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Abstract. In this paper, we focus on the following nonlinear Schrödinger equations with linear

couples 

−∆u+ V1(x)u+ λ1u = µ1
∫
R3

|u(y)|p
|x−y| dy|u|

p−2u+ βv in R3,

−∆v + V2(x)v + λ2v = µ2
∫
R3

|v(y)|q
|x−y| dy|v|

q−2v + βu in R3,∫
R3

|u|2 dx = a,
∫
R3

|v|2 dx = b,

where 5
3
< p, q < 7

3
, µ1, µ2 > 0, a, b ≥ 0, β ∈ R \ {0}, λ1, λ2 ∈ R are Lagrange multipliers

and V1(x), V2(x) : R3 → R are trapping potentials. We prove the existence of the solutions with

prescribed L2(R)-norm with trivial trapping potentials and nontrivial trapping potentials by applying

the rearrangement inequalities.

1. Introduction and main results

The two-component nonlinear Schrödinger system with Hartree type nonlinears−i∂Φ1

∂t + V1(x)Φ1 = ~2

2m∆Φ1 + µ1(C(x) ∗ |Φ1|p)|Φ1|p−2Φ1 + βΦ2,

−i∂Φ2

∂t + V2(x)Φ2 = ~2

2m∆Φ2 + µ2(C(x) ∗ |Φ2|q)|Φ2|q−2Φ2 + βΦ1,
(1.1)

has attracted a great deal of attraction in physics recently. Here Φi: R × R3 → C for i = 1, 2,

V1(x) and V2(x) are the external potentials, ~ is the Plank constant, m is the mass of the particles,

µ1, µ2 > 0 imply the self-focusing strength in the component of the beam and C(x) is the response

function and possesses information on the mutual interaction between the particles. β > 0 (or < 0) is a

coupling coefficient which measures the interaction between the two components of the beam. The i-th

component of the beam in Kerr-like photorefractive media is denoted by solution Φi for i = 1, 2. The

existence of self-trapping of incoherent beam in a nonlinear medium has been proved by experiments

in [25, 26]. Due to the optical pulses propagating in a linear medium have a natural tendency to

broaden respectively in time (dispersion) and space (diffraction), the observation of (1.1) is important.

It is well-known that nonlinear Schrödinger equations for the mass-subcritical case are extensive

studied recently. Our study is motivated by the following nonlinear Schrödinger equations
−∆u = +λ1u+ µ1|u|p−2u+ γ1β|u|γ1−2uvγ2 in R3,

−∆v = +λ2v + µ2|v|q−2v + γ2β|v|γ2−2vuγ1 in R3,∫
R3

|u|2 dx = a,
∫
R3

|v|2 dx = b.

(1.2)

Guo and Jeanjean [7] studied (1.2) and proved the orbital stability of the standing waves associated

to the set of minimizers for the mass-subcritical case. Then Chen and Zou [3] considered the existence
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of the normalized solutions of the following elliptic system with linear coupling nonlinearities for the

mass-subcritical case 
−∆u+ V1(x)u+ λ1u = µ1|u|p−2u+ βv in R3,

−∆v + V2(x)v + λ2v = µ2|v|q−2v + βu in R3,∫
R3

|u|2 dx = a,
∫
R3

|v|2 dx = b.

(1.3)

Moreover, the nonlinear interaction can be of nonlocal nature in lots of situations. For instance,

under the influence of an external potential and two-body attractive interaction between two particles

for bosons or electrons, the condensate in the mean field regime is run by the nonlinear Hartree equation

(see [4–6,9])

i
∂ψ

∂t
= −1

2
∆ψ + V ψ − χ(C(x) ∗ |ψ|p)|ψ|p−2ψ, x ∈ R3. (1.4)

The function ψ is a radially symmetric two-body potential and V is the trapping potential, ∗ denotes

the convolution in R3. Equation (1.4) turns to be the well-known Choquard equation [14,17,19] in the

case V = 0, which arises from the model of wave propagation in a media with a large response length [1].

The nonlocal term of (1.4) describes interaction between the bosons in the condensate [22,24].

The general singular semilinear Choquard equation problem

−∆u− µu = (Iα ∗ |u|p)|u|p−2u in RN , µ ∈ R, (1.5)

has been studied in [21, 32, 33]. Moroz and Schaftingen [21] proved that any positive groundstates

about some point were radially symmetric and monotone decaying for (1.5). The parameters N,α, p

are essential from the theoretical point of view. The case of dimension N = 3 of (1.5), Xiang [32]

studied the uniqueness and nondegeneracy results for ground states, provided that p > 2 and p is

sufficiently close to 2. For N ≥ 1 and N+α
N ≤ p < N+α

(N−2)+
Ye [33] proved the existence of the solutions

of (1.5). In the case p = 2, N = 3 and Iα = |x|−1, (1.5) is deduced to

−∆u− µu = (|x|−1 ∗ |u|2)u in R3, µ ∈ R. (1.6)

By using symmetrical decreasing rearrangement inequalities to (1.6), the author of [14] proposed an

existence and uniqueness of the minimizing solution. Equation (1.6) is called the nonlinear Hartree or

Schrödinger-Newton equation, and the problem also has been widely studied in phisics. In the physical

sense, (1.6) was not only used to describe the quantum mechanics of a static polaron by Pekar [23], but

also used by Choquard in a certain approximating to Hartree-Fock theory of one component plasma to

describe an electron trapped in its own hole in 1976 by Lieb [14]. The readers may turn to [8,15–17,20]

and the references therein for more mathematical and physics background.

On the one hand, the nonlinear Schrödinger system with nonlinear couples also has been intensively

studied in the past twenty years. Wang and Yang in [31] proved the existence and nonexistence of

L2(RN )-normalized solutions of coupled Hartree equations, the system given by
−∆u+ V1(x)u = λ1u+ µ1

( ∫
R3

u(y)2

|x−y|α dy

)
u+ β

( ∫
R3

v(y)2

|x−y|α dy

)
u in RN ,

−∆v + V2(x)v = λ2v + µ2

( ∫
R3

v(y)2

|x−y|α dy

)
v + β

( ∫
R3

u(y)2

|x−y|α dy

)
v in RN ,

(1.7)

where β > 0 and α = 2, under certain type trapping potentials. By proving some delicate energy

estimates, a precise description was given on the concentration behavior of minimizer solutions of (1.7).

In addition, an optimal blowing up rate for the minimizer solutions of the system was also proved.
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In [30], standing wave solutions of coupled nonlinear Hartree equations with nonlocal interaction were

considered for (1.7) in the case V1 = V2 = 0 and α = 1.

On the other hand, the general two-component of nonlinear Schrödinger equations system with

nonlocal Hartree type interaction has also been studied. We consider the following system of elliptic

equations 
−∆u+ V1(x)u+ λ1u = µ1

∫
R3

|u(y)|p
|x−y| dy|u|

p−2u+ βv in R3,

−∆v + V2(x)v + λ2v = µ2

∫
R3

|v(y)|q
|x−y| dy|v|

q−2v + βu in R3,
(1.8)

where 5
3 < p, q < 7

3 , µ1, µ2 > 0, a, b ≥ 0, λ1, λ2 ∈ R, β ∈ R \ {0} is a coupling constant which describes

attractive or repulsive interactions, and V1(x), V2(x) : R3 → R are trapping potentials. We investigate

the solutions (u, v) ∈ H1(R3)×H1(R3) under the following constraints∫
R3

|u|2 dx = a > 0,

∫
R3

|v|2 dx = b > 0.

Thus λ1, λ2 ∈ R are considerd as Lagrange multipliers. In fact, the function (Φ1(x, t),Φ2(x, t)) =

(eiλtu(x), eiλtv(x)) gives a nonlinear solitary wave for (1.1) whenever (u, v) solves (1.8).

To the best of our knowledge, there is no work concerning the system (1.8) no matter whether

mass-subcritical or mass-supercritical in recent works. A major difficulty in searching for the solutions

of (1.8) is to get the compactness of the embedding H1(R3)→ L2(R3). Since the presence of the linear

couple terms, it is difficult to tackle the compactness of the PS sequence.

