REFERENCES
  1. Burghardt RC, Bowen JA, Newton GR, Bazer FW. Extracellular matrix and the implantation cascade in pigs. J Reprod Fertil.1997;52:151-164.
  2. Spencer TE, Bazer FW. Conceptus signals for establishment and maintenance of pregnancy. Reprod Biol Endocrinol. 2004:2:1-15.
  3. Diskin MG, Murphy JJ, Sreenan JM. Embryo survival in dairy cows managed under pastoral conditions. Anim Reprod Sci . 2006;96:297-311.
  4. Walker CG, Meier S, Littlejohn MD, Lehnert K, Roche JR, Mitchell MD. Modulation of the maternal immune system by the pre-implantation embryo. BMC Genomics . 2010;11:474.
  5. Bazer FW, Song G, Thatcher WW. Roles of conceptus secretory proteins in establishment and maintenance of pregnancy in ruminants.Asian-Aust J Ani Sci 2012;25(1):1-16.
  6. Farin CE, Imakawa K, Roberts RM. In situ localization of mRNA for interferon, ovine trophoblast protein-1, during early embryonic development of the sheep. Mol Endocrinol. 1989;3:1099-1107.
  7. Uze G, Lutfalla G, Mogensen KE. Alpha and beta interferons and their receptor and their friends and relations. J Interferon Cytokine Res. 1995;15:3–26.
  8. Parent J, Chapdelaine P, Sirois J, Fortier MA. Expression of microsomal prostaglandin E synthase in bovine endometrium: coexpression with cyclooxygenase type 2 and regulation by interferon-tau. Endocrinol. 2002;143:2936–2943.
  9. Short EC, Geisert RD, Helmer SD, Zavy MT, Fulton RW. Expression of antiviral activity and induction of 2’,5’-oligoadenylate synthetase by conceptus secretory proteins enriched in bovine trophoblast protein-1.Biol Reprod . 1991;44:261-268.
  10. Schmitt RA, Geisert RD, Zavy MT, Short EC, Blair RM. Uterine Cellular Changes in 2’,5’-Oligoadenylate Synthetase during the Bovine Estrous Cycle and Early Pregnancy. Biol Reprod . 1993;48:460-466.
  11. Johnson GA, Stewart MD, Gray CA, Choi Y, Burghardt RC, Yu-Lee LY, Bazer FW, Spencer TE. Effects of the Estrous Cycle, Pregnancy, and Interferon Tau on 2’,5’-Oligoadenylate Synthetase Expression in the Ovine Uterus. Biol Reprod . 2001;64:1392-1399.
  12. Lengyel P. Tumor-suppressor genes: news about the interferon connection. Proc Natl Acad Sci U S A . 1993;90:5893-5895.
  13. Salzberg S, Hyman T, Turm H, Kinar Y, Schwartz Y, Nir U, Lejbkowicz F, Huberman E. Ectopic expression of 2-5A synthetase in myeloid cells induces growth arrest and facilitates the appearance of a myeloid differentiation marker. Cancer Res . 1997;57:2732-2740.
  14. Li XL, Blackford JA, Judge CS, Liu M, Xiao W, Kalvakolanu DV, Hassel BA. RNase-L-dependent destabilization of interferon-induced mRNAs. A role for the 2-5A system in attenuation of the interferon response.J Biol Chem . 2000;275:8880-8888.
  15. Benech P, Mory Y, Revel M, Chebath J. Structure of two forms of the interferon-induced (2’-5’) oligo A synthetase of human cells based on cDNAs and gene sequences. EMBO J . 1985;4:2249-2456.
  16. Saunders ME, Gewert DR, Tugwell ME, McMahon M, Williams BR. Human 2–5A synthetase: characterization of a novel cDNA and corresponding gene structure. EMBO J . 1985;4:1761-1768.
  17. Chebath J, Benech P, Hovanessian A, Galabrus J, Revel M. Four different forms of interferon-induced 2’-5’ oligo(A) synthetase identified by immunoblotting in human cells. J Biol Chem . 1987; 262:3852-3857.
  18. Hovanessian AG. Interferon-induced and double-stranded RNA-activated enzymes: a specific protein kinase and 2’,5’-oligoadenylate synthetases. J Interferon Res . 1991;11:199-205.
  19. Marie I, Hovanessian AG. The 69-kDa 2-5A synthetase is composed of two homologous and adjacent functional domains. J Biol Chem . 1992;267:9933-9.
