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Abstract

In this paper, the cubic B-spline element method is proposed for a class of fourth
order nonlinear parabolic problem with variable coefficient. We prove the
boundness of the approximate solutions of the semi-discrete and fully discrete
finite element schemes. The boundness is the basis of error analysis of nonlinear
parabolic problem, especially in the case of fourth order term with variable
coefficient. The error estimates are discussed by constructing the energy
functional in L2 norm and H2 norm. Numerical results confirm our results of
theoretical analysis.
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1 Introduction
Higher order nonlinear parabolic equations play an important role in natural science.

As a typical nonlinear differential equation, the extended Fisher-Kolmogorov (EFK)

equation can describe many phenomena which include traveling waves in reaction-

diffusion systems [1, 2], propagation of domain walls in liquid crystals [3], and brain

tumors dynamics [4]. The EFK equation is assumed in the following form:

ut + γ∆2u−∆u+ u3 − u = 0, (x, t) ∈ Ω× (0, T ], (1)

where γ is a positive constant, and Ω is a bounded domain with boundary ∂Ω. In

concrete applications, researchers use the EFK equation with the initial-boundary

conditions. If γ = 0, (1) turns into the standard Fisher-Kolmogorov equation [5, 6].

The fourth order derivative term was added to the Fisher-Kolmogorov equation by

Dee and van Saarloos [6], Coullet et all [7], and van Saarloos [8].

The finite element method (FEM) is effective in solving partial differential equa-

tions [9–11]. Some papers, which have already been published, study the Cahn-

Hilliard equations using various different forms of FEM [14–18]. In [14, 15], Qin

et al. considered two different fourth order nonlinear parabolic problems with vari-

able coefficient employing B-spline FEM respectively, and the boundness and the

error estimates of the approximate solutions were proved. The nonlinear term and

the fully discrete scheme in [14] were different from that of [15]. Bao et al. con-

ducted numerical experiments to study the effect of a precursor fluid layer on the

motion of two phase system in a channel [16]. The researches involved the solution
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of Cahn-Hillard equation with semi-implicit and mixed finite element discretization

with a convex splitting scheme. Feng considered some fully discrete finite element

methods for a parabolic system consisting of the Navier-Stokes equation and the

Cahn-Hilliard equation in [17]. Qiao et al. proposed a mixed finite element method

with Crank-Nicolson time-stepping for simulating the molecular beam epitaxy mod-

el and discussed the error analysis [18].

We also want to talk about the development and application of B-splines. In 1946,

Schoenberg considered polynomial approximations and first introduced the B-spline

method [19]. In [19, 20], the theoretical basis of univariate B-spline functions were

studied. In 1976, C. de Boor defined the multivariate B-spline functions [21]. B-

splines were widely used in scientific computing and engineering applications [22–

25]. For instance, B-splines were often used as the basis functions of FEM [26–31].

Significantly, compared with Lagrange and Hermite type elements, the number of

B-spline basis functions is halved for the same boundary value problem. Then the

scale of matrix from B-spline FEM is smaller than that from Lagrange and Hermite

elements. Moreover, B-spline shape functions are smoother. For example, cubic

B-splines are in C2(−∞,+∞). However, the B-spline basis functions need to be

modified to deal with boundary conditions [14, 15].

In this paper, we apply the cubic B-spline FEM to solve a class of fourth order

nonlinear parabolic equation with variable coefficient. In section 2 of this paper,

we introduce the model and some basic preliminaries. In section 3, we show the

boundness and error estimates for the semi-discrete scheme. In section 4, a fully

discrete scheme based on the backward Euler method is studied. In section 5, a

numerical experiment is provided to confirm theoretical results.

In this work, we denote L2, Lk, L∞, Hk norms in I by ‖ · ‖, ‖ · ‖Lk , | · |∞, and

‖ · ‖k, respectively.

2 Some preliminaries
We consider the following fourth order nonlinear parabolic problem:

ut + (α(x, t)uxx)xx − uxx + u3 − u = 0, (x, t) ∈ I × (0, T ],

u(x, t) = ux(x, t) = 0, x ∈ ∂I, t ∈ (0, T ],

u(x, 0) = u0(x), x ∈ I,

(2)

where I = [0, 1] and ut = ∂u
∂t . We propose the following three assumptions:

α(x, t),
∂α

∂t
(x, t) ∈ C(I × [0, T ]),

0 < s ≤ α(x, t) ≤ S < +∞, ∀x ∈ I, t ∈ [0, T ], (3)

0 ≤
∣∣∣∣∂α∂t

∣∣∣∣ ≤M1, 0 ≤
∣∣∣∣∂2α∂t2

∣∣∣∣ ≤M2, ∀x ∈ I, t ∈ [0, T ]. (4)

There are four boundary conditions for the equation (2), e.g. two boundary con-

ditions at x = 0, 1. Notice that the essential boundary conditions are u(0, t) =
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u(1, t) = ux(0, t) = ux(1, t) = 0 in (2). Then we define the function space as follows:

H2
0 (I) = {w;w ∈ H2(I), w(0, t) = w(1, t) = wx(0, t) = wx(1, t) = 0}.

The variational problem related to (2) is: Find u = u(·, t) ∈ H2
0 (I)(0 ≤ t ≤ T )

such that{
(ut, v) + (α(x, t)D2u,D2v) + (Du,Dv) + (u3 − u, v) = 0, ∀v ∈ H2

0 (I),

u(x, 0) = u0(x), x ∈ I,
(5)

where Du = ∂u
∂x . We give the existence of the solution of problem (2) in the following

theorem [9].

Theorem 2.1 Suppose that u0 ∈ H2
0 (I), then there exists a unique global solution

u(x, t) for problem (2), such that

u ∈ L∞([0, T ];H2
0 (I)) ∩ L2([0, T ];H4(I)), ut ∈ L2([0, T ];L2(I)).

Throughout this paper, the letters C and C ′ denote generic constants independent

of the division size not necessarily the same at different occurrences.

3 Semi-discrete approximation
The interval I is partitioned into M equal finite elements by Ih : 0 = x0 < x1 <

· · · < xM = 1 such that h = xi − xx−1, Ii = [xi−1, xi]. Assume that Ih is shape-

regular, that is, there exists a positive constant ρ such that

ρh ≤ hi ≤ h, 1 ≤ i ≤M.

