References
Bouwmeester, H., Schuurink, R. C., Bleeker, P. M. & Schiestl, F.
(2019). The role of volatiles in plant communication. Plant
Journal , 100, 892-907.
Bradford, M. M. (1976). A rapid and sensitive method for the
quantitation of microgram quantities of protein utilizing the principle
of protein-dye binding. Analytical Biochemistry , 72, 248-54.
Castelyn, H. D., Appelgryn, J. J., Mafa, M. S., Pretorius, Z. A. &
Visser, B. (2015). Volatiles emitted by leaf rust infected wheat induce
a defence response in exposed uninfected wheat seedlings.Australasian Plant Pathology , 44, 245-254.
Chen, L. J., Shi, X. Y., Nian, B., Duan, S. G., Jiang, B., Wang, X. H.,
et al. (2020a). Alternative splicing regulation of anthocyanin
biosynthesis in Camellia sinensis var. assamica unveiled
by PacBio Iso-Seq. Genes Genomes Genetics , 10, 2713-2723.
Chen, S. L., Zhang, L. P., Cai, X. M., Li, X., Bian, L., Luo, Z. X., et
al. (2020b). (E)-Nerolidol is a volatile signal that induces defenses
against insects and pathogens in tea plants. Horticulture
Research , 7, 52
Chen, Y. X., Guo, X. Y., Gao, T., Zhang, N., Wan, X. C., Schwab, W. et
al. (2020c). UGT74AF3 enzymes specifically catalyze the glucosylation of
4-hydroxy-2,5-dimethylfuran-3(2H)-one, an important volatile compound inCamellia sinensis . Horticulture Research , 7, 25.
Chen, Y. J., Zeng, L., Shu, N., Jiang, M. Y., Wang, H., Huang, Y. J. et
al. (2018). Pestalotiopsis-like species causing gray blight disease onCamellia sinensis in china. Plant Disease , 102, 98-106.
Cui, H. T., Gobbato, E., Kracher, B., Qiu, J. D., Bautor, J., & Parker,
J. E. (2017). A core function of EDS1 with PAD4 is to protect the
salicylic acid defense sector in Arabidopsis immunity. New
Phytologist , 213, 1802-1817.
Dorantes-Acosta, A. E., Sanchez-Hernandez, C. V., & Arteaga-Vazquez, M.
A. (2012). Biotic stress in plants: life lessons from your parents and
grandparents. Frontiers in Genetics , 3, 256.
Eberl, F., Hammerbacher, A., Gershenzon, J. & Unsicker, S. B. (2018).
Leaf rust infection reduces herbivore-induced volatile emission in black
poplar and attracts a generalist herbivore. New Phytologist , 220,
760-772.
Fischer, M. J. C., Meyer, S., Claudel, P., Steyer, D., Bergdoll, M.,
Hugueney, P. (2013). Determination of amino-acidic positions important
for Ocimum basilicum geraniol synthase activity. Advances
in Bioscience and Biotechnology , 4, 242-249.
Han, Z. X., Rana, M. M., Liu, G. F., Gao, M. J., Li, D. X., Wu, F. G. et
al. (2016). Green tea flavour determinants and their changes over
manufacturing processes. Food Chemistry , 212, 739-748.
Ho, C. T., Zheng, X. & LI, S. (2015). Tea aroma formation. Food
Science and Human Wellness, 4, 9-27.
Hu, Y.Q., Zhang, M.T., Lu, M.Q., Wu, Y., Jing, T.T, Zhao, M.Y. et al.
(2022). Salicylic acid carboxyl glucosyltransferase UGT87E7 regulates
disease resistance in Camellia sinensis . Plant Physiol ,
188, 1507-1520.
Huang, M. S., Sanchez-moreiras, A. M., Abel, C., Sohrabi, R., Lee, S.,
Gershenzon, J. & Tholl, D. (2012). The major volatile organic compound
emitted from Arabidopsis thaliana flowers, the sesquiterpene
(E)-β-caryophyllene, is a defense against a bacterial pathogen.New Phytologist , 193, 997-1008.