In this paper, we are devoted to study the nonlinear Schrödinger equations (1.8) for the mass-

subcritical case. Firstly, we consider the existence of the solutions of (1.8) with trivial trapping

potential. If Vi(x) ≡ 0 for i = 1, 2, then (1.8) is reduced to the following nonlocal system
−∆u+ λ1u = µ1

∫
R3

|u(y)|p
|x−y| dy|u|

p−2u+ βv in R3,

−∆v + λ2v = µ2

∫
R3

|v(y)|q
|x−y| dy|v|

q−2v + βu in R3.
(1.9)

Here the energy functional corresponding to (1.9) is defined by

J∞(u, v) =
1

2

∫
R3

(|∇u|2 + |∇v|2) dx− µ1

2p

∫
R3

∫
R3

|u(x)|p|u(y)|p

|x− y|
dx dy

− µ2

2q

∫
R3

∫
R3

|v(x)|q|v(y)|q

|x− y|
dx dy − β

∫
R3

uv dx.

(1.10)

Furthermore, the case, studying the existence of normalized solutions to (1.9), can be described

equivalently by considering the limiting minimization problem

m∞(a, b) := inf
(u,v)∈S(a,b)

J∞(u, v),

where S(a, b) is defined by

S(a, b) := {(u, v) ∈ H1(R3)×H1(R3) :

∫
R3

|u|2 dx = a,

∫
R3

|v|2 dx = b}.

In this sense, λ1 and λ2 are Lagrange multipliers to be determined. For simplicity, we suppose the

following conditions are always true throughout the paper

(M)
5

3
< p, q <

7

3
, µ1, µ2 > 0, a, b ≥ 0, β ∈ R \ {0}.
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The first main result of the present paper is concerned about the existence of minimizers of (1.10)

restricted to S(a, b).

Theorem 1.1. Assume that (M) holds, then m∞(a, b) is attained at (ū, v̄), that is, (1.9) exists

at least one ground state solution with the constraint in S(a, b) such that dJ∞|S(a,b)(ū, v̄) = 0 and

J∞(ū, v̄) = m∞(a, b). Furthermore, (ū, v̄) satisfies

(i) If β > 0, then ū, v̄ are both positive and radial.

(ii) If β < 0, then ū, v̄ are both radial, and either ū > 0, v̄ < 0 or ū < 0, v̄ > 0.

Remark 1.2. β > 0 and β < 0 decide the choice of minimizing sequence and the performance of

minimizers, which can be seen in lemma 2.5. Moreover, this phenomenon also occurs in situation

nontrivial Vi(x) for i = 1, 2.

Due to we are interested in studying (1.8) with the linearly coupled systems. This is a quite delicate

matter and still with difficulty to obtain optimal results. Motivated by [7], the authors mainly verified

the compactness of the minimizing sequences with the rearrangement results by Shibata in [28]. Also

motivated by Chen and Zou in [3], they proved the existence of the normalized solutions of (1.3) with

linear coupling nonlinearities. The proof was based on the refined energy estimates. We shall refer

to above great approaches to prove our main results. It is much more difficult for us to exclude the

dichotomy of minimizing sequences. However, we can overcome the issue by a more accurate upper

bound of the energy function m∞(a, b). The key idea to deal with the problem is using a special test

function.

In the rest results, we consider (1.8) with general potential Vi(x) for i = 1, 2, supposing that

Vi(x) ∈ C(R3) satisfies

(V1) Vi(0) = minx∈R3 Vi(x) = ci > −∞ for i = 1, 2,

(V2) lim|x|→∞ Vi(x) = supx∈R3 Vi(x) =: Vi,∞ ∈ (ci,+∞] for i = 1, 2.

Indeed, the system (1.8) is related to the system of Euler-Lagrange equations of the following

constrained problem

m(a, b) := inf
(u,v)∈S∗(a,b)

J(u, v),

where energy functional is defined by

J(u, v) =
1

2

∫
R3

(|∇u|2 + V1(x)u2 + |∇v|2 + V2(x)v2) dx

− µ1

2p

∫
R3

∫
R3

|u(x)|p|u(y)|p

|x− y|
dx dy − µ2

2q

∫
R3

∫
R3

|v(x)|q|v(y)|q

|x− y|
dx dy − β

∫
R3

uv dx,

and S∗(a, b) is given by

S∗(a, b) := {(u, v) ∈ H :

∫
R3

|u|2 dx = a,

∫
R3

|v|2 dx = b},

here

H := {(u, v) ∈ H1(R3)×H1(R3) :

∣∣∣∣ ∫
R3

V1(x)u2 dx

∣∣∣∣ <∞, ∣∣∣∣ ∫
R3

V2(x)v2 dx

∣∣∣∣ <∞}.
Since different types of trapping potentials decide different results, the purpose of this paper is to

provide some results in this respect. The coerciveness is essential for verifying the compactness result.

We first concern a general case Vi =∞ for i = 1, 2, which is coercive. Our first result reads as follows.
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Theorem 1.3. Assume that (M) holds. If Vi(x) satisfies (V1) and (V2) with Vi,∞ =∞ for i = 1, 2,

then there exists (ū, v̄) ∈ S(a, b) such that m(a, b) is attained at (ū, v̄). Therefore, (1.8) exists at least

one ground state solution (ū, v̄) in S(a, b). Furthermore, (ū, v̄) satisfies

(i) If β > 0, then ū, v̄ are both positive.

(ii) If β < 0, then either ū > 0, v̄ < 0 or ū < 0, v̄ > 0.

Finally, we consider the case of Vi,∞ <∞. Without loss of generality, we suppose that ci < Vi,∞ = 0.

Since (Vi(x), λi) can be replaced by (Ṽi(x), λ̃i) := (Vi(x) − Vi,∞, λi + Vi,∞). We have the following

result.

Theorem 1.4. Assume that (M) holds. If Vi(x) satisfies (V1) and (V2) with ci < Vi,∞ = 0 for

i = 1, 2, then there exists (ū, v̄) ∈ S(a, b) such that m(a, b) is attained at (ū, v̄). Therefore, (1.8) exists

at least one ground state solution (ū, v̄) in S(a, b). Furthermore, (ū, v̄) satisfies

(i) If β > 0, then ū, v̄ are both positive.

(ii) If β < 0, then either ū > 0, v̄ < 0 or ū < 0, v̄ > 0.

Remark 1.5. In fact, there are many functions satisfy (V1) and (V2) with ci < Vi,∞ = 0. We give

some examples

(i) Vi(x) = −Ce−|x| for C is a positive constant;

(ii) Vi(x) = − 1
1+|x| .

Notice that we use the results deduced by Lions [18] when studying the nontrivial potentials case.

He proved every minimizing sequence for the energy function m(a, b) has a convergent subsequence in

H1(R3)×H1(R3), which is equivalent to the subadditivity condition, i.e.,

m(a1 + a2, b1 + b2) < m(a1, b1) +m∞(a2, b2)

for any a2+b2 > 0. By reduction to absurdity, [10] showed the compactness of the minimizing sequence.

We also can show the compactness of the minimizing sequence by reduction to absurdity. Motivated

by Shibata in [27], our paper is devoted to use a new rearrangement approach. After using this new

approach we find it is very easy to study the problem (1.8). We hope this new approach can be applied

to more problems to simplify the proof.

Throughout this paper, we will use the following notations.

• Set H := H1(R3)×H1(R3) and Hr = H1
r ×H1

r , where H1
r denotes the redial symmetric with

respect to 0, which is the subspace of H1(R3).

• o(1) denotes a quantity which tends to 0.

• | · |p means the standard norm of Lp(R3).

• Sr(a, b) denotes S(a, b) ∩Hr.

• ‖ (u, v) ‖H :=
( ∫

R3(|∇u|2 + |∇v|2) dx
) 1

2 is the norm of H.

• ⇀ means weak convergence.

• u∗ denotes the symmetric decreasing rearrangement of u ∈ H1(R3), recalling that

|∇u∗|2 ≤ |∇u|2,∫
R3

uv dx ≤
∫
R3

u∗v∗ dx,

∫
R3

∫
R3

|u(x)|p|u(y)|p

|x− y|
dx dy ≤

∫
R3

∫
R3

|u∗(x)|p|u∗(y)|p

|x− y|
dx dy,

(1.11)
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for p > 1 in [12].

This paper is organized as follows. Section 2 is focused on introducing some preliminary results. In

Section 3 we deal with the case of trivial potentials. In Section 4 we shall address the case of nontrivial

potentials.

2. Some preliminaries

In this section, we investigate some significant lemmas which will be used in proving our main

results.