By the affine transformation, the cubic B-spline functions with knots xj are de-

scribed as

φj(x) =



1

6
(
x− xj
h

)3, x ∈ [xj , xj+1],

−1

2
(
x− xj
h

)3 + 2(
x− xj
h

)2 − 2(
x− xj
h

) +
2

3
, x ∈ [xj+1, xj+2],

1

2
(
x− xj
h

)3 − 4(
x− xj
h

)2 + 10(
x− xj
h

)− 22

3
, x ∈ [xj+2, xj+3],

−1

6
(
x− xj
h

− 4)3, x ∈ [xj+3, xj+4],

0, otherwise.

Let the set of {φ−3, φ−2, φ−1, φ0, · · · , φM−3, φM−2, φM−1} be the basis functions

of FEM. In order to deal with the boundary conditions, we modify the boundary

B-spline basis functions according to [14, 15]. The approximate solution can be

written as follows:

uh(x, t) =

M−1∑
j=−3

δj(t)φj(x),
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where δj(t) are time dependent parameters.

The semi-discrete finite element scheme based on B-splines for problem (2) is:

Find uh = uh(·, t) ∈ Uh(0 < t ≤ T ), such that{
(uh,t, vh) + (α(x, t)D2uh, D

2vh) + (Duh, Dvh) + (u3h − uh, vh) = 0, vh ∈ Uh,

(uh(0)− u0, vh) = 0, vh ∈ Uh.
(6)

To analyze the boundness and convergence of the B-spline FEM, we need to

introduce the elliptic projection Rh : u→ Rhu ∈ Uh which is defined by [9]

a(u−Rhu, vh) ≡ (α(x, t)D2(u−Rhu), D2vh) = 0, ∀vh ∈ Uh. (7)

Lemma 3.1 It then follows (7) that

a(u, u) ≥ C0‖u‖22, ∀u ∈ H2
0 (I), (8)

where C0 is a positive constant depending only on α(x, t). Hence, a(u, v) is a sym-

metrical positive determined bilinear form, and

‖u−Rhu‖+ h‖u−Rhu‖1 + h2‖u−Rhu‖2 ≤ Ch4‖u‖4. (9)

First, we discuss the existence of the approximate solution of the semi-discrete

scheme.

Theorem 3.1 Let uh(0) ∈ H2
0 (I), then there exists a unique approximation solu-

tion uh(t) ∈ Uh for problem (6), such that

‖uh(t)‖2 ≤ C‖uh(0)‖2, 0 ≤ t ≤ T, (10)

and ∫ t

0

‖D2uh‖2dt ≤ C‖uh(0)‖22. (11)

where C is a positive constant depending on α(x, t), µ and T , independent of mesh

size h.

Proof According to ordinary differential equation theory, there exists a unique

local solution to problem (6) in the interval [0, tn). If we have (10), then according

to the extension theorem, we can also obtain the existence of unique global solution.

So, we only need to prove (10).

Setting vh = uh in (6), we get

1

2

d

dt
‖uh‖2 + s‖D2uh‖2 + ‖Duh‖2 + ‖uh‖4L4 ≤ ‖uh‖2. (12)

We derive that

d

dt

(
e−2t‖uh‖2

)
≤ 0. (13)
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Integrating (13) with respect to t, we have

‖uh(t)‖2 ≤ e2t‖uh(0)‖2 ≤ e2T ‖uh(0)‖2 ≤ C‖uh(0)‖2, 0 ≤ t ≤ T. (14)

By (12) and (14), it is easy to see that

∫ t

0

‖D2uh‖2dt ≤ C‖uh(0)‖2.

Letting vh = uh,t in (6), we get

‖uh,t‖2 + (α(x, t)D2uh, D
2uh,t) + (Duh, Duh,t) + (u3h − uh, uh,t) = 0. (15)

We introduce the following energy function

E(w) =
1

2
(α(x, t)D2w,D2w) +

1

2
‖Dw‖2 +

1

4
((1− w2)2, 1). (16)

Then we have

‖uh,t‖2 +
d

dt
E(uh)− 1

2
(
∂α

∂t
D2uh, D

2uh) = 0.

By (4), we obtain

d

dt
E(uh) ≤ M1

2
‖D2uh‖2. (17)

Integrating (17) with respect to t, we have

E(uh)− E(uh(0)) ≤ M1

2

∫ t

0

‖D2uh‖2dt ≤ C‖uh(0)‖2. (18)

According to (3), (16) and (18), we have

s‖D2uh‖+ ‖Duh‖2 +
1

2
‖uh‖4L4 − ‖uh‖2

≤S‖D2uh(0)‖+ ‖Duh(0)‖2 +
1

2
‖uh(0)‖4L4 + C‖uh(0)‖2 − ‖uh(0)‖2.

Then

s‖D2uh‖+ ‖Duh‖2 +
1

2
‖uh‖4L4

≤S‖D2uh(0)‖+ ‖Duh(0)‖2 +
1

2
‖uh(0)‖4L4 + C‖uh(0)‖2.

We have

‖D2uh‖ ≤ C‖D2uh(0)‖. (19)
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We know that

‖Duh‖2 = −(D2uh, uh) ≤ 1

2
‖D2uh‖2 +

1

2
‖uh‖2.

Thus we obtain the boundness of the approximate solution in H2 norm. So, (10)

and (11) hold.

Now, we give the error estimates between the exact solution and the approximate

solution of the FEM in L2 norm and H2 semi-norm .

Theorem 3.2 Let u be the solution of (5), uh be the solution of (6), u(0) ∈ H4(I),

u, ut ∈ L2(0, T ;H4(I)), and the initial value satisfies

‖u(0)− uh(0)‖ ≤ Ch4‖u(0)‖4. (20)

As 0 ≤ t ≤ T , we have the following error estimate

‖u− uh‖ ≤ Ch4
(
‖u(0)‖24 +

∫ t

0

(‖u(τ)‖24 + ‖ut(τ)‖24)dτ

) 1
2

. (21)

Proof To describe the error estimate for the semi-discrete B-spline FEM, denote

θ(t) = Rhu− uh, ρ(t) = u−Rhu, then

u− uh = u−Rhu+Rhu− uh = θ(t) + ρ(t).

Therefore

‖u− uh‖ ≤ ‖θ(t)‖+ ‖ρ(t)‖.

