References

Anders, A. M., Roe, G. H., Hallet, B., Montgomery, D. R., Finnegan, N. J., & Putkonen, J. (2006). Spatial patterns of precipitation and topography in the Himalaya. In S. D. Willett, N. Hovius, M. T. Brandon, & D. M. Fisher, Tectonics, Climate, and Landscape Evolution (pp. 39–53). Geological Society of America.https://doi.org/10.1130/2006.2398(03)
Antonelli, A., Kissling, W. D., Flantua, S. G. A., Bermúdez, M. A., Mulch, A., Muellner-Riehl, A. N., Kreft, H., Linder, H. P., Badgley, C., Fjeldså, J., Fritz, S. A., Rahbek, C., Herman, F., Hooghiemstra, H., & Hoorn, C. (2018). Geological and climatic influences on mountain biodiversity. Nature Geoscience , 11 (10), 718–725.https://doi.org/10.1038/s41561-018-0236-z
Araujo, M., & New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology & Evolution , 22 (1), 42–47.https://doi.org/10.1016/j.tree.2006.09.010
Avise, J. (2000). Phylogeography: The History and Formation of Species . Harvard University Press.
Baggiano, O., Schmidt, D. J., Sheldon, F., & Hughes, J. M. (2011). The role of altitude and associated habitat stability in determining patterns of population genetic structure in two species ofAtalophlebia (Ephemeroptera: Leptophlebiidae). Freshwater Biology , 56 (2), 230–249.https://doi.org/10.1111/j.1365-2427.2010.02490.x
Bálint, M., Domisch, S., Engelhardt, C. H. M., Haase, P., Lehrian, S., Sauer, J., Theissinger, K., Pauls, S. U., & Nowak, C. (2011). Cryptic biodiversity loss linked to global climate change. Nature Climate Change , 1 (6), 313–318.https://doi.org/10.1038/nclimate1191
Bandelt, H. J., Forster, P., & Rohl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution , 16 (1), 37–48.https://doi.org/10.1093/oxfordjournals.molbev.a026036
Bhattarai, K. R., Måren, I. E., & Subedi, S. C. (2014). Biodiversity and invasibility: Distribution patterns of invasive plant species in the Himalayas, Nepal. Journal of Mountain Science , 11 (3), 688–696.https://doi.org/10.1007/s11629-013-2821-3
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics ,30 (15), 2114–2120.https://doi.org/10.1093/bioinformatics/btu170
Bookhagen, B., & Burbank, D. W. (2006). Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophysical Research Letters , 33 (8), L08405.https://doi.org/10.1029/2006GL026037
Bookhagen, B., & Burbank, D. W. (2010). Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. Journal of Geophysical Research , 115 (F3), F03019.https://doi.org/10.1029/2009JF001426
Bowler, D. E., & Benton, T. G. (2005). Causes and consequences of animal dispersal strategies: Relating individual behaviour to spatial dynamics. Biological Reviews , 80 (2), 205–225.https://doi.org/10.1017/S1464793104006645
Clark, M. K., Schoenbohm, L. M., Royden, L. H., Whipple, K. X., Burchfiel, B. C., Zhang, X., Tang, W., Wang, E., & Chen, L. (2004). Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics , 23 (TC1006).https://doi.org/10.1029/2002TC001402
Collier, K. J., & Smith, B. J. (1997). Dispersal of adult caddisflies (Trichoptera) into forests alongside three New Zealand streams.Hydrobiologia , 361 (1/3), 53–65.https://doi.org/10.1023/A:1003133208818
Craw, D., Upton, P., Burridge, C. P., Wallis, G. P., & Waters, J. M. (2016). Rapid biological speciation driven by tectonic evolution in New Zealand. Nature Geoscience , 9 (2), 140–144.https://doi.org/10.1038/ngeo2618
Dahms, C., Kemppainen, P., Zanella, L. N., Zanella, D., Carosi, A., Merilä, J., & Momigliano, P. (2022). Cast away in the Adriatic: Low degree of parallel genetic differentiation in three‐spined sticklebacks.Molecular Ecology , 31 (4), 1234–1253.https://doi.org/10.1111/mec.16295
Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., Durbin, R., & 1000 Genomes Project Analysis Group. (2011). The variant call format and VCFtools. Bioinformatics ,27 (15), 2156–2158.https://doi.org/10.1093/bioinformatics/btr330
Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., Davies, R. M., & Li, H. (2021). Twelve years of SAMtools and BCFtools.GigaScience , 10 (2), giab008.https://doi.org/10.1093/gigascience/giab008
de Jager, D., Glanzmann, B., Möller, M., Hoal, E., van Helden, P., Harper, C., & Bloomer, P. (2021). High diversity, inbreeding and a dynamic Pleistocene demographic history revealed by African buffalo genomes. Scientific Reports , 11 (1), 4540.https://doi.org/10.1038/s41598-021-83823-8
Deng, B., Chew, D., Mark, C., Liu, S., Cogné, N., Jiang, L., O’Sullivan, G., Li, Z., & Li, J. (2021a). Late Cenozoic drainage reorganization of the paleo-Yangtze river constrained by multi-proxy provenance analysis of the Paleo-lake Xigeda. GSA Bulletin , 133 (1–2), 199–211.https://doi.org/10.1130/B35579.1
Deng, X.-L., Frandsen, P. B., Dikow, R. B., Favre, A., Shah, D. N., Shah, R. D. T., Schneider, J. V., Heckenhauer, J., & Pauls, S. U. (2022). The impact of sequencing depth and relatedness of the reference genome in population genomic studies: A case study with two caddisfly species (Trichoptera, Rhyacophilidae, Himalopsyche ).Ecology and Evolution , 12 (12).https://doi.org/10.1002/ece3.9583
[dataset] Deng, X.-L., Frandsen, P. B., Dikow, R. B., Favre, A., Shah, D. N., Shah, R. D. T., Schneider, J. V., Heckenhauer, J., & Pauls, S. U.; 2022; Trichoptera, Himalopsyche ; NCBI; PRJNA728835
Deng, X.-L., Favre, A., Lemmon, E. M., Lemmon, A. R., & Pauls, S. U. (2021b). Gene Flow and Diversification in Himalopsyche martynoviSpecies Complex (Trichoptera: Rhyacophilidae) in the Hengduan Mountains.Biology , 10 (8), 816.https://doi.org/10.3390/biology10080816
Ding, L., Kapp, P., Cai, F., Garzione, C. N., Xiong, Z., Wang, H., & Wang, C. (2022). Timing and mechanisms of Tibetan Plateau uplift.Nature Reviews Earth & Environment , 3 (10), 652–667.https://doi.org/10.1038/s43017-022-00318-4
Ding, W.-N., Ree, R. H., Spicer, R. A., & Xing, Y.-W. (2020). Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science , 369 (6503), 578–581.https://doi.org/10.1126/science.abb4484
Engelhardt, C. H., Haase, P., & Pauls, S. U. (2011). From the Western Alps across Central Europe: Postglacial recolonisation of the tufa stream specialist Rhyacophila pubescens (Insecta, Trichoptera).Frontiers in Zoology , 8 (1), 10.https://doi.org/10.1186/1742-9994-8-10
Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology , 14 (8), 2611–2620.https://doi.org/10.1111/j.1365-294X.2005.02553.x
Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics , 32 (19), 3047–3048.https://doi.org/10.1093/bioinformatics/btw354
Favre, A., Päckert, M., Pauls, S. U., Jähnig, S. C., Uhl, D., Michalak, I., & Muellner‐Riehl, A. N. (2015). The role of the uplift of the Qinghai‐Tibetan Plateau for the evolution of Tibetan biotas.Biological Reviews , 90 (1), 236–253.https://doi.org/10.1111/brv.12107
Finn, D. S., Blouin, M. S., & Lytle, D. A. (2007). Population genetic structure reveals terrestrial affinities for a headwater stream insect.Freshwater Biology , 52 (10), 1881–1897.https://doi.org/10.1111/j.1365-2427.2007.01813.x
Fitak, R. R. (2021). OptM: estimating the optimal number of migration edges on population trees using Treemix. Biology Methods and Protocols , 6 (1), bpab017.https://doi.org/10.1093/biomethods/bpab017
Flantua, S. G., Hooghiemstra, H., & Hoorn, C. (2018). Historical connectivity and mountain biodiversity. In C. Hoorn, A. Perrigo, & A. Antonelli, Mountains, Climate and Biodiversity (pp.171–185). John Wiley & Sons, Ltd.