  20. Hovanessian AG, Laurent AG, Chebath J, Galabru J, Robert N, Svab J. Identification of 69-kd and 100-kd forms of 2-5A synthetase in interferon-treated human cells by specific monoclonal antibodies.EMBO J . 1987;6:1273-1280.
  21. Marie I, Blanco J, Rebouillat D, Hovanessian AG. 69-kDa and 100-kDa isoforms of interferon-induced (29-59) oligoadenylate synthetase exhibit differential catalytic parameters. Eur J Biochem . 1997;248:558-566.
  22. Bandyopadhyay S, Ghosh A, Sarkar SN, Sen GC. Production and purification of recombinant 2’,5’ oligoadenylate synthetase and its mutants using the Baculovirus system. Biochemistry . 1998;37:3824-3830.
  23. Mirando MA, Short EC Jr, Geisert RD, Vallet JR, Bazer FW. Stimulation of 2’,5’-oligoadenylate synthetase activity in sheep endometrium during pregnancy, by intrauterine infusion of ovine trophoblast protein-one, and by intramuscular injection of recombinant bovine interferon-alpha II. J Reprod Fertil . 1991;93:599-607.
  24. Kashyap K, Jain A, Kasyap S, Verma U, Yadav A, Dubey A, Sori S. Genetic resources on goat in India: A review. Int J Fauna Biol Stud. 2020;7(2):27-33.
  25. Islam MM, Shabana A, Modi RJ, Wadhwani KN. Scenario of livestock and poultry in India and their contribution to national economy. Int J Sci Env Tech. 2016;5(3):956-965.
  26. Singh NS, Gawande PG, Mishra OP, Nema RK, Mishra UK, Singh M. Accuracy of ultrasonograph in early pregnancy diagnosis in does.Asian-Aust J Anim Sci . 2004;17(6):760-768.
  27. Jain T, Jain T, Chandrakar K, Tripathi SM, Mukherjee K, Shakya S, Tiwari SK, Mishra OP. Cathepsin L gene: Molecular characterization, functional analysis and expression profile in the endometrium of goat (Capra hircus). Animal Gene . 2021;200116.
  28. Gill SC, von Hippel PH. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem . 1989;182:319-326.
  29. Bachmair A, Finley D, Varshavsky A. In vivo half-life of a protein is a function of its amino-terminal residue. Science . 1986;234:179-186.
  30. Guruprasad K, Reddy BVB, Pandit MW. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence.Protein Eng. 1990;4:155-161.
  31. Ikai AJ. Thermostability and aliphatic index of globular proteins.J Biochem. 1980;88:1895-1898.
  32. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157:105-132.
  33. Almagro AJJ, Tsirigos KD, Sønderby CK et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37:420–423.
  34. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567-580.
  35. Geourjon C, Deléage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci. 1995;11(6):681-684.
  36. Klausen MS, Jespersen MC, Nielsen H, Jensen KK, Jurtz VI, Sønderby CK, Sommer MOA, Winther O, Nielsen M, Petersen B, Marcatili P. NetSurfP-2.0: Improved prediction of protein structural features by integrated deep learning. Proteins: Struct Funct Bioinf. 2019;87(6):520-527.
  37. Geertz-Hansen HM, Blom N, Feist A, Brunak S, Petersen TH. Cofactory: A sequence-based prediction method of cofactor specificity of Rossmann folds. Proteins . 2014;82(9):1819-28.
  38. Olsen TH, Yesiltas B, Marin FI, Pertseva M, García-Moreno PJ, Gregersen S, Overgaard MT, Jacobsen C, Lund O, Hansen EB, Marcatili P. AnOxPePred: Using deep learning for the prediction of antioxidative properties of peptides. Sci Rep . 2020;10:21471.
  39. Julenius K. NetCGlyc 1.0: Prediction of mammalian C-mannosylation sites. Glycobiology. 2007;17:868-876.
  40. Kiemer L, Bendtsen JD, Blom N. NetAcet: Prediction of N-terminal acetylation sites. Bioinformatics. 2005;21:1269-1270.
  41. Gíslason MH, Nielsen H, Armenteros JJA, Johansen AR. Prediction of GPI-anchored proteins with pointer neural networks. Curr Res Biotechnol. 2021;3:6-13.
  42. Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KT, Lavrsen K, Dabelsteen S, Pedersen NB, Marcos-Silva L, Gupta R, Bennett EP, Mandel U, Brunak S, Wandall HH, Levery SB, Clausen H. Precision mapping of the human O-GalNAc glycoproteome through simple cell technology. EMBO J . 2013;32(10):1478-88.
