Michael S, Kumar M, Uyar B, Altenberg B,
Milchevskaya V, Schneider M, Kühn H, Behrendt A, Dahl SL, Damerell V,
Diebel S, Kalman S, Klein S, Knudsen AC, Mäder C, Merrill S, Staudt A,
Thiel V, Welti L, Davey NE, Diella F, Gibson TJ. ELM 2016–data
update and new functionality of the eukaryotic linear motif resource.Nucleic Acids Res . 2016;44(D1):D294-300.
- Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J,
Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV.
STRING v11: protein-protein association networks with increased
coverage, supporting functional discovery in genome-wide experimental
datasets. Nucleic Acids Res . 2019;47(D1):D607-D613.
- Barros CM, Plante C, Thatcher WW, Hansen PJ. Regulation of bovine
endometrial secretion of prostaglandins and synthesis of
2’,5’-oligoadenylate synthetase interferon-a molecules. Am J
Reprod Immunol . 1991; 25:146-152.
- Bazer FW, Spencer TE, Johnson GA. Interferons and uterine receptivity.Semin Reprod Med . 2009;27:90-102.
- Bazer, FW, Spencer T E, Johnson GA, Burghardt RC. Uterine receptivity
to implantation of blastocysts in mammals. Front. Biosci . 2011;
S3:745-767.
- Farin CE, Imakawa K, Hansen TR, McDonnell J J, Murphy CN. Expression
of trophoblastic interferon genes in sheep and cattle. Biol
Reprod. 1990;43:210-218.
- Kumar S, Mitnik C, Valente G, Smith F. Expansion and molecular
evolution of the interferon-induced 2’-5’ oligoadenylate synthetase
gene family. Mol Biol Evol . 2000;17:738-750.
- Spencer TE, Ott TL, Bazer FW. Tau interferon: pregnancy recognition
signal in ruminants. Proc Soc Exp Biol Med. 1996;213:215–229.
- Martal JL, Chene NM, Huynh LP, L’Haridon RM, Reinaud PB, Guillomot MW,
Charlier MA, Charpigny SY. IFN-tau: a novel subtype I IFN1. Structural
characteristics, non-ubiquitous expression, structurefunction
relationships, a pregnancy hormonal embryonic signal and cross-species
therapeutic potentialities. Biochimie . 1998;80:755–777.