Fox, E. A., Wright, A. E., Fumagalli, M., & Vieira, F. G. (2019). NgsLD: evaluating linkage disequilibrium using genotype likelihoods.Bioinformatics , 35 (19), 3855–3856.https://doi.org/10.1093/bioinformatics/btz200
Fu, P.-C., Sun, S.-S., Hollingsworth, P. M., Chen, S.-L., Favre, A., & Twyford, A. D. (2022). Population genomics reveal deep divergence and strong geographical structure in gentians in the Hengduan Mountains.Frontiers in Plant Science , 13 , 936761.https://doi.org/10.3389/fpls.2022.936761
Fu, P.-C., Sun, S.-S., Khan, G., Dong, X.-X., Tan, J.-Z., Favre, A., Zhang, F.-Q., & Chen, S.-L. (2020). Population subdivision and hybridization in a species complex of Gentiana in the Qinghai-Tibetan Plateau. Annals of Botany , 125 (4), 677–690.https://doi.org/10.1093/aob/mcaa003
Gallien, L., Douzet, R., Pratte, S., Zimmermann, N. E., & Thuiller, W. (2012). Invasive species distribution models - how violating the equilibrium assumption can create new insights. Global Ecology and Biogeography , 21 (11), 1126–1136.https://doi.org/10.1111/j.1466-8238.2012.00768.x
Garg, K. M., Chattopadhyay, B., Koane, B., Sam, K., & Rheindt, F. E. (2020). Last Glacial Maximum led to community-wide population expansion in a montane songbird radiation in highland Papua New Guinea. BMC Evolutionary Biology , 20 (1), 82.https://doi.org/10.1186/s12862-020-01646-z
Geismar, J., Haase, P., Nowak, C., Sauer, J., & Pauls, S. U. (2015). Local population genetic structure of the montane caddisfly Drusus discolour is driven by overland dispersal and spatial scaling.Freshwater Biology , 60 (1), 209–221.https://doi.org/10.1111/fwb.12489
Gillard, M., Thiébaut, G., Deleu, C., & Leroy, B. (2017). Present and future distribution of three aquatic plants taxa across the world: Decrease in native and increase in invasive ranges. Biological Invasions , 19 (7), 2159–2170.https://doi.org/10.1007/s10530-017-1428-y
Graf, W., John, M., Joakim, D., Carmen, Z.-M., & Manuel, J. L.-R. (2008). Distribution and ecological preferences of European freshwater organisms. Volume 1. Trichoptera. In A. Schmidt-Kloiber, & D. Hering,Distribution and ecological preferences of European freshwater organisms . Pensoft Publishing.
Griffith, M. B., Barrows, E. M., & Perry, S. A. (1998). Lateral Dispersal of Adult Aquatic Insects (Plecoptera, Trichoptera) following Emergence from Headwater Streams in Forested Appalachian Catchments.Annals of the Entomological Society of America , 91 (2), 195–201.https://doi.org/10.1093/aesa/91.2.195
Hao, T., Elith, J., Guillera‐Arroita, G., & Lahoz‐Monfort, J. J. (2019). A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Diversity and Distributions , 25 (5), 839–852.https://doi.org/10.1111/ddi.12892
He, M., Zheng, H., Clift, P. D., Bian, Z., Yang, Q., Zhang, B., & Xia, L. (2021). Paleogene Sedimentary Records of the Paleo‐Jinshajiang (Upper Yangtze) in the Jianchuan Basin, Yunnan, SW China. Geochemistry, Geophysics, Geosystems , 22 (6).https://doi.org/10.1029/2020GC009500
Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages.Nature , 405 (6789), 907–913.https://doi.org/10.1038/35016000
Hjalmarsson, A. E. (2019). Delimitation and description of three new species of Himalopsyche (Trichoptera: Rhyacophilidae) from the Hengduan Mountains, China. Zootaxa , 4638 (3), 419–441.https://doi.org/10.11646/zootaxa.4638.3.7
Hjalmarsson, A. E. (2020). Phylogeny and species delimitation of himalopsyche (trichoptera, rhyacophilidae) [Doctoral dissertation]. Johann Wolfgang Goethe-Universität.
Hjalmarsson, A. E., Graf, W., Jähnig, S. C., Vitecek, S., & Pauls, S. U. (2018). Molecular association and morphological characterisation ofHimalopsyche larval types (Trichoptera, Rhyacophilidae).ZooKeys , 773 , 79–108.https://doi.org/10.3897/zookeys.773.24319
Hjalmarsson, A. E., Graf, W., Vitecek, S., Jähnig, S. C., Cai, Q., Sharma, S., Tong, X., Li, F., Shah, D. N., Shah, R. D. T., & Pauls, S. U. (2019). Molecular phylogeny of Himalopsyche (Trichoptera, Rhyacophilidae). Systematic Entomology , 44 (4), 973–984.https://doi.org/10.1111/syen.12367
Hoorn, C., Perrigo, A., & Antonelli, A. (2018). Mountains, climate and biodiversity . John Wiley & Sons.
