References
Bouwmeester, H., Schuurink, R. C., Bleeker, P. M. & Schiestl, F. (2019). The role of volatiles in plant communication. Plant Journal , 100, 892-907.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry , 72, 248-54.
Castelyn, H. D., Appelgryn, J. J., Mafa, M. S., Pretorius, Z. A. & Visser, B. (2015). Volatiles emitted by leaf rust infected wheat induce a defence response in exposed uninfected wheat seedlings.Australasian Plant Pathology , 44, 245-254.
Chen, L. J., Shi, X. Y., Nian, B., Duan, S. G., Jiang, B., Wang, X. H., et al. (2020a). Alternative splicing regulation of anthocyanin biosynthesis in Camellia sinensis var. assamica unveiled by PacBio Iso-Seq. Genes Genomes Genetics , 10, 2713-2723.
Chen, S. L., Zhang, L. P., Cai, X. M., Li, X., Bian, L., Luo, Z. X., et al. (2020b). (E)-Nerolidol is a volatile signal that induces defenses against insects and pathogens in tea plants. Horticulture Research , 7, 52
Chen, Y. X., Guo, X. Y., Gao, T., Zhang, N., Wan, X. C., Schwab, W. et al. (2020c). UGT74AF3 enzymes specifically catalyze the glucosylation of 4-hydroxy-2,5-dimethylfuran-3(2H)-one, an important volatile compound inCamellia sinensis . Horticulture Research , 7, 25.
Chen, Y. J., Zeng, L., Shu, N., Jiang, M. Y., Wang, H., Huang, Y. J. et al. (2018). Pestalotiopsis-like species causing gray blight disease onCamellia sinensis in china. Plant Disease , 102, 98-106.
Cui, H. T., Gobbato, E., Kracher, B., Qiu, J. D., Bautor, J., & Parker, J. E. (2017). A core function of EDS1 with PAD4 is to protect the salicylic acid defense sector in Arabidopsis immunity. New Phytologist , 213, 1802-1817.
Dorantes-Acosta, A. E., Sanchez-Hernandez, C. V., & Arteaga-Vazquez, M. A. (2012). Biotic stress in plants: life lessons from your parents and grandparents. Frontiers in Genetics , 3, 256.
Eberl, F., Hammerbacher, A., Gershenzon, J. & Unsicker, S. B. (2018). Leaf rust infection reduces herbivore-induced volatile emission in black poplar and attracts a generalist herbivore. New Phytologist , 220, 760-772.
Fischer, M. J. C., Meyer, S., Claudel, P., Steyer, D., Bergdoll, M., Hugueney, P. (2013). Determination of amino-acidic positions important for Ocimum basilicum geraniol synthase activity. Advances in Bioscience and Biotechnology , 4, 242-249.
Han, Z. X., Rana, M. M., Liu, G. F., Gao, M. J., Li, D. X., Wu, F. G. et al. (2016). Green tea flavour determinants and their changes over manufacturing processes. Food Chemistry , 212, 739-748.
Ho, C. T., Zheng, X. & LI, S. (2015). Tea aroma formation. Food Science and Human Wellness, 4, 9-27.
Hu, Y.Q., Zhang, M.T., Lu, M.Q., Wu, Y., Jing, T.T, Zhao, M.Y. et al. (2022). Salicylic acid carboxyl glucosyltransferase UGT87E7 regulates disease resistance in Camellia sinensis . Plant Physiol , 188, 1507-1520.
Huang, M. S., Sanchez-moreiras, A. M., Abel, C., Sohrabi, R., Lee, S., Gershenzon, J. & Tholl, D. (2012). The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen.New Phytologist , 193, 997-1008.
Jeyaraj, A., Wang, X. W., Wang, S. S., Liu, S. R., Zhang, R., Wu A L et al. (2019). Identification of regulatory networks of microRNAs and their targets in response to Colletotrichum gloeosporioides in tea plant (Camellia sinensis L.). Frontiers in Plant Science , 10, 1096.
Jiang, H., Yu, F., Qin, L., Zhang, N., Cao, Q., Schwab, W. et al (2019). Dynamic change in amino acids, catechins, alkaloids, and gallic acid in six types of tea processed from the same batch of fresh tea (Camellia sinensis L.) leaves. Journal of Food Composition and Analysis , 77, 28-38.
Jiang, H., Zhang, M. T., Qin, L., Wang, D. X., Yu, F., Liang, W. H. et al. (2020). Chemical composition of a supercritical fluid (SFE-CO2) extract from Baeckea frutescens L. Leaves and its bioactivity against two pathogenic fungi isolated from the tea plant (Camellia sinensis (L.) O. Kuntze). Plants , 9, 1119.
Jing, T. T., Du, W. K., Gao, T., Wu, Y., Zhang, N., Zhao, M. Y. et al (2020). Herbivore-induced DMNT catalyzed by CYP82D47 plays an important role in the induction of JA-dependent herbivore resistance of neighboring tea plants. Plant Cell and Environment , 44, 1178-1191.