  43. Johansen MB, Kiemer L, Brunak S. Analysis and prediction of mammalian protein glycation. Glycobiology. 2006;16(9):844-853.
  44. Blom N, Gammeltoft S, Brunak S. Sequence- and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol. 1999;294:1351-1362.
  45. Duckert P, Brunak S, Blom N. Prediction of proprotein convertase cleavage sites. Protein Eng Des Sel . 2004;17:107-112.
  46. Li A, Xue Y, Jin C, Wang M, Yao X. Prediction of Nepsilon-acetylation on internal lysines implemented in Bayesian Discriminant Method. Biochem Biophys Res Commun. 2006;350(4):818-824.
  47. Zhao Q, Xie Y, Zheng Y, Jiang S, Liu W, Mu W, Zhao Y, Xue Y, Ren J. GPS-SUMO: a tool for the prediction of sumoylation sites and SUMO-interaction motifs. Nucleic Acids Res .2014;42(W1):W325-W330.
  48. Webb B, Sali A. Comparative Protein Structure Modeling Using Modeller.Current Protocols in Bioinformatics . 2016:5.6.1-5.6.37.
  49. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes.Nucleic Acids Res . 2018;46:W296-W303.
  50. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols . 2015;10:845-858.
  51. Combet C, Jambon M, Deléage G, Geourjon C. Geno3D: automatic comparative molecular modelling of protein. Bioinformatics . 2002;18(1):213-4. doi:10.1093
  52. Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci . 1993;2(9):1511-9. doi:10.1002/pro.5560020916
  53. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK - a program to check the stereochemical quality of protein structures. J App Cryst . 1993;26:283-291.
  54. Eisenberg D, Lüthy R, Bowie JU. VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol . 1997;277:396-404.
  55. Ramachandran GN, Ramakrishnan C, Sasisekharan V. Stereochemistry of polypeptide chain configurations. J Mol Biol . 1963;7:95-99.
  56. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera-A visualization system for exploratory research and analysis. J Comput Chem . 2004;25:1605-1612.
  57. Letunic I, Bork P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res . 2018;4:46(D1):D493-D496.
  58. Chandrakar K, Jain A, Khan JR, Jain T, Singh M, Mishra OP. Molecular characterization and expression profile of interferon stimulated gene 15 (ISG15) in the endometrium of Goat. Theriogenol. 202;142, 348-354.
  59. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real time quantitative PCR and the 2 Delta Delta C(T) method.Methods . 2001;25:402–408.
  60. Rios JJ, Perelygin AA, Long MT, Lear TL, Zharkikh AA et al . Characterization of the equine 2’-5’ oligoadenylate synthetase 1 (OAS1) and ribonuclease L (RNASEL) innate immunity genes, BMC Genomics . 2007;7(8):313.
  61. Eskildsen S, Justesen J, Schierup M H & Hartmann R, Characterization of the 2′-5′-oligoadenylate synthetase ubiquitin-like family.Nucleic Acids Res . 2003;31:3166-3173.
  62. Batra K, Nanda T, Kumar A, Kumari R, Kumar V, Maan S. Molecular characterization of OAS1 as a biomarker molecule for early pregnancy diagnosis in Bubalus bubalis. Indian J Biotechnol. 2019;19:97-107.
  63. Dubchak I, Muchnik I, Mayor C, Dralyuk I, Kim SH. Recognition of a protein fold in the context of the Structural Classification of Proteins (SCOP) classification. Proteins . 1999;35:401-407.
  64. Cai CZ, Han LY, Ji ZL, Chen X, Chen YZ. SVM-Prot: Web-based support vector machine software for functional classification of a protein from its primary sequence. Nucleic Acids Res . 2003;31:3692-3697.
  65. Bock JR, Gough DA. Whole-proteome interaction mining.Bioinformatics . 2003;19:125-134.
  66. Chou KC, Cai YD. Prediction of protein subcellular locations by GO-FunD-PseAA predictor. Biochem Biophys Res Commun . 2004;320:1236-1239.
  67. Schneider G, Wrede P. The rational design of amino acid sequences by artificial neural networks and simulated molecular evolution: de novo design of an idealized leader peptidase cleavage site. Biophys J . 1994;66:335-344.
  68. Brown MP, Grundy WN, Lin D, Cristianini N, Sugnet CW, et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci U S A . 2000;97:262-267.