Hughes, J. M. (2007). Constraints on recovery: Using molecular methods to study connectivity of aquatic biota in rivers and streams.Freshwater Biology , 52 (4), 616–631.https://doi.org/10.1111/j.1365-2427.2006.01722.x
Hughes, J. M., Huey, J. A., & Schmidt, D. J. (2013). Is realised connectivity among populations of aquatic fauna predictable from potential connectivity? Freshwater Biology , 58 (5), 951–966.https://doi.org/10.1111/fwb.12099
Hughes, J. M., Schmidt, D. J., & Finn, D. S. (2009). Genes in Streams: Using DNA to Understand the Movement of Freshwater Fauna and Their Riverine Habitat. BioScience , 59 (7), 573–583.https://doi.org/10.1525/bio.2009.59.7.8
Humble, E., Dobrynin, P., Senn, H., Chuven, J., Scott, A. F., Mohr, D. W., Dudchenko, O., Omer, A. D., Colaric, Z., Lieberman Aiden, E., Al Dhaheri, S. S., Wildt, D., Oliaji, S., Tamazian, G., Pukazhenthi, B., Ogden, R., & Koepfli, K. (2020). Chromosomal‐level genome assembly of the scimitar‐horned oryx: Insights into diversity and demography of a species extinct in the wild. Molecular Ecology Resources ,20 (6), 1668–1681.https://doi.org/10.1111/1755-0998.13181
Keightley, P. D., Pinharanda, A., Ness, R. W., Simpson, F., Dasmahapatra, K. K., Mallet, J., Davey, J. W., & Jiggins, C. D. (2015). Estimation of the Spontaneous Mutation Rate in Heliconius melpomene . Molecular Biology and Evolution , 32 (1), 239–243.https://doi.org/10.1093/molbev/msu302
Kong, P., Granger, D., Wu, F., Caffee, M., Wang, Y., Zhao, X., & Zheng, Y. (2009). Cosmogenic nuclide burial ages and provenance of the Xigeda paleo-lake: Implications for evolution of the Middle Yangtze River.Earth and Planetary Science Letters , 278 (1–2), 131–141.https://doi.org/10.1016/j.epsl.2008.12.003
Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A., & Mayrose, I. (2015). CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources , 15 (5), 1179–1191.https://doi.org/10.1111/1755-0998.12387
Korneliussen, T. S., Albrechtsen, A., & Nielsen, R. (2014). ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinformatics ,15 (1), 356.https://doi.org/10.1186/s12859-014-0356-4
Kreft, H., & Jetz, W. (2007). Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences , 104 (14), 5925–5930.https://doi.org/10.1073/pnas.0608361104
Kubow, K. B., Robinson, C. T., Shama, L. N. S., & Jokela, J. (2010). Spatial scaling in the phylogeography of an alpine caddisfly,Allogamus uncatus , within the central European Alps.Journal of the North American Benthological Society ,29 (3), 1089–1099.https://doi.org/10.1899/09-084.1
Lehner, B., & Grill, G. (2013). Global river hydrography and network routing: Baseline data and new approaches to study the world’s large river systems. Hydrological Processes , 27 (15), 2171–2186.https://doi.org/10.1002/hyp.9740
Lehrian, S., Bálint, M., Haase, P., & Pauls, S. U. (2010). Genetic population structure of an autumn-emerging caddisfly with inherently low dispersal capacity and insights into its phylogeography. Journal of the North American Benthological Society , 29 (3), 1100–1118.https://doi.org/10.1899/09-100.1
Lehrian, S., Pauls, S. U., & Haase, P. (2009). Contrasting patterns of population structure in the montane caddisflies Hydropsyche tenuis and Drusus discolour in the Central European highlands.Freshwater Biology , 54 (2), 283–295.https://doi.org/10.1111/j.1365-2427.2008.02107.x
Li, H., & Durbin, R. (2011). Inference of human population history from individual whole-genome sequences. Nature , 475 (7357), 493–496.https://doi.org/10.1038/nature10231
Li, Q., Sun, H., Boufford, D. E., Bartholomew, B., Fritsch, P. W., Chen, J., Deng, T., & Ree, R. H. (2021). Grade of Membership models reveal geographical and environmental correlates of floristic structure in a temperate biodiversity hotspot. New Phytologist , 232 (3), 1424–1435.https://doi.org/10.1111/nph.17443
Li, Y., Chen, J., Yan, J., Zhou, F., Wang, Q., Li, Z., & Zhang, Y. (2022). Formation and evolution of a giant old deposit in the First Bend of the Yangtze River on the southeastern margin of the Qinghai-Tibet Plateau. CATENA , 213 , 106138.https://doi.org/10.1016/j.catena.2022.106138
Liang, Q., Xu, X., Mao, K., Wang, M., Wang, K., Xi, Z., & Liu, J. (2018). Shifts in plant distributions in response to climate warming in a biodiversity hotspot, the Hengduan Mountains. Journal of Biogeography , 45 (6), 1334–1344.https://doi.org/10.1111/jbi.13229
Liu, H., Jia, Y., Sun, X., Tian, D., Hurst, L. D., & Yang, S. (2017). Direct Determination of the Mutation Rate in the Bumblebee Reveals Evidence for Weak Recombination-Associated Mutation and an Approximate Rate Constancy in Insects. Molecular Biology and Evolution ,34 (1), 119–130.https://doi.org/10.1093/molbev/msw226
Malicky, H. (1987). Anflugdistanz und Fallenfangbarkeit von Köcherfliegen (Trichoptera) bei Lichtfallen. Jahresberichte Der Biologischen Station Lunz , 10 , 140–157.