Jing, T. T., Zhang, N., Gao, T., Zhao, M. Y., Jin, J. Y., Chen, Y. X. et al (2019). Glucosylation of (Z)-3-hexenol informs intraspecies interactions in plants: A case study in Camellia sinensis .Plant Cell and Environment , 42, 1352-1367.
Kalagatur, N. K., Ghosh, O. S. N., Sundararaj, N., & Mudili, V. (2018). Antifungal activity of chitosan nanoparticles encapsulated withCymbopogon martinii essential oil on plant pathogenic fungiFusarium graminearum . Frontiers in Pharmacology , 9, 610.
Laloum, T., Mart N, G. & Duque, P. (2018). Alternative splicing control of abiotic stress responses. Trends in Plant Science , 23, 140-150.
Li, X., Xu, Y. Y., Shen, S. L., Yin, X. R., Klee, H., Zhang, B. et al. (2017). Transcription factor CitERF71 activates the terpene synthase gene CitTPS16 involved in the synthesis of E-geraniol in sweet orange fruit. Journal of Experimental Botany , 68, 4929-4938.
Li, Y. Y., Mi, X. Z., Zhao, S. Q., Zhu, J. Y., Guo, R., Xia, X. B. et al (2020). Comprehensive profiling of alternative splicing landscape during cold acclimation in tea plant. BMC Genomics , 21, 65.
Liu, G. F., Liu, J. J., He, Z. R., Wang, F. M., Yang, H., Yan, Y. F. et al. (2018). Implementation of CsLIS/NES in linalool biosynthesis involves transcript splicing regulation in Camellia sinensis .Plant Cell and Environment, 41, 176-186.
Liu, J. Q., Chen, X. J., Liang, X. X., Zhou, X. G., Yang, F., Liu, J. et al. (2016). Alternative splicing of rice WRKY62 and WRKY76transcription factor genes in pathogen defense. Plant Physiology , 171, 1427-1442.
Liu, J. Y., Huang, F., Wang, X., Zhang, M., Zheng, R., Wang, J. et al. (2014). Genome-wide analysis of terpene synthases in soybean: functional characterization of GmTPS3. Gene , 544, 83-92.
Martin, D. M., Aubourg, S., Schouwey, M. B., Daviet, L., Schalk, M., Toub, O. et al. (2010a). Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera ) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays.BMC Plant Biology , 10, 226.
Mi, X. Z., Yue, Y., Tang, M. S., An, Y. L., Xie, H., Qiao, D. H. et al. (2021). TeaAS: a comprehensive database for alternative splicing in tea plants (Camellia sinensis ). BMC Plant Biology , 21, 280.
Nagegowda, D. A. (2010). Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Letters , 584, 2965-2973.
Nieuwenhuizen, N. J., Green, S. A., Chen, X. Y., Bailleul, E. J. D., Matich, A. J., Wang, M. Y. et al. (2013). Functional genomics reveals that a compact terpene synthase gene family can account for terpene volatile production in apple. Plant Physiology , 161, 787-804.
Pose, D., Verhage, L., Ott, F., Yant, L., Mathieu, J., Angenent, G. C. et al. (2013). Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature , 503, 414-417.
Quintana-rodriguez, E., Morales-vargas, A. T., Molina-torres, J., Ádame-alvarez, R., Acosta-gallegos, J. A. & Heil, M. (2015). Plant volatiles cause direct, induced and associational resistance in common bean to the fungal pathogen Colletotrichum lindemuthianum. Journal of Ecology , 103, 250-260.
Reddy, A. S., Marquez, Y., Kalyna, M. & Barta, A. (2013). Complexity of the alternative splicing landscape in plants. Plant Cell , 25, 3657-3683.
Richter, A., Schaff, C., Zhang, Z. W., Lipka, A. E., Tian, F., Kollner, T. G. et al. (2016). Characterization of biosynthetic pathways for the production of the volatile homoterpenes DMNT and TMTT in Zea mays.Plant Cell, 28, 2651-2665.
Rietveld, A. & Wiseman, S. (2003). Antioxidant effects of tea: evidence from human clinical trials. Journal of Nutrition , 133, 3285s-3292s.
Sharifi, R., Lee, S. M. & Ryu, C. M. (2018). Microbe-induced plant volatiles. New Phytologist , 220, 684-691.
Tang, X., Shao, Y. L., Tang, Y. J. & Zhou, W. W. (2018). Antifungal activity of essential oil compounds (geraniol and citral) and inhibitory mechanisms on grain pathogens (Aspergillus flavus andAspergillus ochraceus ). Molecules , 23, 2108.
Turlings, T. C. J. & Erb, M. (2018). Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annual Review of Entomology , 63, 433-452.