Jeyaraj, A., Wang, X. W., Wang, S. S., Liu, S. R., Zhang, R., Wu A L et
al. (2019). Identification of regulatory networks of microRNAs and their
targets in response to Colletotrichum gloeosporioides in tea
plant (Camellia sinensis L.). Frontiers in Plant Science ,
10, 1096.
Jiang, H., Yu, F., Qin, L., Zhang, N., Cao, Q., Schwab, W. et al (2019).
Dynamic change in amino acids, catechins, alkaloids, and gallic acid in
six types of tea processed from the same batch of fresh tea
(Camellia sinensis L.) leaves. Journal of Food Composition
and Analysis , 77, 28-38.
Jiang, H., Zhang, M. T., Qin, L., Wang, D. X., Yu, F., Liang, W. H. et
al. (2020). Chemical composition of a supercritical fluid (SFE-CO2)
extract from Baeckea frutescens L. Leaves and its bioactivity
against two pathogenic fungi isolated from the tea plant (Camellia
sinensis (L.) O. Kuntze). Plants , 9, 1119.
Jing, T. T., Du, W. K., Gao, T., Wu, Y., Zhang, N., Zhao, M. Y. et al
(2020). Herbivore-induced DMNT catalyzed by CYP82D47 plays an important
role in the induction of JA-dependent herbivore resistance of
neighboring tea plants. Plant Cell and Environment , 44,
1178-1191.
Jing, T. T., Zhang, N., Gao, T., Zhao, M. Y., Jin, J. Y., Chen, Y. X. et
al (2019). Glucosylation of (Z)-3-hexenol informs intraspecies
interactions in plants: A case study in Camellia sinensis .Plant Cell and Environment , 42, 1352-1367.
Kalagatur, N. K., Ghosh, O. S. N., Sundararaj, N., & Mudili, V. (2018).
Antifungal activity of chitosan nanoparticles encapsulated withCymbopogon martinii essential oil on plant pathogenic fungiFusarium graminearum . Frontiers in Pharmacology , 9, 610.
Laloum, T., Mart N, G. & Duque, P. (2018). Alternative splicing control
of abiotic stress responses. Trends in Plant Science , 23,
140-150.
Li, X., Xu, Y. Y., Shen, S. L., Yin, X. R., Klee, H., Zhang, B. et al.
(2017). Transcription factor CitERF71 activates the terpene synthase
gene CitTPS16 involved in the synthesis of E-geraniol in sweet orange
fruit. Journal of Experimental Botany , 68, 4929-4938.
Li, Y. Y., Mi, X. Z., Zhao, S. Q., Zhu, J. Y., Guo, R., Xia, X. B. et al
(2020). Comprehensive profiling of alternative splicing landscape during
cold acclimation in tea plant. BMC Genomics , 21, 65.
Liu, G. F., Liu, J. J., He, Z. R., Wang, F. M., Yang, H., Yan, Y. F. et
al. (2018). Implementation of CsLIS/NES in linalool biosynthesis
involves transcript splicing regulation in Camellia sinensis .Plant Cell and Environment, 41, 176-186.
Liu, J. Q., Chen, X. J., Liang, X. X., Zhou, X. G., Yang, F., Liu, J. et
al. (2016). Alternative splicing of rice WRKY62 and WRKY76transcription factor genes in pathogen defense. Plant Physiology ,
171, 1427-1442.
Liu, J. Y., Huang, F., Wang, X., Zhang, M., Zheng, R., Wang, J. et al.
(2014). Genome-wide analysis of terpene synthases in soybean: functional
characterization of GmTPS3. Gene , 544, 83-92.
Martin, D. M., Aubourg, S., Schouwey, M. B., Daviet, L., Schalk, M.,
Toub, O. et al. (2010a). Functional annotation, genome organization and
phylogeny of the grapevine (Vitis vinifera ) terpene synthase gene
family based on genome assembly, FLcDNA cloning, and enzyme assays.BMC Plant Biology , 10, 226.