We first consider singular Choquard equation with L2(R3)-constraint. For fixed a, µ > 0, 5
3 < p < 7

3 ,

we concern the existence of solution (λ, u) ∈ R×H1(R3) to the following system
−∆u+ λu = µ

∫
R3

|u(y)|p
|x−y| dy|u|

p−2u in R3,∫
R3

|u|2 dx = a.
(2.1)

The energy functional of above system is given by

Jµ,p(u) =
1

2

∫
R3

|∇u|2 dx− µ

2p

∫
R3

∫
R3

|u(x)|p|u(y)|p

|x− y|
dx dy, (2.2)

which is constrained on S(a), where S(a) = {u ∈ H1(R3) :
∫
R3 |u|2 dx = a}. By using variational

methods, the existence of solutions of (2.1) can be described equivalently by nonnegative minimizers

of the following problem

mµ,p(a) := inf
u∈S(a)

Jµ,p(u). (2.3)

Then we have the following lemma.

Lemma 2.1. Assume that a, µ > 0, 5
3 < p < 7

3 , then up to a translation (2.1) has positive solutions

with λ > 0. Furthermore,

mµ,p(a) = inf
u∈S(a)

Jµ,p(u) < 0.

Proof. The existence of positive solutions with λ > 0 of (2.3) have been proved by Xiang [32]. Thus

we only prove mµ,p(a) = infu∈S(a) Jµ,p(u) < 0. For any u ∈ (a), we have t
3
2u(tx) ∈ S(a) for all t > 0.

After a simple calculation obtains that

mµ,p(a) = inf
t>0

Jµ,p
(
t
3
2u(tx)

)
= C1(p)

(
Dp(u)2

K(u)3p−5

) 1
7−3p

< 0. (2.4)

where C1(p) = 7−3p
3p−5 ( 3p−5

2 )
2

7−3p , K(u) = 1
2

∫
R3 |∇u|2 dx and Dp(u) = µ

2p

∫
R3

∫
R3

|u(x)|p|u(y)|p
|x−y| dx dy. This

finishes the proof of Lemma 2.1. �

We next recall the following classical Hardy-Littlewood-Sobolev inequality.

Lemma 2.2. [12] Assume that f ∈ Ls(RN ), g ∈ Lt(RN ), then we have∫
RN

∫
RN

f(x)g(y)

|x− y|λ
dx dy ≤ C(s, t, λ)|f |s|g|t,

where 1 < s, t <∞, 0 < λ < N and 1
s + 1

t + λ
N = 2.
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Recalling Lemma 2.2, there exists a positive constant A such that∫
R3

∫
R3

|u(x)|s|u(y)|s

|x− y|
dx dy ≤ A|u|2s6s

5
, ∀ u ∈ L 6s

5 (R3), (2.5)

for 5
3 < s < 5. Then combining interpolation inequality, we obtain that

|u| 6s
5
≤ |u|θ2|u|1−θ6 , ∀ u ∈ L2(R3) ∩ L6(R3), (2.6)

where 0 < θ = 5−s
2s < 1. By Sobolev inequality, there existence a positive constant B such that

|u|6 ≤ B|∇u|2, ∀ u ∈ H1(R3). (2.7)

Therefore, combining (2.5), (2.6) and (2.7), we have∫
R3

∫
R3

|u(x)|s|u(y)|s

|x− y|
dx dy ≤ AB3s−5|u|5−s2 |∇u|3s−5

2 . (2.8)

It is vital to verify the convergence of minimizing sequences to prove Theorems 1.1, 1.3 and 1.4.

Therefore, we now recall some lemmas of this result given in [2] by Brezis and Lieb.

Lemma 2.3. Assume that {(un, vn)} ⊂ H is a bounded sequence, (un, vn) ⇀ (u, v) in H, then we

obtain that

lim
n→∞

∫
R3

(
|∇un|2 − |∇u|2 − |∇(un − u)|2)

)
dx = 0.

lim
n→∞

∫
R3

(
|∇vn|2 − |∇v|2 − |∇(vn − v)|2)

)
dx = 0.

lim
n→∞

∫
R3

(
unvn − uv − (un − u)(vn − v)

)
dx = 0.

The following lemma is essential to verify the compactness for the nonlocal term of the functional.

Lemma 2.4. [21] Let N ≥ 3, α ∈ (0, N), p ∈ [N+α
N , N+α

N−2 ], and {un} be a bounded sequence in

L
2Np
N+α (RN ). If un → u almost everywhere in RN as n→ +∞, then

lim
n→+∞

( ∫
RN

(Iα ∗ |un|p)|un|p dx−
∫
RN

(Iα ∗ |un − u|p)|un − u|p dx
)

=

∫
RN

(Iα ∗ |u|p)|u|p dx.

Next, we summarize a list of basic properties of a minimizing sequence for m(a, b).

Lemma 2.5. Let {(un, vn)} ⊂ S(a, b) be a minimizing sequence for m(a, b). Then we obtain that

(i) for β > 0, {(|un|, |vn|)} is also a minimizing sequence;

(ii) for β < 0, {(|un|,−|vn|)} or {(−|un|, |vn|)} is also a minimizing sequence.
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Proof. Combining
∫
R3

∣∣∇|u|∣∣2 dx ≤ ∫
R3 |∇u|2 dx and

∫
R3

∣∣∇|v|∣∣2 dx ≤ ∫
R3 |∇v|2 dx and noticing∫

R3 uv dx ≤
∫
R3 |u||v| dx, for β > 0, we deduce that

J(|u|, |v|) =
1

2

∫
R3

(
∣∣∇|u|∣∣2 + V1(x)u2 +

∣∣∇|v|∣∣2 + V2(x)v2) dx

− µ1

2p

∫
R3

∫
R3

|u(x)|p|u(y)|p

|x− y|
dx dy − µ2

2q

∫
R3

∫
R3

|v(x)|q|v(y)|q

|x− y|
dx dy − β

∫
R3

|u||v| dx

≤ 1

2

∫
R3

(|∇u|2 + V1(x)u2 + |∇v|2 + V2(x)v2) dx

− µ1

2p

∫
R3

∫
R3

|u(x)|p|u(y)|p

|x− y|
dx dy − µ2

2q

∫
R3

∫
R3

|v(x)|q|v(y)|q

|x− y|
dx dy − β

∫
R3

uv dx

= J(u, v),

(2.9)

hence we have J(|un|, |vn|) ≤ J(un, vn).

Similar to the above arguments, for β < 0, we have J(−|un|, |vn|) = J(|un|,−|vn|) ≤ J(un, vn).

This completes the proof of Lemma 2.5. �

Lemma 2.5 implies that the case β < 0 can be treated as the case β > 0. In the rest of this paper,

we shall only consider the case β > 0. In next lemma we continue to summarize some properties of a

minimizing sequence for m(a, b).

Lemma 2.6. Assume that (u0, v0) ∈ H and {(un, vn)} is a minimizing sequence for m(a, b) with

(un, vn)→ (u0, v0) in L2(R3)× L2(R3), then we obtain that (un, vn)→ (u0, v0) in H.

Proof. Using the fact that |un − u0|22 + |vn − v0|22 → 0, we obtain that |u0|22 = a, |v0|22 = b and

lim
n→∞

∫
R3

(
V1(x)u2

n + V2(x)v2
n)
)
dx =

∫
R3

(
V1(x)u2

0 + V2(x)v2
0)
)
dx.

According to (2.8), we derive that

J∞(u, v) =
1

2

∫
R3

(|∇u|2 + |∇v|2) dx− µ1

2p

∫
R3

∫
R3

|u(x)|p|u(y)|p

|x− y|
dx dy

− µ2

2q

∫
R3

∫
R3

|v(x)|q|v(y)|q

|x− y|
dx dy − β

∫
R3

uv dx

≥ 1

2
(|∇u|22 + |∇v|22)− µ1a

5−p
2 AB3p−5

2p
|∇u|3p−5

2

− µ2b
5−q
2 AB3q−5

2q
|∇v|3q−5

2 − βa 1
2 b

1
2 ,

(2.10)

where (u, v) ∈ S(a, b). Since 0 < 3p − 5, 3q − 5 < 2, we deduce that J∞(u, v) is bounded from below

and coercive on S(a, b). By using similar arguments as in the above we can prove the coerciveness of J .