Malicky, H. (2011). Neue Trichopteren aus Europa und Asien. Braueria, 23–43.
Manthey, J. D., Moyle, R. G., Gawin, D. F., Rahman, M. A., Ramji, M. F. S., & Sheldon, F. H. (2017). Genomic phylogeography of the endemic Mountain Black-eye of Borneo (Chlorocharis emiliae ): Montane and lowland populations differ in patterns of Pleistocene diversification.Journal of Biogeography , 44 (10), 2272–2283.https://doi.org/10.1111/jbi.13028
Mao, K., Wang, Y., & Liu, J. (2021). Evolutionary origin of species diversity on the Qinghai–Tibet Plateau. Journal of Systematics and Evolution , 59 (6), 1142–1158.https://doi.org/10.1111/jse.12809
Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal , 17 (1), 10.https://doi.org/10.14806/ej.17.1.200
Martynov, A. B. (1930). On the Trichopterons Fauna of China and Eastern Tibet. In Proceedings of the Zoological Society of London ,100 (1), 65–112.
Martynov, A. B. (1935). On a Collection of Trichopiera from the Indian Museum. Part I. Annulipalpia. Records of the Zoological Survey of India , 37 (2), 93–209.
Meisner, J., & Albrechtsen, A. (2018). Inferring Population Structure and Admixture Proportions in Low-Depth NGS Data. Genetics ,210 (2), 719–731.https://doi.org/10.1534/genetics.118.301336
Miller, S. A., Dykes, D. D., & Polesky, H. F. (1988). A simple salting out procedure for extracting DNA from human nucleated cells.Nucleic Acids  Research , 16 (3), 1215.
Morse, J. C., Frandsen, P. B., Graf, W., & Thomas, J. A. (2019). Diversity and Ecosystem Services of Trichoptera. Insects ,10 (5), 125.https://doi.org/10.3390/insects10050125
Mosbrugger, V., Favre, A., Muellner-Riehl, A. N., Päckert, M., & Mulch, A. (2018). Cenozoic evolution of geo-biodiversity in the Tibeto-Himalayan region. In C. Hoorn, A. Perrigo, & A. Antonelli,Mountains, climate, and biodiversity (p. 429). John Wiley & Sons.
Muellner-Riehl, A. N. (2019). Mountains as Evolutionary Arenas: Patterns, Emerging Approaches, Paradigm Shifts, and Their Implications for Plant Phylogeographic Research in the Tibeto-Himalayan Region.Frontiers in Plant Science , 10 , 195.https://doi.org/10.3389/fpls.2019.00195
Muellner‐Riehl, A. N., & Favre, A. (2021). Mountain biogeography coming full circle: A new ‘3D’ floristic approach provides units for reconstructing evolutionary trajectories. New Phytologist ,232 (3), 964–966.https://doi.org/10.1111/nph.17645
Muellner‐Riehl, A. N., Schnitzler, J., Kissling, W. D., Mosbrugger, V., Rijsdijk, K. F., Seijmonsbergen, A. C., Versteegh, H., & Favre, A. (2019). Origins of global mountain plant biodiversity: Testing the ‘mountain‐geobiodiversity hypothesis’. Journal of Biogeography ,46 (12), 2826–2838.https://doi.org/10.1111/jbi.13715
Müller, K. (1954). Investigations on the organic drift in north Swedish streams. Report of the Institute of Freshwater Research, Drottningholm , 35 , 133–148.
Müller-Peddinghaus, E. (2011). Flight-morphology of Central European caddisflies (Insecta: Trichoptera) in relation to their ecological preferences [Doctoral dissertation]. Universität Duisburg-Essen.