By (5)-(7), we know

(θt + ρt, vh) + (α(x, t)D2θ,D2vh) + (Dθ +Dρ,Dvh)

+ (u3 − u3h, vh)− (θ + ρ, vh) = 0.
(22)

Setting vh = θ in (22), we have

(θt, θ) + (α(x, t)D2θ,D2θ) + (Dθ,Dθ)

=− (ρt, θ) + (ρ,D2θ)− (u3 − u3h, θ) + (θ + ρ, θ).

Using (3) and the Cauchy’s inequality, we can deduce that

1

2

d

dt
‖θ‖2 + s‖D2θ‖2 + ‖Dθ‖2

≤1

2
‖ρt‖2 + (

1

2s
+

1

2
)‖ρ‖2 +

s

2
‖D2θ‖2 +

1

2
‖u3 − u3h‖2 +

5

2
‖θ‖2.

Based on the Sobolev’s space embedding theorem, notice that

‖u3 − u3h‖ ≤ |u2 + uuh + u2h|∞‖u− uh‖

≤(|u|2∞ + |u|∞|uh|∞ + |u2h|∞)‖u− uh‖

≤C‖u− uh‖ ≤ C(‖θ‖+ ‖ρ‖).

(23)
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Hence

d

dt
‖θ‖2 + s‖D2θ‖2 ≤ ‖ρt‖2 + C(‖ρ‖2 + ‖θ‖2). (24)

By the Gronwall’s inequality, we obtain

‖θ‖2 ≤ C
[
‖θ(0)‖2 +

∫ t

0

(‖ρt‖2 + ‖ρ‖2)dτ
]
. (25)

We know

‖θ(0)‖ = ‖u(0)− uh(0) +Rhu(0)− u(0)‖ ≤ ‖u(0)− uh(0)‖+ ‖ρ(0)‖. (26)

Hence, when 0 ≤ t ≤ T , it follows from (20) and (25)-(26) that (21) is obtained.

This completes the proof of the theorem.

Theorem 3.3 Let u be the solution of (5), uh be the solution of (6), u(0) ∈ H4(I),

u, ut ∈ L2(0, T ;H4(I)), and the initial value satisfies

|u(0)− uh(0)|2 ≤ Ch2‖u(0)‖4. (27)

Then, we have the following error estimate

|u(t)− uh(t)|2 ≤ Ch2
[
‖u(0)‖4 +

(∫ t

0

(‖u(τ)‖24 + h2‖ut(τ)‖24)dτ

) 1
2

]
. (28)

Proof Letting vh = θt in (22), we have

‖θt‖2 + (α(x, t)D2θ,D2θt) + (Dθ,Dθt)

=− (ρt, θt) + (Dρ,Dθt)− (u3 − u3h, θt) + (u− uh, θt),

where

(α(x, t)D2θ,D2θt) =
1

2

d

dt
(α(x, t)D2θ,D2θ)− 1

2
(
∂α

∂t
D2θ,D2θ).

It is easy to see

‖θt‖2 +
1

2

d

dt
(α(x, t)D2θ,D2θ)

=
1

2
(
∂α

∂t
D2θ,D2θ) + (D2θ, θt)− (ρt, θt)− (D2ρ, θt)− (u3 − u3h, θt) + (u− uh, θt).

Based on (23) and the ε-inequality, we have

‖θt‖2 +
s

2

d

dt
‖D2θ‖2

≤(4 +
M

2
)‖D2θ‖2 + 4(‖ρt‖2 + ‖D2ρ‖2 + ‖u3 − u3h‖2 + ‖u− uh‖2) +

5

16
‖θt‖2

≤(4 +
M

2
)‖D2θ‖2 + 4(‖ρt‖2 + ‖D2ρ‖2) + C(‖θ‖2 + ‖ρ‖2) +

1

2
‖θt‖2.
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Hence, we get

‖θt‖2 + s
d

dt
‖D2θ‖2 ≤ C(‖D2θ‖2 + ‖θ‖2‖+ ‖ρt‖2 + ‖ρ‖2 + ‖D2ρ‖2). (29)

Integrating (29) respect with to t, we have

‖D2θ‖2 ≤ C
(
‖D2θ(0)‖2 +

∫ t

0

(‖θ‖2 + ‖ρt‖2 + ‖ρ‖22)dτ

)
. (30)

By the triangle inequality, it is obvious that

‖D2θ(0)‖ ≤ ‖D2u(0)−D2uh(0)‖+ ‖D2Rhu(0)−D2u(0)‖. (31)

For the reasons given above (27) and (30)-(31), we obtain (28). The error estimate

in H2 semi-norm is proven.

4 Fully discrete finite element scheme
In this section, we construct the fully discrete finite element scheme using the Crank-

Nicolson type and discuss the convergence of the fully discrete scheme.

First, we define the double well potential function

H(unh) =
1

4
(1− |unh|2)2, (32)

where H ′(uh) = |uh|2uh − uh.

The Crank-Nicolson scheme for problem (2) is: Find unh ∈ Uh(n = 1, 2, · · · , N)

such that
(∂tu

n
h, vh) + (αn− 1

2D2u
n− 1

2

h , D2vh) + (Du
n− 1

2

h , Dvh)

+

(
H(unh)−H(un−1h )

unh − u
n−1
h

, vh

)
= 0, ∀vh ∈ Uh,

(u(0)− u0h, vh) = 0, ∀vh ∈ Uh,

(33)

where N is a given positive integer, ∆t = T/N denotes the time step size, tn = n∆t

and

∂tu
n
h = (unh − un−1h )/∆t,

u
n− 1

2

h = (unh + un−1h )/2,

tn−
1
2 = (tn + tn−1)/2.

In the following theorem, the boundness of the fully discrete scheme (33) is going

to be deduced. The boundness is a key step for the error analysis in the field of the

nonlinear parabolic equation.

Theorem 4.1 Let u0h ∈ H2
0 (I)

⋂
W 1,4(I), then there exists a unique solution unh

for problem (33) such that

‖unh‖2 ≤ C‖u0h‖2, 0 ≤ t ≤ T, (34)
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where C is a positive constant depending on α(x, t) and T , independent of h and

∆t.

Proof A direct calculation gives

H(unh)−H(un−1h )

unh − u
n−1
h

=
1

4
(unh + un−1h )(|unh|2 + |un−1h |2)− 1

2
(unh + un−1h ).