By the coerciveness of J , we know that the sequence {(un, vn)} is bounded in H. Up to a subsequence,

we have (un, vn) ⇀ (û, v̂) in H. Moreover, combining (un, vn)→ (u0, v0) in L2(R3)×L2(R3), then we
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have (û, v̂) = (u0, v0), that is, (un, vn) ⇀ (u0, v0) in H. We infer from Lemma 2.3 and Lemma 2.4 that

m(a, b) ≤ J(u0, v0)

≤ lim
n→∞

inf J(un, vn)

= m(a, b),

which implies

lim
n→∞

∫
R3

(|∇un|2 + |∇vn|2) dx = lim
n→∞

∫
R3

(|∇u0|2 + |∇v0|2) dx. (2.11)

Combining (2.11) with (∇un,∇vn) ⇀ (∇u0,∇v0) in L2(R3) × L2(R3), then we conclude that

(un, vn)→ (u0, v0) in H. This finishes the proof. �

Finally, we shall introduce a different transform to replace the rearrangement results in [27] as

expressed in [11]. Here we assume that u, v ∈ H1(R3), then
√
u2 + v2 has properties given by the

following lemma.

Lemma 2.7. For all u, v ∈ H1(R3), there satisfies

(i) If v(x) > 0, ∫
R3

|∇
√
u2 + v2|2 dx ≤

∫
R3

(|∇u|2 + |∇v|2) dx,

where the equality holds if and only if u(x) = cv(x), here c is a constant.

(ii) For 5
3 < p < 7

3 ,∫
R3

∫
R3

|
√
u(x)2 + v(x)2|p|

√
u(y)2 + v(y)2|p

|x− y|
dx dy

≥
∫
R3

∫
R3

|u(x)|p|u(y)|p

|x− y|
dx dy +

∫
R3

∫
R3

|v(x)|p|v(y)|p

|x− y|
dx dy.

(2.12)

(iii) Set 0 ≤ u1, u2, v1, v2 ∈ H1(R3), then∫
R3

√
u2

1 + v2
1

√
u2

2 + v2
2 dx ≥

∫
R3

(u1v1 + u2v2) dx. (2.13)

Proof. (i) This has been proved in [12].

(ii) For a1, a2, b1, b2 ≥ 0, t > 5
6 , we obtain that

(a1 + a2)t(b1 + b2)t ≥ at1bt1 + at2b
t
2,

and the equality holds if and only if a1b2 = a2b1 = 0. Let u(x)2 = a1, v(x)2 = a2, u(y)2 = b1,

v(y)2 = b2, t = p
2 , multiplying by |x − y|−1 both sides and integrating over R3 both sides, then we

obtain (2.12). In fact, we see that (2.12) attains the equality if and only if u = 0 or v = 0.

(iii) For a1, a2, b1, b2 ≥ 0, we obtain that

(a2
1 + a2

2)(b21 + b22) ≥ (a1b1 + a2b2)2.

Let u1(x) = a1, u2(x) = a2, v1(x) = b2, v2(x) = b2, then we obtain (2.13). �
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3. Proof of Theorem 1.1

In this section, we still use the notation m∞(a, b) for a, b ≥ 0, which implies one component of (a, b)

may be zero. Firstly, we summarize a list of basic properties of m∞(a, b).

Lemma 3.1. Assume that (M) holds, then we have the basic properties of m∞(a, b) as follows

(i) For any a, b ≥ 0, if either a > 0 or b > 0, then we have

−∞ < m∞(a, b) < 0.

(ii) m∞(a, b) is continuous with respect to a, b ≥ 0.

(iii) For any a1, a2, b1, b2 ≥ 0, we have

m∞(a1 + a2, b1 + b2) ≤ m∞(a1, b1) +m∞(a2, b2).

Proof. (i) For the case ab 6= 0, we rewrite the functional J∞(u, v) defined in (1.10) for convenience as

follows

J∞(u, v) =
1

2

∫
R3

(|∇u|2 + |∇v|2) dx− µ1

2p

∫
R3

∫
R3

|u(x)|p|u(y)|p

|x− y|
dx dy

− µ2

2q

∫
R3

∫
R3

|v(x)|q|v(y)|q

|x− y|
dx dy − β

∫
R3

uv dx

= Jµ1,p(u) + Jµ2,q(v)− β
∫
R3

uv dx.

where Jµ1,p(u) and Jµ2,q(v) have been defined in (2.2). If a, b > 0, from Lemma 2.1, then we know

mµ1,p(a) and mµ2,q(b) exist minimizer u0 and v0 respectively, such that

m∞(a, b) ≤ J∞(u0, v0) = Jµ1,p(u0) + Jµ2,q(v0)− β
∫
R3

u0v0 dx < 0.

For the case a = 0 or b = 0, then we set u = 0, v = v0 or u = u0, v = 0, we also obtain above inequality.

By (2.10), we deduce that J∞(u, v) is bounded from below. Thus −∞ < m∞(a, b) < 0 holds.

For (ii)(iii), we will prove with potentials as a more general case in Lemma (4.2). �

Let (un, vn) ⊂ H be the minimizing sequence of m∞(a, b), then we need to verify the compactness

of minimizing sequence in L2(R3)× L2(R3). Therefore, we first consider the following argument.

Lemma 3.2. Assume that (M) holds, then we have

inf
(u,v)∈Sr(a,b)

J∞(u, v) = inf
(u,v)∈S(a,b)

J∞(u, v). (3.1)

Proof. It is easy to see that inf(u,v)∈Sr(a,b) J∞(u, v) ≥ inf(u,v)∈S(a,b) J∞(u, v). For any (u, v) ∈ H, we

study the rearrangement of (u, v) denoted by (u∗, v∗), then applying the rearrangement inequalities
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(1.11), we have that

J∞(u∗, v∗) =
1

2

∫
R3

(|∇u∗|2 + |∇v∗|2) dx− µ1

2p

∫
R3

∫
R3

|u∗(x)|p|u∗(y)|p

|x− y|
dx dy

− µ2

2q

∫
R3

∫
R3

|v∗(x)|q|v∗(y)|q

|x− y|
dx dy − β

∫
R3

u∗v∗ dx

≤ 1

2

∫
R3

(|∇u|2 + |∇v|2) dx− µ1

2p

∫
R3

∫
R3

|u(x)|p|u(y)|p

|x− y|
dx dy

− µ2

2q

∫
R3

∫
R3

|v(x)|q|v(y)|q

|x− y|
dx dy − β

∫
R3

uv dx

= J∞(u, v).

Hence combining above two inequalities, we obtain (3.1). �

Since the coercive of J∞ on Sr(a, b), we conclude that the minimizing sequence (un, vn) is

bounded in Hr, then we deduce that (un, vn) ⇀ (ū, v̄) in Hr. In view of the compact embedding

H1
r (R3) ↪→↪→ Ls(R3) for 2 < s < 6(see [29]), we know that (un, vn) → (ū, v̄) in Ls(R3) × Lt(R3) for

2 < s, t < 6. Next we give the compactness of (un, vn) in L2(R3)× L2(R3).

Lemma 3.3. Assume that (M) holds, then we have

|ū|22 = a, |v̄|22 = b.

Proof. We argue by contradiction. Suppose, on the contrary, that∫
R3

|ū|2 dx := a1 ≤ a,
∫
R3

|v̄|2 dx := b1 ≤ b,

set a2 = a− a1, b2 = b− b1. If a1 + b1 < a+ b, then we study the following three cases.

Case 1: a1 < a, b1 < b. In this case, we define ũn = un − ū, ṽn = vn − v̄, by the Brezis-Lieb

Lemma, then we obtain that

|ũn|22 → a2 > 0, |ṽn|22 → b2 > 0. (3.2)

Combining Lemma 2.3, Lemma 2.4 and (un.vn) ⇀ (ũ, ṽ) in Hr, we deduce that

m∞(a, b) = J∞(un, vn) + o(1)

= J∞(ū, v̄) + J∞(ũ, ṽ) + o(1)

≥ m∞(a1, b1) + J∞(ũ, ṽ) + o(1).

(3.3)

Since ũn → 0, ṽn → 0 in Ls(R3), 2 < s < 6, by Lemma 2.2 and (3.2), we obtain that

J∞(ũn, ṽn) =
1

2

∫
R3

(
|∇ũn|2 + |∇ṽn|2

)
dx− β

∫
R3

ũnṽn dx+ o(1)

≥ −βa
1
2
2 b

1
2
2 + o(1).