Myers, M. J., Sperling, F. A. H., & Resh, V. H. (2001). Dispersal of Two Species of Trichoptera from Desert Springs: Conservation Implications for Isolated vs Connected Populations. Journal of Insect Conservation , 5 (3), 207–215.https://doi.org/10.1023/A:1017998513721
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities.Nature , 403 (6772), 853–858.https://doi.org/10.1038/35002501
Nielsen, R., Korneliussen, T., Albrechtsen, A., Li, Y., & Wang, J. (2012). SNP Calling, Genotype Calling, and Sample Allele Frequency Estimation from New-Generation Sequencing Data. PLoS ONE ,7 (7), e37558.https://doi.org/10.1371/journal.pone.0037558
Parkyn, S. M., & Smith, B. J. (2011). Dispersal Constraints for Stream Invertebrates: Setting Realistic Timescales for Biodiversity Restoration. Environmental Management , 48 (3), 602–614.https://doi.org/10.1007/s00267-011-9694-4
Pauls, S. U., Lumbsch, H. T., & Haase, P. (2006). Phylogeography of the montane caddisfly Drusus discolour : Evidence for multiple refugia and periglacial survival. Molecular Ecology , 15 (8), 2153–2169.https://doi.org/10.1111/j.1365-294X.2006.02916.x
Pauls, S. U., Theissinger, K., Ujvarosi, L., Balint, M., & Haase, P. (2009). Patterns of population structure in two closely related, partially sympatric caddisflies in Eastern Europe: Historic introgression, limited dispersal, and cryptic diversity. Journal of the North American Benthological Society , 28 (3), 517–536.https://doi.org/10.1899/08-100.1
Perrigo, A., Hoorn, C., & Antonelli, A. (2020). Why mountains matter for biodiversity. Journal of Biogeography , 47 (2), 315–325.https://doi.org/10.1111/jbi.13731
Petersen, I., Masters, Z., Hildrew, A. G., & Ormerod, S. J. (2004). Dispersal of adult aquatic insects in catchments of differing land use.Journal of Applied Ecology , 41 (5), 934–950.https://doi.org/10.1111/j.0021-8901.2004.00942.x
Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: An open-source release of Maxent.Ecography , 40 (7), 887–893.https://doi.org/10.1111/ecog.03049
Pickrell, J., & Pritchard, J. (2012). Inference of population splits and mixtures from genome-wide allele frequency data. Nature Precedings .https://doi.org/10.1038/npre.2012.6956.1
Previšić, A., Schnitzler, J., Kučinić, M., Graf, W., Ibrahimi, H., Kerovec, M., & U. Pauls, S. (2014). Microscale vicariance and diversification of Western Balkan caddisflies linked to karstification.Freshwater Science , 33 (1), 250–262.https://doi.org/10.1086/674430
Price, T. D., Mohan, D., Tietze, D. T., Hooper, D. M., Orme, C. D. L., & Rasmussen, P. C. (2011). Determinants of Northerly Range Limits along the Himalayan Bird Diversity Gradient. The American Naturalist ,178 (S1), S97–S108.https://doi.org/10.1086/661926
Rader, R. B., Unmack, P. J., Christensen, W. F., & Jiang, X. (2019). Connectivity of two species with contrasting dispersal abilities: A test of the isolated tributary hypothesis. Freshwater Science ,38 (1), 142–155.https://doi.org/10.1086/701671
Rahbek, C., Borregaard, M. K., Antonelli, A., Colwell, R. K., Holt, B. G., Nogues-Bravo, D., Rasmussen, C. M. Ø., Richardson, K., Rosing, M. T., Whittaker, R. J., & Fjeldså, J. (2019). Building mountain biodiversity: Geological and evolutionary processes. Science ,365 (6458), 1114–1119.https://doi.org/10.1126/science.aax0151
Rahbek, C., Borregaard, M. K., Colwell, R. K., Dalsgaard, B., Holt, B. G., Morueta-Holme, N., Nogues-Bravo, D., Whittaker, R. J., & Fjeldså, J. (2019). Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science , 365 (6458), 1108–1113.https://doi.org/10.1126/science.aax0149
Rana, S. K., Price, T. D., & Qian, H. (2019). Plant species richness across the Himalaya driven by evolutionary history and current climate.Ecosphere , 10 (11).https://doi.org/10.1002/ecs2.2945
Rana, S. K., White, A. E., Price, T. D., & Meireles, J. E. (2022). Key roles for the freezing line and disturbance in driving the low plant species richness of temperate regions. Global Ecology and Biogeography , 31 (2), 280–293.https://doi.org/10.1111/geb.13427
Resh, V. H., & Unzicker, J. D. (1975). Water quality monitoring and aquatic organisms: The importance of species identification.Journal (Water Pollution Control Federation) , 9–19.
Ross, H. H. (1941). Descriptions and records of North American Trichoptera. Transactions of the American Entomological Society (1890-) , 67 (1/2), 35–126.
Schmid, F., & Botosaneanu, L. (1966). Le genre Himalopsyche Banks (Trichoptera: Rhyacophilidae). Ann Ent Soc Quebec , 11 (2), 123–176.