  69. Ward JJ, McGuffin LJ, Buxton BF, Jones DT. Secondary structure prediction with support vector machines. Bioinformatics.2003;19:1650-1655.
  70. Shen HB, Yang J, Chou KC. Fuzzy KNN for predicting membrane protein types from pseudo-amino acid composition. J Theor Biol . 2006;240(1):9-13.
  71. Chou KC, Shen HB. MemType-2L: a web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM. Biochem Biophys Res Commun . 2007;360(2):339-345.
  72. Besse S, Rebouillat D, Marie I, Puvion-Dutilleul F, Hovanessian AG. Ultrastructural localization of interferon-inducible double-stranded RNA-activated enzymes in human cells. Exp Cell Res . 1998;239(2):379-392.
  73. Kjaer KH, Pahus J, Hansen MF, et al. Mitochondrial localization of the OAS1 p46 isoform associated with a common single nucleotide polymorphism. BMC Cell Biol . 2014;15:33.
  74. Breda A, Valadares N F, Norberto de Souza O & Garratt R C, Protein Structure, Modelling and Applications, 2006 May 1 [Updated 2007 Sep 14]. In: Gruber A, Durham AM, Huynh C, et al , editors. Bioinformatics in Tropical Disease. Research: A Practical and Case-Study Approach [Internet]. Bethesda (MD): National Center for Biotechnology Information (US) 2008. Chapter A06.
  75. Momen-Roknabadi A, Sadeghi M, Pezeshk H, Marashi SA. Impact of residue accessible surface area on the prediction of protein secondary structures. BMC Bioinformatics . 2008;9: 357.
  76. Ali S, Hassan MD, Islam A, Ahmad F. A review of methods available to estimate solvent-accessible surface areas of soluble proteins in the folded and unfolded states. Curr Protein Pept Sci . 2014;15:456-476.
  77. Singh RR. The potential use of peptides and vaccination to treat systemic lupus erythematosus. Curr Opin Rheumatol . 2000;12:399-406.
  78. Haselden BM, Kay AB, Larche M. Peptide-mediated immune responses in specific immunotherapy. Int Arch Allergy Immunol . 2000;122:229-37.
  79. Tong JC, Tan TW, Ranganathan S. Methods and protocols for prediction of immunogenic epitopes. Briefings in Bioinformatics . 2007;8(2):96-108.
  80. Roy J. Posttranslational modifications and the immunogenicity of biotherapeutics. J Immunol Res. 2016; 15.
  81. Jayaprakash NG, Surolia A. Role of glycosylation in nucleating protein folding and stability. Biochem J . 2017;474:2333-2347.
  82. Hanisch FG. O-glycosylation of the mucin type. Biol Chem . 2001;382(2):143-9.
  83. Liu Y, Gu W, Zhang W, Wang J. Predict and Analyze Protein Glycation Sites with the mRMR and IFS Methods. Biomed Res Int . 2015;12:1-6.
  84. Ardito F, Giuliani M, Perrone D, Troiano G, Muzio LL. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int J Mol Med . 2017;40(2):271-280.
  85. Faiola F, Liu X, Lo S, Pan S, Zhang K, Lymar E, Farina A, Martinez E. Dual regulation of c-Myc by p300 via acetylation-dependent control of Myc protein turnover and coactivation of Myc-induced transcription. Mol Cell Biol. 2005 Dec;25(23):10220-34.
  86. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004 Mar 26;303(5666):2011-5.
  87. Murr R, Loizou JI, Yang YG, et al. Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat Cell Biol.  2006;8:91–99.
  88. Subramanian C, Opipari AW Jr, Bian X, Castle VP, Kwok RP. Ku70 acetylation mediates neuroblastoma cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci U S A.2005;102(13):4842-4847.
  89. Cohen HY, Lavu S, Bitterman KJ, Hekking B, Imahiyerobo TA, Miller C, Frye R, Ploegh H, Kessler BM, Sinclair DA. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis.Mol Cell . 2004;13(5):627-638.
  90. Yuan ZL, Guan YJ, Chatterjee D, Chin YE. Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science . 2005;307(5707):269-273.
  91. Bannister AJ, Miska EA, Görlich D, Kouzarides T. Acetylation of importin-alpha nuclear import factors by CBP/p300. Curr Biol . 2000;10(8):467-470.
  92. Han ZJ, Feng YH, Gu BH, Li YM, Chen H. The post-translational modification, SUMOylation, and cancer (Review). Int J Oncol . 2018;52:1081-1094.