(3.4)
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If a2 ≥ b2, then (u,
√

b2
a2
u) ∈ S(a2, b2) when u ∈ S(a2), thus

J∞(u,

√
b2
a2
u)

=
1

2

∫
R3

(
|∇u|2 +

b2
a2
|∇u|2

)
dx− µ1

2p

∫
R3

∫
R3

|u(x)|p|u(y)|p

|x− y|
dx dy

− µ2b
q
2

2qaq2

∫
R3

∫
R3

|u(x)|q|u(y)|q

|x− y|
dx dy − βa

1
2
2 b

1
2
2

≤ 2

[
1

2

∫
R3

(
|∇u|2 dx− µ1

4p

∫
R3

∫
R3

|u(x)|p|u(y)|p

|x− y|
dx dy

]
− βa

1
2
2 b

1
2
2

= 2Jµ1
2 ,p

(u)− βa
1
2
2 b

1
2
2 ,

(3.5)

where Jµ1
2 ,p

(u) is defined as in (2.2). From Lemma 2.2, without loss of generality, we assume that u0

is a positive solution of (2.3) with |u0|22 = a2, then we have Jµ1
2 ,p

(u0) < 0. Therefore,

m∞(a2, b2) ≤ J∞(u0,

√
b2
a2
u0)

≤ 2Jµ1
2 ,p

(u0)− βa
1
2
2 b

1
2
2

< −βa
1
2
2 b

1
2
2 .

(3.6)

Combining (3.3)-(3.6) and Lemma 3.1 (iii), we obtain that

m∞(a, b) ≥ m∞(a1, b1) +m∞(a2, b2)− 2Jµ1
2 ,p

(u0)

> m∞(a1, b1) +m∞(a2, b2)

≥ m∞(a, b),

which is a contradiction. If a2 < b2, the proof is similar to the above arguments.

Case 2: If a1 < a, b1 = b, then a2 > 0, b2 = 0. Similarly, like Case 1, we obtain that

m∞(a, b) = J∞(ū, v̄) + J∞(ũn, ṽn) + o(1)

≥ m∞(a1, b) + o(1)

≥ m∞(a1, b) +m∞(a2, 0)− Jµ1,p(u0) + o(1)

> m∞(a1, b) +m∞(a2, 0)

≥ m∞(a, b).

(3.7)

which is a contradiction.

Case 3: If a1 = a, b1 < b, the proof is similar to Case 2. Therefore, the proof of Lemma 3.3 is

complete now. �

Proof of Theorem 1.1. We remark that Lemma 3.3 implies that (un, vn) → (ū, v̄) in L2(R3) ×
L2(R3), combining with the fact Lemma 2.5, then we conclude that (un, vn)→ (ū, v̄) in H. Moreover,

(ū, v̄) is a minimizer, that is, (ū, v̄) ∈ S(a, b) and J∞(ū, v̄) = m∞(a, b). Therefore, (ū, v̄) satisfies
−∆ū+ λ1ū = µ1

∫
R3

|ū(y)|p
|x−y| dy|ū|

p−2ū+ βv̄ in R3,

−∆v̄ + λ2v̄ = µ2

∫
R3

|v̄(y)|q
|x−y| dy|v̄|

q−2v̄ + βū in R3,
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with |ū|22 = a, |v̄|22 = b, ū, v̄ ≥ 0. Then we apply the maximum principle, ū, v̄ > 0. By Lemma 2.5, the

proof of Theorem 1.8 is complete. �

After finishing the proof of Theorem 1.8, we also need to prove the strict subadditivity of m∞(a, b).

This property will be used in proving Theorem 1.4.

Lemma 3.4. Assume that (M) holds, then we have

m∞(a1 + a2, b1 + b2) < m∞(a1, b1) +m∞(a2, b2),

where a1 + b1 > 0, a2 + b2 > 0.

Proof. Since the existence of the minimizers ofm∞(a, b), we deduce that there exists (u1, v1) ∈ S(a1, b1)

and (u2, v2) ∈ S(a2, b2) such that J∞(u1, v1) = m∞(a1, b1) and J∞(u2, v2) = m∞(a2, b2). Without

loss of generality, assume that a1 > 0. If a2 > 0, we can deduce that both u1 and u2 are both positive,

then by Lemma 2.7, we obtain that

m∞(a1 + a2, b1 + b2) ≤ J∞(
√
u2

1 + u2
2,
√
v2

1 + v2
2)

=
1

2

∫
R3

(
|∇
√
u2

1 + u2
2|2 + |∇

√
v2

1 + v2
2 |2
)
dx

− µ1

2p

∫
R3

∫
R3

|
√
u1(x)2 + u2(x)2|p|

√
u1(y)2 + u2(y)2|p

|x− y|
dx dy

− µ2

2q

∫
R3

∫
R3

|
√
v1(x)2 + v2(x)2|q|

√
v1(y)2 + v2(y)2|q

|x− y|
dx dy

− β
∫
R3

√
u2

1 + u2
2

√
v2

1 + v2
2 dx

<
1

2

∫
R3

(
|∇u1|2 + |∇u2|2 + |∇v1|2 + |∇v2|2

)
dx

− µ1

2p

∫
R3

∫
R3

(
|u1(x)|p|u1(y)|p

|x− y|
+
|u2(x)|p|u2(y)|p

|x− y|

)
dx dy

− µ2

2q

∫
R3

∫
R3

(
|v1(x)|q|v1(y)|q

|x− y|
+
|v2(x)|q|v2(y)|q

|x− y|

)
dx dy

− β
∫
R3

(u1v1 + u2v2) dx

= J∞(u1, v1) + J∞(u2, v2)

= m∞(a1, b1) +m∞(a2, b2).

If a2 = 0, then b2 > 0, we first consider the case b1 > 0. By repeating above process, we also have the

same conclusion. Next, we consider the case b1 = 0. From Lemma 2.1, there exists positive solutions
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u0 ∈ S(a1) and v0 ∈ S(b2) such that mµ1,p(a1) = Jµ1,p(u0) and mµ2,q(b2) = Jµ2,q(v0), then we have

m∞(a, b) = m∞(a1, b2)

≤ J∞(u0, v0)

= Jµ1,p(u0) + Jµ2,q(v0)− β
∫
R3

u0v0 dx

< m∞(a1, 0) +m∞(0, b2).

This is complete the proof of Lemma 3.4. �

4. Proof of Theorem 1.3 and 1.4

In this section, we mainly consider the existence of solutions of (1.8) with general potential Vi(x)

for i = 1, 2, satisfying (V1) and (V2). We first study the coercive case Vi,∞ = ∞, then we study the

case Vi,∞ = 0 and ci < 0.

4.1. The coercive case Vi,∞ =∞.

We first consider the convergence of minimizing sequence in L2(R3)× L2(R3).

Lemma 4.1. Assume that (M) holds. If Vi(x) satisfies (V1) and (V2) with Vi,∞ =∞ for i = 1, 2,

then any minimizing sequence {(un, vn)} ⊂ S(a, b) such that J(un, vn) → m(a, b) has a convergence

subsequence in L2(R3)× L2(R3).

Proof. Combining with the fact that minx∈R3 Vi(x) = ci > −∞ and Lemma 3.1 (i), we deduce that

J is bounded below on S∗(a, b). By the coerciveness of J on S∗(a, b), we conclude that the sequence

{(un, vn)} is bounded in H. Thus we assume that there exists a subsequence of {(un, vn)}, still denoted

by {(un, vn)}, such that (un, vn) ⇀ (ū, v̄) in H, which is also holds in H. Now we need to verify the

compactness of (un, vn). Set (ũn, ṽn) = (un − ū, vn − v̄), then we deduce that (ũn, ṽn) ⇀ 0 in H. we

argue by contradiction, assume that

δ := lim
n→∞

inf

∫
R3

(ũ2
n + ṽ2

n) dx > 0.

Up to a subsequence, we suppose that (ũn, ṽn)→ 0 in L2
loc(R3)× L2

loc(R3). Therefore, we have∫
R3

(V1(x)ũ2
n + V2(x)ṽ2

n) dx→∞,

which implies that ∫
R3

(V1(x)u2
n + V2(x)v2

n) dx→∞.