Mi, X. Z., Yue, Y., Tang, M. S., An, Y. L., Xie, H., Qiao, D. H. et al.
(2021). TeaAS: a comprehensive database for alternative splicing in tea
plants (Camellia sinensis ). BMC Plant Biology , 21, 280.
Nagegowda, D. A. (2010). Plant volatile terpenoid metabolism:
biosynthetic genes, transcriptional regulation and subcellular
compartmentation. FEBS Letters , 584, 2965-2973.
Nieuwenhuizen, N. J., Green, S. A., Chen, X. Y., Bailleul, E. J. D.,
Matich, A. J., Wang, M. Y. et al. (2013). Functional genomics reveals
that a compact terpene synthase gene family can account for terpene
volatile production in apple. Plant Physiology , 161, 787-804.
Pose, D., Verhage, L., Ott, F., Yant, L., Mathieu, J., Angenent, G. C.
et al. (2013). Temperature-dependent regulation of flowering by
antagonistic FLM variants. Nature , 503, 414-417.
Quintana-rodriguez, E., Morales-vargas, A. T., Molina-torres, J.,
Ádame-alvarez, R., Acosta-gallegos, J. A. & Heil, M. (2015). Plant
volatiles cause direct, induced and associational resistance in common
bean to the fungal pathogen Colletotrichum lindemuthianum. Journal
of Ecology , 103, 250-260.
Reddy, A. S., Marquez, Y., Kalyna, M. & Barta, A. (2013). Complexity of
the alternative splicing landscape in plants. Plant Cell , 25,
3657-3683.
Richter, A., Schaff, C., Zhang, Z. W., Lipka, A. E., Tian, F., Kollner,
T. G. et al. (2016). Characterization of biosynthetic pathways for the
production of the volatile homoterpenes DMNT and TMTT in Zea mays.Plant Cell, 28, 2651-2665.
Rietveld, A. & Wiseman, S. (2003). Antioxidant effects of tea: evidence
from human clinical trials. Journal of Nutrition , 133,
3285s-3292s.
Sharifi, R., Lee, S. M. & Ryu, C. M. (2018). Microbe-induced plant
volatiles. New Phytologist , 220, 684-691.
Tang, X., Shao, Y. L., Tang, Y. J. & Zhou, W. W. (2018). Antifungal
activity of essential oil compounds (geraniol and citral) and inhibitory
mechanisms on grain pathogens (Aspergillus flavus andAspergillus ochraceus ). Molecules , 23, 2108.
Turlings, T. C. J. & Erb, M. (2018). Tritrophic interactions mediated
by herbivore-induced plant volatiles: mechanisms, ecological relevance,
and application potential. Annual Review of Entomology , 63,
433-452.
Wang, Q., Cao, T. J., Zheng, H., Zhou, C. F., Wang, Z., Wang, R. et al.
(2019a.) Manipulation of carotenoid metabolic flux by lycopene
cyclization in ripening red pepper (Capsicum annuum var.conoides ) Fruits. Journal of Agricultural and Food
Chemistry , 67, 4300-4310.
Wang, S. S., Liu, L., Mi, X. Z., Zhao, S. Q., An, Y. L., Xia, X. B. et
al. (2021). Multi-omics analysis to visualize the dynamic roles of
defense genes in the response of tea plants to gray blight. The
Plant Journal , 106, 862-875.
Wang, X. W., Zeng, L. T., Liao, Y. Y., Li, J. L., Tang, J. C., & Yang,
Z. Y. (2019b). Formation of α-farnesene in tea (Camellia
sinensis ) leaves induced by herbivore-derived wounding and its effect
on neighboring tea plants. International Journal of Molecular
Sciences , 20, 4151.
Wei, C. L., Yang, H., Wang, S. B., Zhao, J., Liu, C., Gao, L. P. et al.
(2018). Draft genome sequence of Camellia sinensis var.sinensis provides insights into the evolution of the tea genome
and tea quality. Proceedings of the National Academy of Sciences ,
115, 4151-4158.
Xia, E. H., Tong, W., Wu, Q., Wei, S., Zhao, J., Zhang, Z. Z. et al.