Wang, Q., Cao, T. J., Zheng, H., Zhou, C. F., Wang, Z., Wang, R. et al. (2019a.) Manipulation of carotenoid metabolic flux by lycopene cyclization in ripening red pepper (Capsicum annuum var.conoides ) Fruits. Journal of Agricultural and Food Chemistry , 67, 4300-4310.
Wang, S. S., Liu, L., Mi, X. Z., Zhao, S. Q., An, Y. L., Xia, X. B. et al. (2021). Multi-omics analysis to visualize the dynamic roles of defense genes in the response of tea plants to gray blight. The Plant Journal , 106, 862-875.
Wang, X. W., Zeng, L. T., Liao, Y. Y., Li, J. L., Tang, J. C., & Yang, Z. Y. (2019b). Formation of α-farnesene in tea (Camellia sinensis ) leaves induced by herbivore-derived wounding and its effect on neighboring tea plants. International Journal of Molecular Sciences , 20, 4151.
Wei, C. L., Yang, H., Wang, S. B., Zhao, J., Liu, C., Gao, L. P. et al. (2018). Draft genome sequence of Camellia sinensis var.sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences , 115, 4151-4158.
Xia, E. H., Tong, W., Wu, Q., Wei, S., Zhao, J., Zhang, Z. Z. et al. (2020). Tea plant genomics: achievements, challenges and perspectives.Horticulture Research , 7, 7.
Xu, Q. S., Cheng, L., Mei, Y., Huang, L. L., Zhu, J. Y., Mi, X. Z. et al. (2019). Alternative splicing of key genes in LOX pathway involves biosynthesis of volatile fatty acid derivatives in tea plant (Camellia sinensis ). Journal of Agricultural and Food Chemistry , 67, 13021-13032.
Xu, Q. S., He, Y. X., Yan, X. M., Zhao, S. Q., Zhu, J. Y., & Wei, C. L. (2018). Unraveling a crosstalk regulatory network of temporal aroma accumulation in tea plant (Camellia sinensis ) leaves by integration of metabolomics and transcriptomics. Environmental and Experimental Botany , 149, 81-94.
Yang, Z. Y., Baldermann, S., & Watanabe, N. (2013). Recent studies of the volatile compounds in tea. Food Research International , 53, 585-599.
Zhang, X., Ménard, R., LI, Y., Coruzzi, G. M., Heitz, T., Shen, W. H. et al. (2020). Arabidopsis SDG8 potentiates the sustainable transcriptional induction of the pathogenesis-related genes PR1 and PR2 during plant defense response. Frontiers in Plant Science , 11, 277.
Zhang, Z. Z., Li, Y. B., Qi, L., & Wan, X. C. (2006). Antifungal activities of major tea leaf volatile constituents towardColletorichum camelliae Massea. Journal of Agricultural and Food Chemistry , 54, 3936-3940.
Zhao, M. Y., Wang, L., Wang, J. M., Jin, J. Y., Zhang, N., Lei, L. et al. (2020a). Induction of priming by cold stress via inducible volatile cues in neighboring tea plants. Journal of Integrative Plant Biology , 62, 1461-1468.
Zhao, M. Y., Zhang, N., Gao, T., Jin, J. Y., Jing, T. T., Wang, J. M. et al. (2020b). Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants. New Phytologist , 226, 362-372.
Zhao, Y. J., Sun, J. Y., Xu, P., Zhang, R., & Li, L. G. (2014). Intron-mediated alternative splicing of wood-associated nac transcription factor1b regulates cell wall thickening during fiber development in Populus species. Plant Physiology , 164, 765-776.
Zhou, H. C., Shamala, L. F., Yi, X. K., Yan, Z., & Wei, S. (2020). Analysis of terpene synthase family genes in Camellia sinensiswith an emphasis on abiotic stress conditions. Scientific Reports , 10, 933.
Zhou, Y., Liu, X. Y., & Yang, Z. Y. (2019). Characterization of terpene synthase from tea green leafhopper being involved in formation of geraniol in tea (Camellia sinensis ) leaves and potential effect of geraniol on insect-derived endobacteria. Biomolecules , 9, 808.
Zhou, Y., Zeng, L. T., Liu, X. Y., Gui, J. D., Mei, X., Fu, X. M. et al. (2017). Formation of (E)-nerolidol in tea (Camellia sinensis ) leaves exposed to multiple stresses during tea manufacturing. Food Chemistry , 231, 78-86.
Zhu, J. Y., Wang, X. W., Guo, L. X., Xu, Q. S., Zhao, S. Q., Li, F. D. et al. (2018a). Characterization and alternative splicing profiles of the lipoxygenase gene family in tea plant (Camellia sinensis ).Plant and Cell Physiology , 59, 1765-1781.
Zhu, J. Y., Wang, X. W., Xu, Q. S., Zhao, S. Q., Tai, Y. L., & Wei, C. L. (2018b). Global dissection of alternative splicing uncovers transcriptional diversity in tissues and associates with the flavonoid pathway in tea plant (Camellia sinensis ). BMC Plant Biology , 18, 266.