Since {(un, vn)} is bounded in H, combining above result, we have that

m(a, b) = J(un, vn) + o(1)

= J∞(un, vn) +
1

2

∫
R3

(V1(x)u2
n + V2(x)v2

n) dx+ o(1)

≥ m∞(a, b) +
1

2

∫
R3

(V1(x)u2
n + V2(x)v2

n) dx→∞.

We reach a contradiction, since J is bounded below on S(a, b). Thus we prove that (un, vn) → (ū, v̄)

in L2(R3)× L2(R3). �
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Proof of Theorem 1.3. By the coerciveness of J on S∗(a, b), the sequence {(un, vn)} is bounded in

H. Thus by (2.8), we obtain that∫
R3

∫
R3

|u(x)− ū(x)|p|u(y)− ū(y)|p

|x− y|
dx dy ≤ AB3p−5|u− ū|5−p2 |∇(u− ū)|3p−5

2 ,

∫
R3

∫
R3

|v(x)− v̄(x)|q|v(y)− v̄(y)|q

|x− y|
dx dy ≤ AB3q−5|v − v̄|5−q2 |∇(v − v̄)|3q−5

2 .

In view of Lemma 4.1, we have (un, vn) ∈ (ū, v̄) in L2(R3)×L2(R3), together with above inequalities,

by Lemma 2.6, then we obtain that (un, vn) → (ū, v̄) in H. Therefore, (ū, v̄) is a minimizer, that is,

(ū, v̄) ∈ S(a, b), J(ū, v̄) = m(a, b) and (ū, v̄) satisfies
−∆ū+ V1(x)ū+ λ1ū = µ1

∫
R3

|ū(y)|p
|x−y| dy|ū|

p−2ū+ βv̄ in R3,

−∆v̄ + V2(x)v̄ + λ2v̄ = µ2

∫
R3

|v̄(y)|q
|x−y| dy|v̄|

q−2v̄ + βū in R3,

where ū, v̄ ≥ 0. According to the maximum principle, we have ū, v̄ > 0. Combining these with Lemma

2.5, the proof of Theorem 1.3 is complete. �

4.2. The case of Vi,∞ <∞.

In the rest of this paper, we shall consider the case of Vi,∞ = 0 and ci < 0 for i = 1, 2. We first

study some fundamental properties of m(a, b).

Lemma 4.2. Assume that (M) holds. If Vi(x) satisfies (V1) and (V2) with ci < Vi,∞ = 0 for

i = 1, 2, then the following results hold

(i) −∞ < m(a, b) ≤ m∞(a, b) ≤ 0 for a, b ≥ 0. Furthermore, if a + b > 0, then −∞ < m(a, b) <

m∞(a, b) < 0.

(ii) For a, b ≥ 0, every minimizing sequence for m(a, b) is bounded in H.

(iii) m(a, b) is continuous with respect to a, b ≥ 0.

(iv) m(a1 + a2, b1 + b2) ≤ m(a1, b1) +m∞(a2, b2) for a1, a2, b1, b2 ≥ 0.

Proof. (i) Notice that ci ≤ Vi(x) ≤ Vi,∞ = 0, where ci < 0, we deduce that −∞ <
∫
R3

(V1(x)u2 +

V2(x)v2) dx < 0. Without loss of generality, set J∞(ū, v̄) = m∞(a, b) with (ū, v̄) ∈ S(a, b). Together

with Lemma 3.1 (i), we can get −∞ < m(a, b) ≤ J(ū, v̄) ≤ J∞(ū, v̄) = m∞(a, b) ≤ 0, i.e.,

−∞ < m(a, b) ≤ m∞(a, b) ≤ 0 for a, b ≥ 0. If a + b > 0, due to ci < 0, then the inequality is

strict.

(ii) Since the coerciveness of J(u, v) on S(a, b), (ii) is easy to check.

(iii) For the case ab 6= 0, suppose that (an, bn) = (a, b) + o(1), by the definition of m(an, bn), there

exists (un, vn) ∈ S(an, bn), such that

J(un, vn) ≤ m(an, bn) + ε.

Let

ūn :=
un
|un|2

a
1
2 , v̄n :=

vn
|vn|2

b
1
2 ,

then (ūn, v̄) ∈ S(a, b). By the continuity of J(u, v), we have

m(a, b) ≤ J(ūn, v̄n)

= J(un, vn) + o(1)

≤ m(an, bn) + ε+ o(1),
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then we conclude that m(a, b) ≤ m(an, bn) + o(1). Similar to above arguments, we have m(an, bn) ≤
m(a, b) + o(1). Therefore, m(an, bn) = m(a, b) + o(1). It’s easy to derive the result as the case of

ab = 0.

(iv) For ε > 0, there exists (φ1,ε, ψ1,ε), (φ2,ε, ψ2,ε) ∈ C∞0 (R3)× C∞0 (R3) such that

(φ1,ε, ψ1,ε) ∈ S(a1, b1), J(φ1,ε, ψ1,ε) < m(a1, b1) +
ε

2
,

(φ2,ε, ψ2,ε) ∈ S(a2, b2), J∞(φ2,ε, ψ2,ε) < m∞(a2, b2) +
ε

2
.

where a = a1 + a2 and b = b1 + b2. Set (φε,n, ψε,n) := (φ1,ε(x) +φ2,ε(x−ne1), ψ1,ε(x) +ψ2,ε(x−ne1)),

where e1 is the unit vector (1, 0, 0) in R3. Due to (φ1,ε, ψ1,ε) and (φ2,ε, ψ2,ε) have compact support, we

get

(φε,n, ψε,n) ∈ S(a, b) as n→∞,

and

m(a, b) ≤ J(φε,n, ψε,n) = J(φ1,ε(x), ψ1,ε(x)) + J(φ2,ε(x− ne1), ψ2,ε(x− ne1)) as n→∞.

Since Vi,∞ = 0, J(φ2,ε(x− ne1), ψ2,ε(x− ne1))→ J∞(φ2,ε(x), ψ2,ε(x)) as n→∞, and we can deduce

that
m(a, b) ≤ lim

n→∞
sup J(φε,n(x), ψε,n(x))

= lim
n→∞

sup
(
J(φ1,ε, ψ1,ε) + J(φ2,ε(x− ne1), ψ2,ε(x− ne1))

)
= J(φ1,ε, ψ1,ε) + J∞(φ2,ε, ψ2,ε)

≤ m(a1, b1) +m∞(a2, b2) + ε,

where ε is arbitrary. Thus the proof of Lemma 4.2 is complete. �

In the next lemma inspired by [10], we state a behavior of minimizing sequence when the compactness

doesn’t hold.

Lemma 4.3. Assume that (M), (V1) and (V2) hold. Let {(un, vn)} ⊂ S(a, b) be a minimizing

sequence for m(a, b), such that (un, vn) ⇀ (u0, v0) in H and set a1 := |u0|22, b1 := |v0|22. If

a1 + b1 < a+ b, then there exists {yn} ⊂ R3 and (µ0, ν0) ∈ H\{(0, 0)} such that

(un(x+ yn), vn(x+ yn)) ⇀ (µ0, ν0) in H as |yn| → ∞, (4.1)

lim
n→∞

(
|un − u0 − µ0(x− yn)|22 + |vn − v0 − ν0(x− yn)|22

)
= 0, (4.2)

and a = a1 + a2, b = b1 + b2, where |µ0|22 = a2, |ν0|22 = b2. Furthermore, the following results hold

J(u0, v0) = m(a1, b1), J∞(µ0, ν0) = m∞(a2, b2), (4.3)

and

m(a, b) = m(a1, b1) +m∞(a2, b2). (4.4)

Proof. We will divide the proof into several steps.

Step 1: Set {yn} ⊂ R3 and (µ0, ν0) ∈ H\{(0, 0)} such that (4.1) holds. We need to show that

δ0 := lim
n→∞

inf sup
y∈R3

∫
y+B(0,1)

(|un − u0|2 + |vn − v0|2) dx > 0, (4.5)

where B(0, 1) := {x ∈ R3 : |x| ≤ 1}. Firstly, arguing by contradiction, we assume that δ0 = 0, then we

deduce that (un, vn)→ (u0, v0) in Ls(R3)×Lt(R3) for 2 ≤ s, t < 6. Since (un, vn) ⇀ (u0, v0) in H and
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Vi,∞ = 0 for i = 1, 2, we can derive that
∫
R3(V1(x)(un − u0)2 + V2(x)(vn − v0)2) dx → 0. Combining

with (3.6), (3.7) and Lemma 2.2, for a− a1 > 0 or b− b1 > 0, we obtain that

m(a, b) = J(un, vn) + o(1)

= J(u0, v0) + J(un − u0, vn − v0) + o(1)

= J(u0, v0) +
1

2

∫
R3

(
|∇(un − u0)|2 + |∇(vn − v0)|2

)
dx− β

∫
R3

(un − u0)(vn − v0) dx+ o(1)

≥ J(u0, v0)− β(a− a1)
1
2 (b− b1)

1
2

> m(a1, b1) +m∞(a− a1, b− b1).