(2020). Tea plant genomics: achievements, challenges and perspectives.Horticulture Research , 7, 7.
Xu, Q. S., Cheng, L., Mei, Y., Huang, L. L., Zhu, J. Y., Mi, X. Z. et
al. (2019). Alternative splicing of key genes in LOX pathway involves
biosynthesis of volatile fatty acid derivatives in tea plant
(Camellia sinensis ). Journal of Agricultural and Food
Chemistry , 67, 13021-13032.
Xu, Q. S., He, Y. X., Yan, X. M., Zhao, S. Q., Zhu, J. Y., & Wei, C. L.
(2018). Unraveling a crosstalk regulatory network of temporal aroma
accumulation in tea plant (Camellia sinensis ) leaves by
integration of metabolomics and transcriptomics. Environmental and
Experimental Botany , 149, 81-94.
Yang, Z. Y., Baldermann, S., & Watanabe, N. (2013). Recent studies of
the volatile compounds in tea. Food Research International , 53,
585-599.
Zhang, X., Ménard, R., LI, Y., Coruzzi, G. M., Heitz, T., Shen, W. H. et
al. (2020). Arabidopsis SDG8 potentiates the sustainable transcriptional
induction of the pathogenesis-related genes PR1 and PR2 during plant
defense response. Frontiers in Plant Science , 11, 277.
Zhang, Z. Z., Li, Y. B., Qi, L., & Wan, X. C. (2006). Antifungal
activities of major tea leaf volatile constituents towardColletorichum camelliae Massea. Journal of Agricultural and
Food Chemistry , 54, 3936-3940.
Zhao, M. Y., Wang, L., Wang, J. M., Jin, J. Y., Zhang, N., Lei, L. et
al. (2020a). Induction of priming by cold stress via inducible volatile
cues in neighboring tea plants. Journal of Integrative Plant
Biology , 62, 1461-1468.
Zhao, M. Y., Zhang, N., Gao, T., Jin, J. Y., Jing, T. T., Wang, J. M. et
al. (2020b). Sesquiterpene glucosylation mediated by glucosyltransferase
UGT91Q2 is involved in the modulation of cold stress tolerance in tea
plants. New Phytologist , 226, 362-372.
Zhao, Y. J., Sun, J. Y., Xu, P., Zhang, R., & Li, L. G. (2014).
Intron-mediated alternative splicing of wood-associated nac
transcription factor1b regulates cell wall thickening during fiber
development in Populus species. Plant Physiology , 164, 765-776.
Zhou, H. C., Shamala, L. F., Yi, X. K., Yan, Z., & Wei, S. (2020).
Analysis of terpene synthase family genes in Camellia sinensiswith an emphasis on abiotic stress conditions. Scientific
Reports , 10, 933.
Zhou, Y., Liu, X. Y., & Yang, Z. Y. (2019). Characterization of terpene
synthase from tea green leafhopper being involved in formation of
geraniol in tea (Camellia sinensis ) leaves and potential effect
of geraniol on insect-derived endobacteria. Biomolecules , 9, 808.
Zhou, Y., Zeng, L. T., Liu, X. Y., Gui, J. D., Mei, X., Fu, X. M. et al.
(2017). Formation of (E)-nerolidol in tea (Camellia sinensis )
leaves exposed to multiple stresses during tea manufacturing. Food
Chemistry , 231, 78-86.
Zhu, J. Y., Wang, X. W., Guo, L. X., Xu, Q. S., Zhao, S. Q., Li, F. D.
et al. (2018a). Characterization and alternative splicing profiles of
the lipoxygenase gene family in tea plant (Camellia sinensis ).Plant and Cell Physiology , 59, 1765-1781.
Zhu, J. Y., Wang, X. W., Xu, Q. S., Zhao, S. Q., Tai, Y. L., & Wei, C.
L. (2018b). Global dissection of alternative splicing uncovers
transcriptional diversity in tissues and associates with the flavonoid
pathway in tea plant (Camellia sinensis ). BMC Plant
Biology , 18, 266.