(35)

Choosing vh = unh + un−1h in (33), we obtain

1

∆t
(‖unh‖2 − ‖un−1h ‖2) +

s

2
‖D2unh +D2un−1h ‖2 +

1

2
‖Dunh +Dun−1h ‖2

+
1

4
((unh + un−1h )2, |unh|2 + |un−1h |2) ≤ 1

2
‖unh + un−1h ‖2.

(36)

It is obvious to derive

1

∆t
(‖unh‖2 − ‖un−1h ‖2) ≤ 1

2
‖unh + un−1h ‖2 ≤ ‖unh‖2 + ‖un−1h ‖2. (37)

Further, we get

‖unh‖2 ≤
1 + ∆t

1−∆t
‖un−1h ‖2 ≤ · · · ≤

(
1 + ∆t

1−∆t

)n

‖u0h‖2. (38)

It is easy to show

(
1 + ∆t

1−∆t

)n

=

(
1 +

2∆t

1−∆t

) 1−∆t
2∆t ·

2n∆t
1−∆t

.

If ∆t is small enough, we know

‖unh‖2 ≤ C‖u0h‖2. (39)

Letting vh = ∂tu
n
h in (33), we have

‖∂tunh‖2 +
1

2∆t
(α(x, tn−

1
2 )(|D2unh|2 − |D2un−1h |2), 1)

− 1

2
(D2unh +D2un−1h , ∂tu

n
h) +

1

∆t
(H(unh)−H(un−1h ), 1) = 0.

(40)

With the ε-inequality, we conclude

‖∂tunh‖2 +
1

2∆t
(α(x, tn−

1
2 )(|D2unh|2 − |D2un−1h |2), 1) +

1

∆t
(H(unh)−H(un−1h ), 1)

≤1

8
‖∂tunh‖2 +

1

2
‖D2unh +D2un−1h ‖2 ≤ 1

8
‖∂tunh‖2 + ‖D2unh‖2 + ‖D2un−1h ‖2.
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And then, we obtian

(
1

2
α(x, tn−

1
2 )|D2unh|2 +H(Dunh), 1)

≤(
1

2
α(x, tn−

1
2 )|D2un−1h |2 +H(Dun−1h ), 1) + ∆t(‖D2unh‖2 + ‖D2un−1h ‖2).

(41)

We need to define the following function

G(unh, t
n− 1

2 ) =

(
1

2
α(x, tn−

1
2 )|D2unh|2 +H(Dunh), 1

)
. (42)

Obviously, G(unh, t
n− 1

2 ) ≥ 0. By (41) and (42), we have

G(unh, t
n− 1

2 )−G(un−1h , tn−
3
2 )

≤1

2
((α(x, tn−

1
2 )− α(x, tn−

3
2 ))|D2un−1h |2, 1) + ∆t(‖D2unh‖2 + ‖D2un−1h ‖2).

By the Lagrange Intermediate Value Theorem and (4), we obtain

G(unh, t
n− 1

2 )−G(un−1h , tn−
3
2 )

≤∆t

2

∣∣∣∣∂α∂t (x, ξ)

∣∣∣∣‖D2un−1h ‖2 + ∆t(‖D2unh‖2 + ‖D2un−1h ‖2)

≤M1∆t

2
‖D2un−1h ‖2 + ∆t(‖D2unh‖2 + ‖D2un−1h ‖2),

where tn−
3
2 < ξ < tn−

1
2 . Therefore, we have

G(unh, t
n− 1

2 )−G(un−1h , tn−
3
2 ) ≤ ∆t‖D2unh‖2 + (1 +

M1

2
)∆t‖D2un−1h ‖2.

Taking the sum over n, it is easy to obtain

G(unh, t
n− 1

2 )−G(u1h, t
1
2 )

≤∆t

n∑
j=2

‖D2ujh‖
2 + (1 +

M1

2
)∆t

n∑
j=2

‖D2uj−1h ‖2 ≤ C∆t

n∑
j=1

‖D2ujh‖
2.

(43)

Hence, it is obvious to get

G(unh, t
n− 1

2 ) ≥ s

2
‖D2unh‖2 + (H(Dunh), 1) ≥ s

2
‖D2unh‖2. (44)

Using (43) and (44), we know

G(unh, t
n− 1

2 )−G(u1h, t
1
2 ) ≤ 2C∆t

s

n∑
j=1

G(ujh, t
j− 1

2 ).
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Based on (41)-(42) and u0h ∈ H2
0 (I)

⋂
W 1,4(I), we have

G(u1h, t
1
2 ) =

(
1

2
α(x, t

1
2 )|D2u1h|2 +H(Du1h), 1

)
≤
(

1

2
α(x, t

1
2 )|D2u0h|2 +H(Du0h), 1

)
≤ C(u0h),

where C(u0h) is a constant depending on u0h. Then

G(unh, t
n− 1

2 ) ≤ C(u0h) +
2C∆t

s

n∑
j=1

G(unh, t
n− 1

2 ). (45)

With the discrete Gronwall’s inequality, we deduce

G(unh, t
n− 1

2 ) ≤ C, C = C(u0h, s,M1, T ). (46)

From (46), we have

‖D2unh‖ ≤ C‖D2u0h‖. (47)

In addition, the following formula is known

‖Dunh‖2 ≤
1

2
(‖unh‖2 + ‖D2unh‖2).

Combined (39) and (47), we have (34). The proof is completed.

Next, we analyze the convergence in L2 norm.

Theorem 4.2 Let un be the solution to problem (5), unh be the solution to the

fully discrete scheme (33), u(0) ∈ H4(I), ut ∈ L2(0, T ;H4(I)) ∩ L2(0, T ;W 2,4(I)),

uttt ∈ L2(0, T ;L2(I)) and u0h ∈ Uh satisfying

‖u(0)− u0h‖ ≤ Ch4‖u(0)‖4. (48)

Then, we have the following error estimate:

‖un − unh‖ ≤ C((∆t)2 + h4), (49)

where C is a positive constant depending on α(x, t) and T , independent of mesh

size h.