We reach a contradiction with Lemma 4.2 (iv). Thus (4.5) holds.

By (4.5) and (un, vn) → (u0, v0) in L2
loc(R3) × L2

loc(R3), we assume that {yn} ⊂ R3 such that∫
yn+B(0,1)

(|un − u0|2 + |vn − v0|2|) dx→ c0 > 0 as |yn| → ∞. Set (un(x+ yn), vn(x+ yn)) ⇀ (µ0, ν0)

in H. By considering co > 0, we deduce that (µ0, ν0) 6= (0, 0). Thus {yn} and (µ0, ν0) satisfy (4.1).

We finish the proof of Step 1.

Due to |yn| → ∞ and (4.1), we have

|un − u0 − µ0(x− yn)|22 = |un|22 + |u0|22 + |µ0|22 − 2〈un, u0〉L2 − 2〈un(x+ yn), µ0〉L2 + o(1)

= |un|22 − |u0|22 − |µ0|22 + o(1),
(4.6)

and

|vn − v0 − ν0(x− yn)|22 = |vn|22 + |v0|22 + |ν0|22 − 2〈vn, v0〉L2 − 2〈vn(x+ yn), ν0〉L2 + o(1)

= |vn|22 − |v0|22 − |ν0|22 + o(1).
(4.7)

In particular, we define

a2 := |µ0|22 ≤ lim
n→∞

inf(|un|22 − |u0|22) = a− a1,

and

b2 := |ν0|22 ≤ lim
n→∞

inf(|vn|22 − |v0|22) = b− b1.

By c0 > 0, we obtain that a2 + b2 > 0.

Step 2: We investigate that {yn} and (µ0, ν0) satisfy (4.2)

In view of (4.6) and (4.7), we may assume that δ1 := limn→∞ |un − u0 − µ0(x − yn)|22 and

δ2 := limn→∞ |vn − v0 − ν0(x − yn)|22. Then we have δ1 = a − a1 − a2 and δ2 = b − b1 − b2. We

suppose on the contrary that δ1 + δ2 > 0 to derive δ1 = δ2 = 0. Similar to (4.6) and (4.7), by direct

calculations, we have

|∇un|22 − |∇u0|22 − |∇µ0|22 − |∇(un − u0 − µ0(x− yn))|22 = o(1),

|∇vn|22 − |∇v0|22 − |∇ν0|22 − |∇(vn − v0 − ν0(x− yn))|22 = o(1).
(4.8)

Moreover, from Brezis Lieb Lemma, it is easy to have

1

2

∫
R3

V1(x)(|un|22 − |u0|22 − |µ0(x− yn)|22 − |(un − u0 − µ0(x− yn))|22) dx = o(1),

1

2

∫
R3

V2(x)(|vn|22 − |v0|22 − |ν0(x− yn)|22 − |(vn − v0 − ν0(x− yn))|22) dx = o(1).

(4.9)
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By Lemma 2.4, it’s easy to see that

µ1

2p

∫
R3

∫
R3

|un(x)|p|un(y)|p

|x− y|
dx dy +

µ2

2q

∫
R3

∫
R3

|vn(x)|q|vn(y)|q

|x− y|
dx dy + β

∫
R3

unvn dx

=
µ1

2p

∫
R3

∫
R3

|u0(x)|p|u0(y)|p

|x− y|
dx dy +

µ2

2q

∫
R3

∫
R3

|v0(x)|q|v0(y)|q

|x− y|
dx dy + β

∫
R3

u0v0 dx

+
µ1

2p

∫
R3

∫
R3

|un(x)− u0(x)|p|un(y)− u0(y)|p

|x− y|
dx dy

+
µ2

2q

∫
R3

∫
R3

|vn(x)− v0(x)|q|vn(y)− v0(y)|q

|x− y|
dx dy

+ β

∫
R3

(un − u0)(vn − v0) dx+ o(1)

=
µ1

2p

∫
R3

∫
R3

|u0(x)|p|u0(y)|p

|x− y|
dx dy +

µ2

2q

∫
R3

∫
R3

|v0(x)|q|v0(y)|q

|x− y|
dx dy + β

∫
R3

u0v0 dx

+
µ1

2p

∫
R3

∫
R3

|µ0(x)|p|µ0(y)|p

|x− y|
dx dy +

µ2

2q

∫
R3

∫
R3

|ν0(x)|q|ν0(y)|q

|x− y|
dx dy + β

∫
R3

µ0ν0 dx

+
µ1

2p

∫
R3

∫
R3

|un(x)− u0(x)− µ0(x− yn)|p|un(y)− u0(y)− µ0(y − yn)|p

|x− y|
dx dy

+
µ2

2q

∫
R3

∫
R3

|vn(x)− v0(x)− ν0(x− yn)|q|vn(y)− v0(y)− ν0(y − yn)|q

|x− y|
dx dy

+ β

∫
R3

(un(x)− u0(x)− µ0(x− yn))(vn(x)− v0(x)− ν0(x− yn)) dx+ o(1)

(4.10)

Combining (4.8)-(4.10), we obtain that

o(1) = J(un, vn)− J(u0, v0)− J(µ0(x− yn), ν0(x− yn))

− J(un − u0 − µ0(x− yn), vn − v0 − ν0(x− yn)).
(4.11)

Recall that (un, vn) ⇀ (u0, v0) in H and Vi(x+ yn)→ 0 as |yn| → ∞, we have

1

2

∫
R3

V1(x)|un − u0 − µ0(x− yn)|22 dx→ 0,

1

2

∫
R3

V2(x)|vn − v0 − ν0(x− yn)|22 dx→ 0.

(4.12)

Indeed, from Lemma 3.1 (ii), note the fact that m∞(a, b) is a continuous with respect to a, b ≥ 0,

combining (4.12), we deduce that

lim
n→∞

inf J(un − u0 − µ0(x− yn), vn − v0 − ν0(x− yn))

= lim
n→∞

inf J∞(un − u0 − µ0(x− yn), vn − v0 − ν0(x− yn))

≥ m∞(δ1, δ2),

(4.13)

and

lim
n→∞

inf J(µ0(x− yn), ν0(x− yn)) ≥ m∞(a2, b2). (4.14)
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By (4.11)-(4.14), we obtain that

m(a, b) ≥ m(a1, b1) +m∞(a2, b2) +m∞(δ1, δ2).

Then by Lemma 4.2 (iv), we obtain that

m(a, b) ≥ m(a1, b1) +m∞(a2, b2) +m∞(δ1, δ2)

≥ m(a1 + a2, b1 + b2) +m∞(δ1, δ2)

≥ m(a1 + a2 + δ1, b1 + b2 + δ2)

= m(a, b),

which implies that m(a, b) = m(a1, b1) +m∞(a2, b2) +m∞(δ1, δ2). Since a2 + b2 > 0, δ1 + δ2 > 0, by

Lemma 3.4, we have m∞(a2, b2) +m∞(δ1, δ2) > m∞(a2 + δ1, b2 + δ2). Then we deduce that

m(a, b) = m(a1, b1) +m∞(a2, b2) +m∞(δ1, δ2)

> m(a1, b1) +m∞(a2 + δ1, b2 + δ2)

≥ m(a1 + a2 + δ1, b1 + b2 + δ2)

= m(a, b),

which is a contradiction. Therefore, δ1 + δ2 = 0 and Step 2 is complete.

Step 3: Finally, we will prove that {yn} and (µ0, ν0) satisfy (4.3) and (4.4). From (4.11)-(4.14) and

δ1 + δ2 = 0, we obtain that

m(a, b) = lim
n→∞

J(un, vn)

= lim
n→∞

inf
(
J(u0, v0) + J(µ0(x+ yn), ν0(x− yn))

)
≥ J(u0, v0) + J∞(µ0, ν0)

≥ m(a1, b1) +m∞(a2, b2).