Skotte, L., Korneliussen, T. S., & Albrechtsen, A. (2013). Estimating Individual Admixture Proportions from Next Generation Sequencing Data.Genetics , 195 (3), 693–702.https://doi.org/10.1534/genetics.113.154138
Smith, P. J., & Smith, B. J. (2009). Small‐scale population‐genetic differentiation in the New Zealand caddisfly Orthopsyche fimbriata and the crayfish Paranephrops planifrons . New Zealand Journal of Marine and Freshwater Research , 43 (3), 723–734.https://doi.org/10.1080/00288330909510037
Sproul, J. S., Houston, Derek. D., Davis, N., Barrington, E., Oh, S. Y., Evans, R. P., & Shiozawa, D. K. (2014). Comparative phylogeography of codistributed aquatic insects in western North America: Insights into dispersal and regional patterns of genetic structure. Freshwater Biology , 59 (10), 2051–2063.https://doi.org/10.1111/fwb.12406
Srinivasan, U., Tamma, K., & Ramakrishnan, U. (2014). Past climate and species ecology drive nested species richness patterns along an east-west axis in the Himalaya: Nestedness in Himalayan fauna.Global Ecology and Biogeography , 23 (1), 52–60.https://doi.org/10.1111/geb.12082
Stone, B. W., & Wolfe, A. D. (2021). Phylogeographic analysis of shrubby beardtongues reveals range expansions during the Last Glacial Maximum and implicates the Klamath Mountains as a hotspot for hybridization. Molecular Ecology , 30 (15), 3826–3839.https://doi.org/10.1111/mec.15992
Svensson, B. W. (1974). Population Movements of Adult Trichoptera at a South Swedish Stream. Oikos , 25 (2), 157.https://doi.org/10.2307/3543638
Taylor, R. S., Manseau, M., Klütsch, C. F. C., Polfus, J. L., Steedman, A., Hervieux, D., Kelly, A., Larter, N. C., Gamberg, M., Schwantje, H., & Wilson, P. J. (2021). Population dynamics of caribou shaped by glacial cycles before the last glacial maximum. Molecular Ecology , 30 (23), 6121–6143.https://doi.org/10.1111/mec.16166
Thuiller, W., Lafourcade, B., Engler, R., & Araújo, M. B. (2009). BIOMOD - a platform for ensemble forecasting of species distributions.Ecography , 32 (3), 369–373.https://doi.org/10.1111/j.1600-0587.2008.05742.x
Tonkin, J. D., Altermatt, F., Finn, D. S., Heino, J., Olden, J. D., Pauls, S. U., & Lytle, David. A. (2018). The role of dispersal in river network metacommunities: Patterns, processes, and pathways.Freshwater Biology , 63 (1), 141–163.https://doi.org/10.1111/fwb.13037
Tonzo, V., & Ortego, J. (2021). Glacial connectivity and current population fragmentation in sky islands explain the contemporary distribution of genomic variation in two narrow‐endemic montane grasshoppers from a biodiversity hotspot. Diversity and Distributions , 27 (9), 1619–1633.https://doi.org/10.1111/ddi.13306
Tsuruishi, T. (2003). Life cycle of a giant carnivorous caddisfly,Himalopsyche japonica (Morton) (Trichoptera: Rhyacophilidae), in the mountain streams of Nagano, Central Japan. Limnology ,4 (1), 11–18.https://doi.org/10.1007/s10201-003-0091-4
Tsuruishi, T. (2006). Life Cycle of Himalopsyche japonica(Morton) (Trichoptera: Rhyacophilidae) in Two High Mountain Streams in Nagano, Central Japan. Hydrobiologia , 563 (1), 493–499.https://doi.org/10.1007/s10750-006-0197-x
Tsuruishi, T., Ketavan, C., Suwan, K., & Sirikajornjaru, W. (2006). Importance of Water Flow on Larval Growth and Pupation ofHimalopsyche acharai , (Malicky and Chantaramongkol, 1989) (Trichoptera: Rhyacophilidae). Hydrobiologia , 563 (1), 537–540.https://doi.org/10.1007/s10750-006-0198-9
Ulmer, G. (1932). Aquatic insects of China. Article III. Neue Chinesishe Trichopteren, nebst ubersicht uber die bischer aus China bekannten Arten. Peking Natural History Bulletin , 7 , 39–70.