Proof Denote unt = ut(x, t
n) and un = u(x, tn). Setting t = tn−1 and t = tn in (5),

respectively, we obtain(
unt + un−1t

2
, vh

)
+

(
α(x, tn)D2un + α(x, tn−1)D2un−1

2
, D2vh

)
+

(
Dun +Dun−1

2
, Dvh

)
+

(
(un)3 + (un−1)3 − un − un−1

2
, vh

)
= 0.

(50)
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Denote

Φ(D2un, D2un−1, D2u
n− 1

2

h )

=
α(x, tn)D2un + α(x, tn−1)D2un−1

2
− α(x, tn−

1
2 )D2u

n− 1
2

h ,
(51)

and

F (un, un−1, unh, u
n−1
h )

=
(un)3 + (un−1)3 − un − un−1

2
−
H(unh)−H(un−1h )

unh − u
n−1
h

.
(52)

It follows from (50)-(52) and (33) that

(
unt + un−1t

2
− ∂tunh, vh

)
+ (Φ(D2un, D2un−1, D2u

n− 1
2

h ), D2vh)

+

(
Dun +Dun−1 −Dunh −Du

n−1
h

2
, Dvh

)
+ (F (un, un−1, unh, u

n−1
h ), vh) = 0.

(53)

Let ρn = un−Rhu
n and θn = Rhu

n−unh, then un−unh = ρn + θn. It is clear to get

unt + un−1t

2
− ∂tunh =

unt + un−1t

2
− ∂tun + ∂tu

n − ∂tunh

=
unt + un−1t

2
− ∂tun + ∂t(u

n −Rhu
n +Rhu

n − unh) = ∂tθ
n − rn,

(54)

where

rn = ∂tRhu
n − ∂tun + ∂tu

n − ut(tj) + ut(tj−1)

2
.

An easy calculation gives

Φ(D2un, D2un−1, D2u
n− 1

2

h )

=
1

2
((α(x, tn)− α(x, tn−

1
2 ))D2un + (α(x, tn−1)− α(x, tn−

1
2 ))D2un−1

+ α(x, tn−
1
2 )(D2un +D2un−1 −D2unh −D2un−1h ))

=
1

2
((α(x, tn)− α(x, tn−

1
2 ))D2un + (α(x, tn−1)− α(x, tn−

1
2 ))D2un−1

+ α(x, tn−
1
2 )(D2θn +D2θn−1 +D2ρn +D2ρn−1)).

Using the Taylor’s theorem, we have

α(x, tn) = α(x, tn−
1
2 ) +

∆t

2

∂α

∂t
(x, tn−

1
2 ) +

(∆t)2

8

∂2α

∂2t
(x, tn−

1
2 + ξ1

∆t

2
),

and

α(x, tn−1) = α(x, tn−
1
2 )− ∆t

2

∂α

∂t
(x, tn−

1
2 ) +

(∆t)2

8

∂2α

∂2t
(x, tn−

1
2 + ξ2

∆t

2
),
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where 0 < ξ1 < 1, −1 < ξ2 < 0. With (4), we get

Φ(D2un, D2un−1, D2u
n− 1

2

h )

=
∆t

2

∂α

∂t
(x, tn−

1
2 )(D2un −D2un−1) +O((∆t)2)

+
1

2
α(x, tn−

1
2 )(D2θn +D2θn−1 +D2ρn +D2ρn−1).

(55)

From (7), we have

(∂tθ
n, vh) +

1

2
(α(x, tn−

1
2 )(D2θn +D2θn−1), D2vh)

+
∆t

2

(
∂α

∂t
(x, tn−

1
2 )(D2un −D2un−1), D2vh

)
+ (O((∆t)2), D2vh)

=
1

2
(θn + ρn + θn−1 + ρn−1, D2vh) + (rn, vh)− (F (un, un−1, unh, u

n−1
h ), vh).

(56)

Setting vh = θn + θn−1 in (56), then we get

1

∆t
(‖θn‖2 − ‖θn−1‖2) +

s

2
‖D2θn +D2θn−1‖2

≤s
8
‖D2θn +D2θn−1‖2 +

1

2s
‖θn + ρn + θn−1 + ρn−1‖2

+ ‖rn‖2 +
1

4
‖θn + θn−1‖2 + ‖F (un, un−1, unh, u

n−1
h )‖2

+
1

4
‖θn + θn−1‖2 +

M1∆t

2
‖D2un −D2un−1‖‖D2θn +D2θn−1‖

≤s
8
‖D2θn +D2θn−1‖2 +

2

s
(‖θn‖2 + ‖ρn‖2 + ‖θn−1‖2 + ‖ρn−1‖2)

+ ‖rn‖2 + ‖F (un, un−1, unh, u
n−1
h )‖2 +

1

2
‖θn + θn−1‖2

+
s

8
‖D2θn +D2θn−1‖2 +

(M1∆t)2

2s
‖D2un −D2un−1‖2

≤s
4
‖D2θn +D2θn−1‖2 + (1 +

2

s
)(‖θn‖2 + ‖θn−1‖2) +

2

s
(‖ρn‖2 + ‖ρn−1‖2)

+ ‖rn‖2 + ‖F (un, un−1, unh, u
n−1
h )‖2 +

(M1∆t)2

2s
‖D2un −D2un−1‖2.

Based on the Newton-Leibniz formula and the Hölder’s inequality, we have

∣∣D2un −D2un−1
∣∣ =

∣∣∣∣∫ tn

tn−1

D2ut(t)dt

∣∣∣∣ ≤ ∆t
1
2

(∫ tn

tn−1

|D2ut(t)|2dt
) 1

2

.

Thus

1

∆t
(‖θn‖2 − ‖θn−1‖2) +

s

4
‖D2θn +D2θn−1‖2

≤(1 +
2

s
)(‖θn‖2 + ‖θn−1‖2) +

2

s
(‖ρn‖2 + ‖ρn−1‖2)

+ ‖rn‖2 + ‖F (un, un−1, unh, u
n−1
h )‖2 +

M2
1 (∆t)3

2s

∫ tn

tn−1

‖D2ut(t)‖2dt.

