References
Berta, T., Qadri, Y., Tan, P.-H., and Ji, R.-R. (2017). Targeting dorsal
root ganglia and primary sensory neurons for the treatment of chronic
pain. Expert Opin Ther Targets 21 : 695–703.
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation
of microgram quantities of protein utilizing the principle of
protein-dye binding. Anal Biochem 72 : 248–254.
Bruehl, S., Apkarian, A.V., Ballantyne, J.C., Berger, A., Borsook, D.,
Chen, W.G., et al. (2013). Personalized medicine and opioid analgesic
prescribing for chronic pain: opportunities and challenges. J Pain14 : 103–113.
Busch-Dienstfertig, M., Roth, C.A., and Stein, C. (2013). Functional
characteristics of the naked mole rat μ-opioid receptor. PLoS One8 : e79121.
Del Vecchio, G., Labuz, D., Temp, J., Seitz, V., Kloner, M., Negrete,
R., et al. (2019). pKa of opioid ligands as a discriminating factor for
side effects. Sci Rep 9 : 19344.
Dembla, S., Behrendt, M., Mohr, F., Goecke, C., Sondermann, J.,
Schneider, F.M., et al. (2017). Anti-nociceptive action of peripheral
mu-opioid receptors by G-beta-gamma protein-mediated inhibition of TRPM3
channels. Elife 6 : e26280.
Fullerton, E.F., Doyle, H.H., and Murphy, A.Z. (2018). Impact of sex on
pain and opioid analgesia: a review. Curr Opin Behav Sci 23 :
183–190.
Gaveriaux-Ruff, C., Nozaki, C., Nadal, X., Hever, X.C., Weibel, R.,
Matifas, A., et al. (2011). Genetic ablation of delta opioid receptors
in nociceptive sensory neurons increases chronic pain and abolishes
opioid analgesia. Pain 152 : 1238–1248.
González-Rodríguez, S., Quadir, M.A., Gupta, S., Walker, K.A., Zhang,
X., Spahn, V., et al. (2017). Polyglycerol-opioid conjugate produces
analgesia devoid of side effects. ELife 6 : e27081.
Hochstrate, P., Piel, C., and Schlue, W.-R. (1995). Effect of
extracellular K+ on the intracellular free Ca2+ concentration in leech
glial cells and Retzius neurones. Brain Research 696 : 231–241.
Imam, M.Z., Kuo, A., Ghassabian, S., and Smith, M.T. (2018). Progress in
understanding mechanisms of opioid-induced gastrointestinal adverse
effects and respiratory depression. Neuropharmacology 131 :
238–255.
Jagla, C., Martus, P., and Stein, C. (2014). Peripheral opioid receptor
blockade increases postoperative morphine demands–a randomized,
double-blind, placebo-controlled trial. Pain 155 : 2056–2062.
Jeske, N.A. (2019). Dynamic Opioid Receptor Regulation in the Periphery.
Mol Pharmacol 95 : 463–467.
Jiménez-Vargas, N.N., Yu, Y., Jensen, D.D., Bok, D.D., Wisdom, M.,
Latorre, R., et al. (2022). Agonist that activates the µ-opioid receptor
in acidified microenvironments inhibits colitis pain without side
effects. Gut 71 :695–704.
Kilkenny, C., Browne, W.J., Cuthill, I.C., Emerson, M., and Altman, D.G.
(2010). Improving Bioscience Research Reporting: The ARRIVE Guidelines
for Reporting Animal Research. PLOS Biology 8 : e1000412.
Lešnik, S., Hodošček, M., Bren, U., Stein, C., and Bondar, A.-N. (2020).
Potential Energy Function for Fentanyl-Based Opioid Pain Killers. J.
Chem. Inf. Model. 60 : 3566–3576.
Lu, V.B., and Ikeda, S.R. (2016). Strategies for Investigating G-Protein
Modulation of Voltage-Gated Ca2+ Channels. Cold Spring Harb. Protoc.5 : 426-434.
Ludwig, M.-G., Vanek, M., Guerini, D., Gasser, J.A., Jones, C.E.,
Junker, U., et al. (2003). Proton-sensing G-protein-coupled receptors.