(4.15)

Recalling from Lemma 4.2 (iv), we have m(a, b) = m(a1, b1) + m∞(a2, b2). Therefore, by (4.15), we

deduce that J(u0, v0) = m(a1, b1) and J∞(u0, v0) = m∞(a2, b2). The proof of Step 3 is complete, and

the proof of Lemma 4.3 is finished. �

Since {(un, vn)} ⊂ S(a, b) is the minimizing sequence of m(a, b), we deduce that

dJ∞|S(a,b)(un, vn)→ 0 and there exists two sequences of real numbers {λ1,n} and {λ2,n} such that

o(1) ‖ (φ, ψ) ‖H=

∫
R3

(
∇un∇φ+ V1(x)unφ+∇vn∇ψ + V2(x)vnψ

)
dx

− µ1

∫
R3

∫
R3

|un(x)|p|un(y)|p−2un(y)φ(y)

|x− y|
dx dy

− µ2

∫
R3

∫
R3

|vn(x)|q|vn(y)|q−2vn(y)ψ(y)

|x− y|
dx dy

+ λ1,n

∫
R3

unφdx+ λ2,n

∫
R3

vnψ dx

− β
∫
R3

(unψ + vnφ) dx→ 0 as n→∞,

(4.16)

for any (φ, ψ) ∈ H. Then we state the following lemma.
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Lemma 4.4. Under the assumption of Lemma 4.3, then both {λ1,n} and {λ2,n} are bounded in H. Up

to a subsequence, we still denoted by {λ1,n} and {λ2,n} converging to λ1 and λ2 respectively. Moreover,

(u0, v0) and (µ0, ν0) satisfy
−∆u0 + V1(x)u0 + λ1u0 = µ1

∫
R3

|u0(y)|p
|x−y| dy|u0|p−2u0 + βv0 in R3,

−∆v0 + V2(x)v0 + λ2v0 = µ2

∫
R3

|v0(y)|q
|x−y| dy|v0|q−2v0 + βu0 in R3,∫

R3

|u0|2 dx = a1,
∫
R3

|v0|2 dx = b1,

(4.17)

and 
−∆µ0 + λ1µ0 = µ1

∫
R3

|µ0(y)|p
|x−y| dy|µ0|p−2µ0 + βν0 in R3,

−∆ν0 + λ2ν0 = µ2

∫
R3

|ν0(y)|q
|x−y| dy|ν0|q−2ν0 + βµ0 in R3,∫

R3

|µ0|2 dx = a− a1,
∫
R3

|ν0|2 dx = b− b1.

(4.18)

Furthermore, if a1 + b1 < a+ b, then a1 < a, b1 < b and µ0 > 0, ν0 > 0.

Proof. By using (un, 0) and (0, vn) as test functions in (4.16), the values of λ1,n and λ2,n can be

achieved as follows

−(λ1,n)a2 =

∫
R3

(|∇un|2 + V1(x)u2
n) dx− µ1

∫
R3

∫
R3

|un(x)|p|un(y)|p

|x− y|
dx dy − β

∫
R3

unvn dx− o(1),

−(λ2,n)b2 =

∫
R3

(|∇vn|2 + V2(x)v2
n) dx− µ2

∫
R3

∫
R3

|vn(x)|q|vn(y)|q

|x− y|
dx dy − β

∫
R3

unvn dx− o(1),

where o(1)→ 0 as n→∞. Note that (un, vn) is bounded in H, then {λ1,n} and {λ2,n} are bounded.

Without loss of generality, up to a subsequence, assume that λ1,n → λ1 and λ2,n → λ2. Set a1 < a or

b1 < b, then by Lemma 4.3, there exists {yn} ⊂ R3 and (µ0, ν0) 6= (0, 0) such that (4.1)-(4.4) holds.

Thus by (4.16), we obtain that
−∆µ0 + λ1µ0 = µ1

∫
R3

|µ0(y)|p
|x−y| dy|µ0|p−2µ0 + βν0 in R3,

−∆ν0 + λ2ν0 = µ2

∫
R3

|ν0(y)|q
|x−y| dy|ν0|q−2ν0 + βµ0 in R3,∫

R3

|µ0|2 dx = a− a1,
∫
R3

|ν0|2 dx = b− b1,

thus we obtain (4.18). If a1 = a, then µ0 = 0 and βν0 = 0, that is, ν0 = 0, which is a contradiction

since b1 < b. Then we deduce that a1 < a, b1 < b. Due to µ0 ≥ 0, ν0 ≥ 0, we have

−∆µ0 + (λ1)+µ0 ≥ −∆µ0 + λ1µ0 = µ1

∫
R3

|µ0(y)|p

|x− y|
dy|µ0|p−2µ0 + βν0 ≥ 0,

and

−∆ν0 + (λ2)+ν0 ≥ −∆ν0 + λ2ν0 = µ2

∫
R3

|ν0(y)|q

|x− y|
dy|ν0|q−2ν0 + βµ0 ≥ 0.

By the strong maximum principle, |µ0|2 = a − a1 > 0, and |ν0|2 = b − b1 > 0, then we obtain that

µ0 > 0, ν0 > 0. Similar to above arguments, (u0, v0) satisfies (4.17). This completes the proof. �

Our aim is to show the compactness of the minimizing sequence, we will prove the compactness of

minimizing sequence as follows.
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Lemma 4.5. Assume that (M) holds. If Vi(x) satisfies (V1) and (V2) with Vi,∞ = 0 for

i = 1, 2, then any minimizing sequence {(un, vn)} ⊂ S(a, b) has a strong convergent subsequence

in L2(R3)× L2(R3).

Proof. Assume that a1 + b1 < a+ b, combining with Lemma 4.4, then we deduce that a1 < a, b1 < b,

µ0 > 0 and ν0 > 0. Since ci ≤ Vi(x) ≤ 0, here ci < 0, we obtain that∫
R3

(
V1(x)µ2

0 + V2(x)ν2
0

)
dx < 0. (4.19)

Without loss of generality, set J(u0, v0) = m(a1, b1), J(µ0, ν0) = m∞(a2, b2), where a = a1 + a2,

b = b1 + b2. By Lemmas 2.7, 4.3 and (4.19), we have

m(a, b) ≤ J(
√
u2

0 + µ2
0,
√
v2

0 + ν2
0)

=
1

2

∫
R3

(
|∇
√
u2

0 + µ2
0|2 + V1(x)(u2

0 + µ2
0) + |∇

√
v2

0 + ν2
0 |2 + V2(x)(v2

0 + ν2
0)
)
dx

− µ1

2p

∫
R3

∫
R3

|
√
u0(x)2 + µ0(x)2|p|

√
u0(y)2 + µ0(y)2|p

|x− y|
dx dy

− µ2

2q

∫
R3

∫
R3

|
√
v0(x)2 + ν0(x)2|q|

√
v0(y)2 + ν0(y)2|q

|x− y|
dx dy

− β
∫
R3

√
u2

0 + µ2
0

√
v2

0 + ν2
0 dx

≤ J(u0, v0) + J∞(µ0, ν0) +
1

2

∫
R3

(
V1(x)µ2

0 + V2(x)ν2
0

)
dx

< m(a1, b1) +m∞(a2, b2)

= m(a, b),

which is a contradiction. This finishes the proof of Lemma 4.5. �

Proof of Theorem 1.4. From Lemma 4.5, we obtain (un, vn) → (u0, v0) in L2(R3) × L2(R3).

By Lemma 2.6, we have (un, vn) → (u0, v0) in H. Therefore, (u0, v0) is a minimizer, that is,

(u0, v0) ∈ S(a, b), J(u0, v0) = m(a, b) and (u0, v0) satisfies
−∆u0 + V1(x)u0 + λ1u0 = µ1

∫
R3

|u0(y)|p
|x−y| dy|u0|p−2u0 + βv0 in R3,

−∆v0 + V2(x)v0 + λ2v0 = µ2

∫
R3

|v0(y)|q
|x−y| dy|v0|q−2v0 + βu0 in R3,

where u0, v0 ≥ 0. According to the maximum principle, we have u0, v0 > 0. Combining these with

Lemma 2.5, the proof of Theorem 1.4 is complete. �
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