(57)
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A direct calculation gives

‖F (un, un−1, unh, u
n−1
h )‖

=

∥∥∥∥1

2
((un)3 + (un−1)3)− 1

4
(un + un−1)(|un|2 + |un−1|2)

+
1

4
(un + un−1)(|un|2 + |un−1|2)− 1

4
(unh + un−1h )(|unh|2 + |un−1h |2)

− 1

2
(un + un−1) +

1

2
(unh + un−1h )

∥∥∥∥.
Since (34) and the Sobolev’s embedding theorem, H2

0 (I) ↪→ H1,∞(I), we know∣∣Dun∣∣∞ ≤ C∥∥un∥∥2 ≤ C, ∣∣Dunh∣∣∞ ≤ C∥∥unh∥∥2 ≤ C. (58)

Using the Hölder’s inequality, we obtain

|un − un−1| =
∣∣∣∣∫ tn

tn−1

ut(t)dt

∣∣∣∣ ≤ C(∆t)
1
2

(∫ tn

tn−1

|ut(t)|2dt
) 1

2

. (59)

From (58) and (59), we have∥∥∥∥1

2
((un)3 + (un−1)3)− 1

4
(un + un−1)(|un|2 + |un−1|2)

∥∥∥∥
=

1

4
‖(un)3 − |un|2un−1 − un|un−1|2 + (un−1)3‖

=
1

4
‖(un + un−1)(un − un−1)2‖

≤1

4
(|un|∞ + |un−1|∞)‖(un − un−1)2‖

≤C∆t

∫ tn

tn−1

‖ut(t)‖2dt.

(60)

Due to (58), we get

‖(un + un−1)(|un|2 + |un−1|2)− (unh + un−1h )(|unh|2 + |un−1h |2)‖

=‖(un + un−1)(|un|2 + |un−1|2)− (unh + un−1h )(|un|2 + |un−1|2)

+ (unh + un−1h )(|un|2 + |un−1|2)− (unh + un−1h )(|unh|2 + |un−1h |2)‖

≤(|un|2∞ + |un−1|2∞)‖(un + un−1)− (unh + un−1h )‖

+ (|unh|∞ + |un−1h |∞)‖(un + unh)(un − unh) + (un−1 + un−1h )(un−1 − un−1h )‖

≤(|un|2∞ + |un−1|2∞)(‖θn + θn−1‖+ ‖ρn + ρn−1‖)

+ (|unh|∞ + |un−1h |∞)(|un|∞ + |unh|∞ + |un−1|∞ + |un−1h |∞)

· (‖θn + θn−1‖+ ‖ρn + ρn−1‖)

≤C(‖θn + θn−1‖+ ‖ρn + ρn−1‖).

(61)

By the triangle inequality, we obtain

‖(un + un−1)− (unh + un−1h )‖

=‖θn + ρn + θn−1 + ρn−1‖ ≤ ‖θn + θn−1‖+ ‖ρn + ρn−1‖.
(62)
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In view of (60)-(62) and (9), we have

‖F (un, un−1, unh, u
n−1
h )‖

≤C
(
‖θn + θn−1‖+ ‖ρn + ρn−1‖+ ∆t

∫ tn

tn−1

‖ut(t)‖2dt
)

≤C
(
‖θn + θn−1‖+ h4 + ∆t

∫ tn

tn−1

‖ut(t)‖2dt
)
.

Based on the ε-inequality and the Hölder’s inequality, we obtain

‖F (un, un−1, unh, u
n−1
h )‖2

≤C
(
‖θn + θn−1‖2 + h8 + (∆t)3

∫ tn

tn−1

‖ut(t)‖4dt
)
.

(63)

Let rn = rn1 + rn2 , where

rj1 = ∂tRhu(tj)− ∂tu(tj) =
1

∆t

∫ tj

tj−1

(Rh − I)utdt,

rj2 = ∂tu(tj)−
ut(tj) + ut(tj−1)

2
.

It is clear to see that

‖rj1‖ ≤
1

∆t
Ch4

∫ tj

tj−1

‖ut‖4dt ≤ C(∆t)−
1
2h4
(∫ tj

tj−1

‖ut‖24dt
) 1

2

.

Using the Taylor’s formula, we derive

‖rj2‖ ≤ C∆t

∫ tj

tj−1

‖uttt‖dt ≤ C(∆t)
3
2

(∫ tj

tj−1

‖uttt‖2dt
) 1

2

.

We easily get

n∑
j=1

‖rj‖2 ≤ C(∆t)−1((∆t)4 + h8)

∫ tn

0

(‖ut‖24 + ‖uttt‖2)dt. (64)

Adding (57), (63) and (64), we have

(‖θn‖2 − ‖θn−1‖2) +
s∆t

4
‖D2θn +D2θn−1‖2

≤C
(

∆t(‖θn + θn−1‖2 + h8)

+ ((∆t)4 + h8)

∫ tn

tn−1

(‖ut‖24 + ‖ut‖4 + ‖D2ut‖2 + ‖uttt‖2)dt

)
.

We know

‖θn + θn−1‖2 ≤ 2(‖θn‖2 + ‖θn−1‖2).
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Then

(‖θn‖2 − ‖θn−1‖2) +
s∆t

4
‖D2θn +D2θn−1‖2

≤C
(

∆t(‖θn‖2 + ‖θn−1‖2 + h8)

+ ((∆t)4 + h8)

∫ tn

tn−1

(‖ut‖24 + ‖ut‖4 + ‖D2ut‖2 + ‖uttt‖2)dt

)
.

(65)

Taking the sum over n, by n∆t = tn ≤ T , we have

‖θn‖2 − ‖θ0‖2 +
s∆t

4

n∑
i=1

‖D2θi +D2θi−1‖2

≤C
(

∆t

n∑
i=1

(‖θi‖2 + ‖θi−1‖2) + Th8

+ ((∆t)4 + h8)

∫ tn

0

(‖ut‖24 + ‖ut‖4 + ‖D2ut‖2 + ‖uttt‖2)dt

)
.

Hence

(1− C∆t)‖θn‖2 ≤ (1 + C∆t)‖θ0‖2 + C

(
∆t

n−1∑
i=1

‖θi‖2 + (∆t)4 + h8
)
.

If ∆t is small enough, we have

‖θn‖2 ≤ 1 + C∆t

1− C∆t
‖θ0‖2 +

C

1− C∆t

(
∆t

n−1∑
i=1

‖θi‖2 + (∆t)4 + h8
)
.

With the discrete Gronwall’s inequality, it gives

‖θn‖ ≤ C((∆t)2 + h4).

Using (9) and (48), we get

‖θ0‖ ≤ ‖u(0)− uh(0)‖+ ‖u(0)−Rhu(0)‖ ≤ Ch4‖u(0)‖4.