Vieira, F. G., Fumagalli, M., Albrechtsen, A., & Nielsen, R. (2013). Estimating inbreeding coefficients from NGS data: Impact on genotype calling and allele frequency estimation. Genome Research ,23 (11), 1852–1861.https://doi.org/10.1101/gr.157388.113
Višnjević, V., Herman, F., & Prasicek, G. (2020). Climatic patterns over the European Alps during the LGM derived from inversion of the paleo-ice extent. Earth and Planetary Science Letters ,538 , 116185.https://doi.org/10.1016/j.epsl.2020.116185
Vitecek, S., Graf, W., Previšić, A., Kučinić, M., Oláh, J., Bálint, M., Keresztes, L., Pauls, S. U., & Waringer, J. (2015). A hairy case: The evolution of filtering carnivorous Drusinae (Limnephilidae, Trichoptera). Molecular Phylogenetics and Evolution , 93 , 249–260.https://doi.org/10.1016/j.ympev.2015.07.019
Vitecek, S., Vinçon, G., Graf, W., & Pauls, S. (2017). High cryptic diversity in aquatic insects: An integrative approach to study the enigmatic Leuctra inermis species group (Plecoptera). Arthropod Systematics & Phylogeny , 75 , 497–521.
Von Humboldt, A. (1860). Cosmos: A sketch of a physical description of the universe: Vol. 5 . Harper & brothers.
Waldvogel, A.-M., Wieser, A., Schell, T., Patel, S., Schmidt, H., Hankeln, T., Feldmeyer, B., & Pfenninger, M. (2018). The genomic footprint of climate adaptation in Chironomus riparius .Molecular Ecology , 27 (6), 1439–1456.https://doi.org/10.1111/mec.14543
Wang, K., Zhou, X.-H., Liu, D., Li, Y., Yao, Z., He, W.-M., & Liu, Y. (2022). The uplift of the Hengduan Mountains contributed to the speciation of three Rhododendron species. Global Ecology and Conservation , 35 , e02085.https://doi.org/10.1016/j.gecco.2022.e02085
Wang, P., Zheng, H., Liu, S., & Hoke, G. (2018). Late Cretaceous drainage reorganization of the Middle Yangtze River. Lithosphere ,10 (3), 392–405.https://doi.org/10.1130/L695.1
Wikramanayake, E. D., Dinerstein, E., & Loucks, C. J. (2002).Terrestrial ecoregions of the Indo-Pacific: A conservation assessment (Vol. 3). Island Press.
Wilcock, H. R., Bruford, M. W., Nichols, R. A., & Hildrew, A. G. (2007). Landscape, habitat characteristics and the genetic population structure of two caddisflies. Freshwater Biology , 52 (10), 1907–1929.https://doi.org/10.1111/j.1365-2427.2007.01818.x
Winterbourn, M. J., Chadderton, W. L., Entrekin, S. A., Tank, J. L., & Harding, J. S. (2007). Distribution and dispersal of adult stream insects in a heterogeneous montane environment. Fundamental and Applied Limnology , 168 (2), 127–135.https://doi.org/10.1127/1863-9135/2007/0168-0127
Xing, Y., & Ree, R. H. (2017). Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proceedings of the National Academy of Sciences , 114 (17).https://doi.org/10.1073/pnas.1616063114
Yan, Y., Yang, X., & Tang, Z. (2013). Patterns of species diversity and phylogenetic structure of vascular plants on the Qinghai-Tibetan Plateau. Ecology and Evolution , 3 (13), 4584–4595.https://doi.org/10.1002/ece3.847
Yin, L., Dai, E., Zheng, D., Wang, Y., Ma, L., & Tong, M. (2020). What drives the vegetation dynamics in the Hengduan Mountain region, southwest China: Climate change or human activity? Ecological Indicators , 112 , 106013.https://doi.org/10.1016/j.ecolind.2019.106013
Yousefi, M., Ahmadi, M., Nourani, E., Behrooz, R., Rajabizadeh, M., Geniez, P., & Kaboli, M. (2015). Upward Altitudinal Shifts in Habitat Suitability of Mountain Vipers since the Last Glacial Maximum.PLOS ONE , 10 (9), e0138087.https://doi.org/10.1371/journal.pone.0138087
Zhang, Z., Daly, J. S., Li, C., Tyrrell, S., Sun, X., & Yan, Y. (2017). Sedimentary provenance constraints on drainage evolution models for SE Tibet: Evidence from detrital K-feldspar: Pb Isotope of the SE Tibet.Geophysical Research Letters , 44 (9), 4064–4073.https://doi.org/10.1002/2017GL073185
Zheng, H. (2015). Birth of the Yangtze River: Age and tectonic-geomorphic implications. National Science Review ,2 (4), 438–453.https://doi.org/10.1093/nsr/nwv063
Zheng, H., Clift, P. D., He, M., Bian, Z., Liu, G., Liu, X., Xia, L., Yang, Q., & Jourdan, F. (2021). Formation of the First Bend in the late Eocene gave birth to the modern Yangtze River, China. Geology ,49 (1), 35–39.https://doi.org/10.1130/G48149.1