  93. Wiedemann C, Kumar A, Lang A, Ohlenschläger O. Cysteines and Disulfide Bonds as Structure-Forming Units: Insights from Different Domains of Life and the Potential for Characterization by NMR. Front Chem . 2020;8:280.
  94. Zhang Y. Protein Structure Prediction: Is It Useful? Curr Opin Struct Biol . 2009;19(2):145-155.
  95. Joshi I, Kumar S, Kaur A, Mukhopadhyay C S, Kumar D. Homology modeling of buffalo (Bubalus bubalis ) interferon- tau protein, Am J Bioinform. 2012;1:79-86.
  96. Dawson N, Sillitoe I, Marsden RL, Orengo CA. The classification of protein domains. Bioinformatics. Springer. 2017;137-164 p.
  97. Wang Y, Zhang H, Zhong H, Xue Z. Protein domain identification methods and online resources. Comput Struct Biotechnol J . 2021;19:1145-1153.
  98. Hartmann R, Justesen J, Sarkar SN, Sen GC, Yee VC. Crystal structure of the 2’-specific and double-stranded RNA-activated interferon-induced antiviral protein 2’-5’-oligoadenylate synthetase.Mol Cell . 2003;12:1173-1185.
  99. Ghosh SK, Kusari J, Bandyopadhyay SK, Samanta H, Kumar R, Sen GC. Cloning, sequencing, and expression of two murine 2’-5’-oligoadenylate synthetases. Structure-function relationships. J Biol Chem . 1991;266(23):15293-15299.
  100. Hovanessian AG, Justesen J. The human 2’-5’oligoadenylate synthetase family: unique interferon-inducible enzymes catalyzing 2’-5’ instead of 3’-5’ phosphodiester bond formation.  Biochimie . 2007;89:779-88.
  101. Kumar M, Gouw M, Michael S, Sámano-Sánchez H, Pancsa R, Glavina J, Diakogianni A, Valverde JA, Bukirova D, Čalyševa J, Palopoli N, Davey NE, Chemes LB, Gibson TJ. ELM-the eukaryotic linear motif resource in 2020. Nucleic Acids Res. 2020; 48(D1):D296-D306.
  102. Dinkel H, Van Roey K, Michael S, Kumar M, Uyar B, Altenberg B, Milchevskaya V, Schneider M, Kühn H, Behrendt A, Dahl SL, Damerell V, Diebel S, Kalman S, Klein S, Knudsen AC, Mäder C, Merrill S, Staudt A, Thiel V, Welti L, Davey NE, Diella F, Gibson TJ. ELM 2016–data update and new functionality of the eukaryotic linear motif resource.Nucleic Acids Res . 2016;44(D1):D294-300.
  103. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res . 2019;47(D1):D607-D613.
  104. Barros CM, Plante C, Thatcher WW, Hansen PJ. Regulation of bovine endometrial secretion of prostaglandins and synthesis of 2’,5’-oligoadenylate synthetase interferon-a molecules. Am J Reprod Immunol . 1991; 25:146-152.
  105. Bazer FW, Spencer TE, Johnson GA. Interferons and uterine receptivity.Semin Reprod Med . 2009;27:90-102.
  106. Bazer, FW, Spencer T E, Johnson GA, Burghardt RC. Uterine receptivity to implantation of blastocysts in mammals. Front. Biosci . 2011; S3:745-767.
  107. Farin CE, Imakawa K, Hansen TR, McDonnell J J, Murphy CN. Expression of trophoblastic interferon genes in sheep and cattle. Biol Reprod. 1990;43:210-218.
  108. Kumar S, Mitnik C, Valente G, Smith F. Expansion and molecular evolution of the interferon-induced 2’-5’ oligoadenylate synthetase gene family. Mol Biol Evol . 2000;17:738-750.
  109. Spencer TE, Ott TL, Bazer FW. Tau interferon: pregnancy recognition signal in ruminants. Proc Soc Exp Biol Med. 1996;213:215–229.
  110. Martal JL, Chene NM, Huynh LP, L’Haridon RM, Reinaud PB, Guillomot MW, Charlier MA, Charpigny SY. IFN-tau: a novel subtype I IFN1. Structural characteristics, non-ubiquitous expression, structurefunction relationships, a pregnancy hormonal embryonic signal and cross-species therapeutic potentialities. Biochimie . 1998;80:755–777.