Nature 425 : 93–98.
Machelska, H., and Celik, M.Ö. (2018). Advances in Achieving Opioid
Analgesia Without Side Effects. Front Pharmacol 9 :1388
Mann, A., Illing, S., Miess, E., and Schulz, S. (2015) Different
mechanisms of homologous and heterologous μ-opioid receptor
phosphorylation. Br J Pharmacol 172 : 311-316.
Martínez, V., and Abalo, R. (2020). Peripherally acting opioid
analgesics and peripherally-induced analgesia. Behav Pharmacol31 : 136–158.
Nockemann, D., Rouault, M., Labuz, D., Hublitz, P., McKnelly, K., Reis,
F.C., et al. (2013). The K(+) channel GIRK2 is both necessary and
sufficient for peripheral opioid-mediated analgesia. EMBO Mol Med5 : 1263–1277.
Proft, J., and Weiss, N. (2015). G protein regulation of neuronal
calcium channels: back to the future. Mol Pharmacol 87 : 890–906.
Ray, S., Sunkara, V., Schütte, C., and Weber, M. (2020). How to
calculate pH-dependent binding rates for receptor–ligand systems based
on thermodynamic simulations with different binding motifs. Molecular
Simulation 46 : 1443–1452.
Rodriguez-Gaztelumendi, A., Spahn, V., Labuz, D., Machelska, H., and
Stein, C. (2018). Analgesic effects of a novel pH-dependent μ-opioid
receptor agonist in models of neuropathic and abdominal pain. Pain159 : 2277–2284.
Rosas, R., Huang, X.-P., Roth, B.L., and Dockendorff, C. (2019).
β-Fluorofentanyls Are pH-Sensitive Mu Opioid Receptor Agonists. ACS Med
Chem Lett 10 : 1353–1356.
Sexton, J.E., Cox, J.J., Zhao, J., and Wood, J.N. (2018). The Genetics
of Pain: Implications for Therapeutics. Annu Rev Pharmacol Toxicol58 : 123–142.
Spahn, V., Del Vecchio, G., Labuz, D., Rodriguez-Gaztelumendi, A.,
Massaly, N., Temp, J., et al. (2017). A nontoxic pain killer designed by
modeling of pathological receptor conformations. Science 355 :
966–969.
Spahn, V., Del Vecchio, G., Rodriguez-Gaztelumendi, A., Temp, J., Labuz,
D., Kloner, M., et al. (2018). Opioid receptor signaling, analgesic and
side effects induced by a computationally designed pH-dependent agonist.
Sci Rep 8 : 8965.
Stein, C. (2018). New concepts in opioid analgesia. Expert Opin Investig
Drugs 27 : 765–775.
Walwyn, W., Evans, C.J., and Hales, T.G. (2007). β-Arrestin2 and c-Src
Regulate the Constitutive Activity and Recycling of μ Opioid Receptors
in Dorsal Root Ganglion Neurons. J. Neurosci. 27 : 5092–5104.
Weibel, R., Reiss, D., Karchewski, L., Gardon, O., Matifas, A., Filliol,
D., et al. (2013). Mu Opioid Receptors on Primary Afferent Nav1.8
Neurons Contribute to Opiate-Induced Analgesia: Insight from Conditional
Knockout Mice. PLoS ONE 8 : e74706.
Weiss, N., and Zamponi, G.W. (2021). Opioid Receptor Regulation of
Neuronal Voltage-Gated Calcium Channels. Cell Mol Neurobiol 41 :
839–847.
Yekkirala, A.S., Roberson, D.P., Bean, B.P., and Woolf, C.J. (2017).
Breaking barriers to novel analgesic drug development. Nat Rev Drug
Discov 16 : 545–564.
Zollner, C., Shaqura, M.A., Bopaiah, C.P., Mousa, S., Stein, C.,
Schafer, M. (2003). Painful inflammation-induced increase in mu-opioid
receptor binding and G-protein coupling in primary afferent
neurons. Mol Pharmacol 64(2):202-10.