REFERENCES
Abodakpi, H., Chang, K.-T., et al., (2019 a). Optimal
Piperacillin-Tazobactam Dosing Strategies against
Extended-Spectrum-β-Lactamase-Producing Enterobacteriaceae.Antimicrobial Agents and Chemotherapy , 63 (2), 1–9.
https://doi.org/10.1128/AAC.01906-18
Abodakpi, H., Chang, K.-T., et al., (2019 b). A Novel Framework to
Compare the Effectiveness of β-lactamase Inhibitors against
Extended-Spectrum β-lactamase-producing Enterobacteriaceae.Clinical Microbiology and Infection , 25 (9),
1154.e9-1154.e14. https://doi.org/10.1016/j.cmi.2019.01.003.A
Ambrose, P. G., Bhavnani, S. M., et al., (2006). Antimicrobial
Resistance: Pharmacokinetics‐Pharmacodynamics of Antimicrobial Therapy:
It’s Not Just for Mice Anymore. Clinical Infectious Diseases ,44 (1), 79–86. https://doi.org/10.1086/510079
Andes, D., & Craig, W. A. (2002). Animal model pharmacokinetics and
pharmacodynamics: A critical review. International Journal of
Antimicrobial Agents , 19 (4), 261–268.
https://doi.org/10.1016/S0924-8579(02)00022-5
Antimicrobial Resistance Collaborators. (2022). Global burden of
bacterial antimicrobial resistance in 2019: a systematic analysis.The Lancet , 399 (10325), 629–655.
https://doi.org/10.1016/s0140-6736(21)02724-0
Bhagunde, P., Chang, K.-T., et al., (2012). Novel Modeling Framework To
Guide Design of Optimal Dosing Strategies for β-Lactamase Inhibitors.Antimicrobial Agents and Chemotherapy , 56 (5), 2237–2240.
https://doi.org/10.1128/aac.06113-11
Brook, I. (1989). Inoculum Effect. Reviews of Infectious
Diseases , 11 (3), 361–368.
Clinical and Laboratory Standards Institute. (2018). Methods for
Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow
Aerobically, 11th Edition .
Clinical and Laboratory Standards Institute. (2021). Performance
Standards for Antimicrobial Susceptibility Testing, M100-ED31 .
Coleman, K., Levasseur, P., et al., (2014). Activities of Ceftazidime
and Avibactam against β-lactamase-Producing Enterobacteriaceae in
a Hollow-Fiber Pharmacodynamic Model. Antimicrobial Agents and
Chemotherapy , 58 (6), 3366–3372.
https://doi.org/10.1128/AAC.00080-14
Craig, W. A. (1998). Pharmacokinetic/Pharmacodynamic Parameters:
Rationale for Antibacterial Dosing of Mice and Men. Clinical
Infectious Diseases , 26 (1), 1–10.
https://doi.org/10.1086/516284
Crass, R. L., & Pai, M. P. (2019). Pharmacokinetics and
Pharmacodynamics of β-Lactamase Inhibitors. Pharmacotherapy ,39 (2), 182–195. https://doi.org/10.1002/phar.2210
Jacoby, G. A., & Munoz-price, L. S. (2005). The New β-Lactamases.The New England Journal of Medicine , 352 (4), 380–391.
Kita, Y., Fugono, T., & Imada, A. (1986). Comparative pharmacokinetics
of carumonam and aztreonam in mice, rats, rabbits, dogs, and cynomolgus
monkeys. Antimicrobial Agents and Chemotherapy , 29 (1),
127–134. https://doi.org/10.1128/AAC.29.1.127
Livermore, D. M., Mushtaq, S., et al., (2015). Activity of
OP0595/β-lactam combinations against Gram-negative bacteria with
extended-spectrum, AmpC and carbapenem-hydrolysing β-lactamases.Journal of Antimicrobial Chemotherapy , 70 (11), 3032–3041.
https://doi.org/10.1093/jac/dkv239
Mallalieu, N. L., Winter, E., et al., (2020). Safety and Pharmacokinetic
Characterization of Nacubactam, a Novel β-Lactamase Inhibitor, Alone and
in Combination with Meropenem, in Healthy Volunteers.Antimicrobial Agents and Chemotherapy , 64 (5), e02229-19.
https://doi.org/10.1128/AAC.02229-19
Morinaka, A., Tsutsumi, Y., et al., (2016). In Vitro and In
Vivo Activities of OP0595, a New Diazabicyclooctane, against
CTX-M-15-Positive Escherichia coli and KPC-PositiveKlebsiella pneumoniae . Antimicrobial Agents and
Chemotherapy , 60 (5), 3001–3006.
https://doi.org/10.1128/AAC.02704-15.Address
Morinaka, A., Tsutsumi, Y., et al., (2015). OP0595, a new
diazabicyclooctane: Mode of action as a serine β-lactamase inhibitor,
antibiotic and β-lactam “enhancer.” Journal of Antimicrobial
Chemotherapy , 70 (10), 2779–2786.
https://doi.org/10.1093/jac/dkv166
Mushtaq, S., Vickers, A., et al., (2018). Activity of nacubactam
(RG6080/OP0595) combinations against MBL-producing Enterobacteriaceae.Journal of Antimicrobial Chemotherapy , 74 (4), 953–960.
https://doi.org/10.1093/jac/dky522
O’Neill, J. (2014). Antimicrobial resistance: tackling a crisis for the
health and wealth of nations. Review on Antimicrobial Resistance .
O’Neill, J. (2016). Tackling drug-resistant infections globally: final
report and recommendations. Review on Antimicrobial Resistance .
Scully, B. E., Swabb, E. A., & Neu, H. C. (1983). Pharmacology of
Aztreonam After Intravenous Infusion. Antimicrobial Agents and
Chemotherapy , 24 (1), 18–22. https://doi.org/10.1128/AAC.24.1.18
Tam, V. H., Abodakpi, H., et al., (2021). Optimizing
pharmacokinetics/pharmacodynamics of β-lactam/β-lactamase inhibitor
combinations against high inocula of ESBL-producing bacteria.Journal of Antimicrobial Chemotherapy , 76 (1), 179–183.
https://doi.org/10.1093/JAC/DKAA412
Wu, J., Racine, F., Wismer, et al., (2018). Exploring the
Pharmacokinetic/Pharmacodynamic Relationship of Relebactam (MK-7655) in
Combination with Imipenem in a Hollow-Fiber Infection Model.Antimicrobial Agents and Chemotherapy , 62 (5), e02323-17.
https://doi.org/http://dx.doi.org/10.1128/AAC.02323-17