Finally, we obtain (49). The proof is completed.

In the following theorem, we introduce the error estimate in H2 norm.

Theorem 4.3 Let un be the solution to (5), unh be the solution to the fully

discrete problem (33), u(0) ∈ H4(I), ut ∈ L2(0, T ;H4(I)) ∩ L2(0, T ;W 2,4(I)),

uttt ∈ L2(0, T ;L2(I)), and u0h ∈ Uh satisfying

|u(0)− u0h|2 ≤ Ch2‖u(0)‖4. (66)

Then, we have the following error estimate:

|un − unh|2 ≤ C(∆t+ h2). (67)
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Proof Taking vh = ∂tθ
n in (56), we obtain

‖∂tθn‖2 +
1

2∆t
(αn− 1

2 (D2θn +D2θn−1), D2θn −D2θn−1)

+
1

2

(
∂α

∂t
(x, tn−

1
2 )(D2un −D2un−1), D2θn −D2θn−1

)
≤1

4
(‖D2(θn + ρn + θn−1 + ρn−1)‖2) +

1

4
‖∂tθn‖2

+ ‖rn‖2 +
1

4
‖∂tθn‖2 + ‖F (un, un−1, unh, u

n−1
h )‖2 +

1

4
‖∂tθn‖2

≤‖D2θn‖2 + ‖D2ρn‖2 + ‖D2θn−1‖2 + ‖D2ρn−1‖2 +
3

4
‖∂tθn‖2

+ ‖rn‖2 + ‖F (un, un−1, unh, u
n−1
h )‖2.

With the Newton-Leibniz formula and the Hölder’s inequality, we get

|D2un −D2un−1|2 ≤
∣∣∣∣∫ tn

tn−1

|D2ut|2dt
∣∣∣∣ ≤ ∆t

∫ tn

tn−1

|D2ut|2dt.

Based on the Cauchy’s inequality, we have

(αn− 1
2D2θn, D2θn)− (αn− 1

2D2θn−1, D2θn−1)

≤2∆t(‖D2θn‖2 + ‖D2ρn‖2 + ‖D2θn−1‖2 + ‖D2ρn−1‖2 + ‖F (un, un−1, unh, u
n−1
h )‖2)

+ 2∆t‖rn‖2 +M1∆t‖D2un −D2un−1‖‖D2θn −D2θn−1‖

≤2∆t(‖D2θn‖2 + ‖D2ρn‖2 + ‖D2θn−1‖2 + ‖D2ρn−1‖2 + ‖F (un, un−1, unh, u
n−1
h )‖2)

+ 2∆t‖rn‖2 +
M2

1 ∆t

2
‖D2un −D2un−1‖2 +

∆t

2
(‖D2θn +D2θn−1‖2)

≤2∆t(‖D2θn‖2 + ‖D2ρn‖2 + ‖D2θn−1‖2 + ‖D2ρn−1‖2 + ‖F (un, un−1, unh, u
n−1
h )‖2)

+ 2∆t‖rn‖2 +
M2

1 (∆t)2

2

∫ tn

tn−1

‖D2ut‖2dt+ ∆t(‖D2θn‖2 + ‖D2θn−1‖2).

(68)

There exists ξ ∈ (tn−
3
2 , tn−

1
2 ) such that

(αn− 1
2 (D2θn +D2θn−1), D2θn −D2θn−1)

=(αn− 1
2D2θn, D2θn)− (αn− 3

2D2θn−1, D2θn−1)

− ((αn− 1
2 − αn− 3

2 )D2θn−1, D2θn−1))

=(αn− 1
2D2θn, D2θn)− (αn− 3

2D2θn−1, D2θn−1)−∆t

(
∂α

∂t
(x, ξ)D2θn−1, D2θn−1

)
.

Thus it is to get

(αn− 1
2D2θn, D2θn)− (αn− 3

2D2θn−1, D2θn−1)

≤2∆t(‖D2θn‖2 + ‖D2ρn‖2 + ‖D2θn−1‖2 + ‖D2ρn−1‖2)

+ 2∆t(‖rn‖2 + ‖F (un, un−1, unh, u
n−1
h )‖2)

+
M2

1 (∆t)2

2

∫ tn

tn−1

‖D2ut‖2dt+ ∆t(‖D2θn‖2 + (1 +M1)‖D2θn−1‖2).

(69)
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Taking the sum over n, the following formula is deduced

(αn− 1
2D2θn, D2θn)− (α

1
2D2θ1, D2θ1)

≤C∆t

n∑
j=2

(‖D2θj‖2 + ‖D2ρj‖2 + ‖D2θj−1‖2 + ‖D2ρj−1‖2)

+ C∆t

n∑
j=2

(‖rj‖2 + ‖F (uj , uj−1, ujh, u
j−1
h )‖2)

+ C(∆t)2
∫ tn

0

‖D2ut‖2dt+ C∆t

n∑
j=2

(‖D2θj‖2 + ‖D2θj−1‖2).

(70)

Using (3), we know

(αn− 1
2D2θn, D2θn) ≥ s‖D2θn‖2, −(α

1
2D2θ1, D2θ1) ≥ −S‖D2θ1‖2,

Further, one has

s‖D2θn‖2 − S‖D2θ1‖2

≤C∆t

n∑
j=1

(‖D2θj‖2 + ‖D2ρj‖2 + ‖rj‖2 + ‖F (uj , uj−1, ujh, u
j−1
h )‖2)

+ C(∆t)2
∫ tn

0

‖D2ut‖2dt.

(71)

Substituting (63) and (64) into (71), we know

s‖D2θn‖2 − S‖D2θ1‖2

≤C∆t

n∑
j=1

(‖D2θj‖2 + ‖D2ρj‖2 + ‖θj‖2)

+ C((∆t)2 + h8)

∫ tn

0

(‖ut‖24 + ‖uttt‖2 + ‖ut(t)‖4 + ‖D2ut(t)‖2)dt.

(72)

Letting n = 1 in (68), and using (63) and (64), one could have

‖D2θ1‖ ≤ C‖D2θ0‖+O(∆t). (73)

By (72) and (73), we get

‖D2θn‖2 ≤ C(‖D2θ0‖2 + (∆t)2 + h4 + ∆t

n−1∑
j=1

(‖D2θj‖2 + ‖θj‖2).

With the help of (49), we prove

‖D2θn‖2 ≤ C(‖D2θ0‖2 + (∆t)2 + h4 + ∆t

n−1∑
j=1

‖D2θj‖2).
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If the time step is sufficiently small, the discrete Gronwall’s inequality yields

‖D2θn‖ ≤ C(∆t+ h2).

The proof is completed.

Numerical approximation
In this section, to test the efficiency of the cubic B-spline finite element scheme, we

consider the following problem:
ut + (α(x, t)uxx)xx − uxx + u3 − u = f(x, t), (x, t) ∈ (0, 1)× (0, 1],

u(x, t) = ux(x, t) = 0, x = 0, 1, t ∈ (0, 1],

u(x, 0) = u0(x), x ∈ [0, 1],

(74)

where u0(x) = 0 and α(x, t) = 1 + xt. The exact solution of the problem (74) is

chosen as u(x, t) = t2(1− cos2πx). Then the concrete functional form of f(x, t) is

f(x, t) =(2t− t2)(1− cos2πx) + t6(1− cos2πx)3

− 4π2t2(1− 4π2(1 + xt))cos2πx− 16π3t3sin2πx.

As shown Figure 1 and Figure 2, the numerical solution is in well accordance with

the exact solution and the numerical scheme is valid and efficient.

Tables 1-2 display the corresponding errors and convergence rates of the cubic

B-spline FEM.

Figures

Figure 1 The exact solution to problem (74).

Tables
In Table 1, the time step is taken as ∆t = 1

8000 to get the spatial convergence order.

The data demonstrate that the error decreases with the decrease of the space step.
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Figure 2 The approximate solution to problem (74).

The convergent rate of the numerical solution is the fourth order in L2 norm and

is the second order convergent in H2 semi-norm.

Table 1 The errors for different space step h at t = 1 and convergence orders.

(∆t, h) ‖u− uh‖ rate ‖u− uh‖1 rate ‖u− uh‖2 rate
(1/8000, 1/10) 2.0139e−4 7.0746e−3 4.3020e−1

(1/8000, 1/20) 1.1537e−5 4.1256 8.1497e−4 3.1178 1.0389e−1 2.0500
(1/8000, 1/40) 7.0611e−7 4.0302 9.9733e−5 3.0306 2.5745e−2 2.0127
(1/8000, 1/80) 4.5077e−8 3.9694 1.2400e−5 3.0077 6.4221e−3 2.0032

In Table 2, the space step is fixed to h = 1
1000 , we analyze the corresponding

error estimates and convergence orders in time direction. The data tell us that the

convergent orders both are the second order in L2 and H2 norms.

Table 2 The errors for different time step ∆t at t = 1 and convergence orders.

(∆t, h) ‖u− uh‖ rate ‖u− uh‖1 rate ‖u− uh‖2 rate
(1/20, 1/1000) 7.1681e−4 2.5193e−3 1.6053e−2

(1/40, 1/1000) 1.9373e−4 1.8875 6.8532e−4 1.8781 4.3412e−3 1.8867
(1/80, 1/1000) 4.7734e−5 2.0210 1.7138e−4 1.9996 1.0794e−3 2.0079
(1/160, 1/1000) 1.1336e−5 2.0741 4.1135e−5 2.0588 2.6176−4 2.0438

The numerical example shows that the cubic B-spline FEM is an efficient approx-

imate calculation tool for solving the fourth order nonlinear parabolic equation.

Conclusion
In this work, we have presented the cubic B-spline FEM for solving a mathematical

model consisting of a fourth order nonlinear parabolic equation and initial-boundary

value conditions. The variable coefficient of the fourth order main term is function

of time and space variables, which increases the difficulty of theoretical analysis and

numerical experiment. To solve this problem, we introduce the elliptic projection

operator and the energy function. The boundness of the semi-discrete and fully

discrete schemes are proved. Thus the error estimates in L2 norm and H2 norm are

deduced by means of the boundness, Sobolev’s embedding theorem, and so on. The

results of theoretical analysis are verified by numerical experiment.
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Based on the following considerations, we adopt the B-spline FEM. For one thing,

B-splines have better smoothness than the Lagrange and Hermite type elements.

For another, B-spline finite element only has one type of basis functions, so the

scale of matrix from B-spline FEM is lower.

In summary, the B-spline FEM is a powerful numerical method for solving higher

order nonlinear parabolic equations. It is worthy of further study.
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20. H.B. Curry, I.J. Schoenberg: On Pólya frequency functions IV: the fundamental spline functions and their limits

[J]. J. Anal. Math. 17(1), 71-107 (1966).

21. C. de Boor. B-form basis. In ”Geometric Modelling”, G Farin(ed.) [M], SIAM Philadelphia 131-148 (1978).

22. L. Piegl, W. Tilier: The Nurbs Book [M]. Berlin: Spring-Verlag (1997).



Qin and Huang Page 22 of 22

23. G. Farin: Subsplines über Dreiecken [D]. FRG: Techincal University Braunschweig (1979).

24. G. Farin: Curves ans Surfaces for CAGD: A Practical (Fifth Edition) [M]. New York: A cademic Press (2002).

25. L.L. Schumaker: Spline Functions: Basic Theory (Third Edition) [M]. Cambridge: Cambridge University Press

(2007).

26. A. A. Soliman: A Galerkin solution for Burgers’ equation using cubic B-spline finite elements [J]. Abstract and

Applied Analysis 46, 382-395 (2012).

27. R. Pourgholi, S.H. Tabasi, H. Zeidabadi: Numerical techniques for solving system of nonlinear inverse problem

[J]. Eng. Comput. 34, 487-502 (2018).

28. S. Kutluay, A. Esen: A B-spline finite element method for the thermistor problem with the modified electrical

conductivity [J]. Appl. Math. Comput. 156(3), 621-632 (2005).

29. M. Erfanian, H. Zeidabadi: Approximate solution of linear Volterra integro-differential equation by using cubic

B-spline finite element method in the complex plane [J]. Adv. Differ. Equ. 2019(1), 62-74 (2019).

30. S. Dhawan, S. Kapoor, S. Kumar: Numerical method for advection diffusion equation using FEM and B-splines

[J]. J. Comput. Sci. 3, 429-437 (2012).
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