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Abstract

This paper investigates stochastic differential equations (SDEs) with locally one-sided Lipschitz

coefficients. Apart from the local one-sided Lipschitz condition, a more general condition is intro-

duced to replace the monotone condition. Then, in terms of the Euler’s polygonal line method, the

existence and uniqueness of solutions for SDEs is established. In the meanwhile, the pth moment

boundedness of solutions is also provided.
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1. Introduction

Stochastic differential equations (SDEs) have been widely applied in many fields, such as biology,

economics and physics for modeling (see, e.g., [2, 4, 7, 9, 14, 18]). More and more people have showed

their interests in SDEs. So far, many results of solutions for SDEs have been obtained, such as the

existence and uniqueness (see, e.g.,[3, 6, 8, 11, 12, 16]), Markov property (see, e.g.,[15]) and even the

long-term behavior (see, e.g.,[20]). In addition, to describe a wide variety of natural and man-made

systems precisely, various types of SDEs are developed (see,e.g.,[11, 17]). And the theory of thses

SDEs has always been a focus.

On the other hand, one of the popular topics of SDEs is the existence and uniqueness of solutions.

Generally, the classical existence and uniqueness theorem for SDEs requires the coefficients to satisfy

the global Lipschitz condition(see,e.g., [5, 19]). Under the local Lipschitz condition and the linear

growth condition, Arnold [1] has showed the existence of the unique solutions for SDEs. However,

there are many interesting SDEs that their coefficients are only superlinear. For such SDEs, Mao

[11] has derived that there exists a unique regular solution under locally Lipschitz condition and the

monotone condition. Based on these existence and uniqueness results for the classical SDEs, many

IThis work was supported by the National Natural Science Foundation of China, China (Grant Nos. 12101144,
12001125), the Natural Science Foundation of Guangxi Province, China (Grant Nos. 2021GXNSFBA196080,
2018GXNSFBA281140, 2021GXNSFAA294084).

∗Corresponding author
Email addresses: shenff0719@gxnu.edu.cn (Fangfang Shen), huaqinpeng@126.com (Huaqin Peng)

Preprint submitted to Journal of LATEX Templates June 17, 2022



authors have studied the existence and uniqueness problems for other types of SDEs. For instance,

Zvonkin [21] have investigated the strong solutions of SDEs with singular coefficients. Mao and

Yuan [13] have introduced the existence and uniqueness of solutions for SDEs with Markovian

swithching.

Furthermore, although many SDEs have been showed that they each have a unique solution,

it is important to determine precisely under which conditions one obtains a unique solution for

SDEs. Compared with more restrictive conditions, general conditions can provide the existence

and uniqueness of solutions for a larger class of SDEs. By using the Euler method, Krylov [8] have

established the existence and uniqueness theorem under the monotone condition and a more general

condition which is known as local one-sided Lipschitz condition. Then, Gyöngy and Sabanis [3]

have developed this result to stochastic differential delay equations. Recently, Ji and Yuan [6] have

established the existence and uniqueness result for neutral stochastic differential delay equations.

In this paper, inspired by Li et al. [10] and Krylov [8], we aim to study the existence and uniqueness

of solutions for SDEs under weaker conditions compared with what we have mentioned above. Also,

we can obtain the pth moment boundedness. And the main contribution of this paper is that we

have included the case of 0 < p < 2 in our conditions.

The rest organization of this paper is as follows: In section 2, some notations and preliminaries

are introduced. In section 3, the existence and uniqueness of solutions is provided by deriving a

localization lemma, and the pth moment is further estimated. In section 4, an example is given to

illustrate our results.

2. Notations and Preliminaries

In this paper, let (Ω, F , P) be a complete probability space with a filtration {Ft}t≥0 satisfying

the usual conditions (that is, it is right continuous and increasing while F0 contains all P-null sets).

Let N be the set of natural numbers and m, d ∈ N. Let {B(t)}t≥0 be a standard m-dimensional

Brownian motion defined on the probability space. Let R+ = {x ∈ R : x ≥ 0}, Rd be d-dimensional

Euclidean space, and Rd×m be the space of real d×m-matrices. If x ∈ Rd, then |x| is the Euclidean

norm. For any matrix A, define its trace norm by |A| =
√

trace(AAT ). If A is a vector or matrix,

AT denotes its transpose. Moreover, for any a ∈ R and b ∈ R, define a∧ b = min{a, b} and a∨ b =

max{a, b}. For a set G, let IG(x) = 1 if x ∈ G and otherwise 0. Let inf ∅ = ∞(as usual ∅ denotes

the empty set). For any x ∈ R, let bxc be the integer part of x.

Let T ∈ [0,∞). For p ∈ (0,∞), let Lp = Lp(Ω;Rd) be the family of Rd-valued random

variables Z with E
[
|Z(ω)|p

]
< +∞. Let

f : Rd × R+ → Rd, g : Rd × R+ → Rd×m

be Borel-measurable and continuous mappings. And L = L([0, T ];R) denotes the set of R-valued

nonnegative integrable functions on [0, T ]. Furthermore, we consider a d-dimensional SDE described
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by

dX(t) = f(X(t), t)dt+ g(X(t), t)dB(t), t ∈ [0, T ], (2.1)

with the initial value X(0) = X0 ∈ Lp.
Moreover, in order for the main results we impose the following assumptions.

Assumption 1. For any R, T ∈ [0,∞),∫ T

0
sup
|x|≤R

{
|f(x, t)| ∨ |g(x, t)|2

}
dt <∞ a.s.

Assumption 2. For any R, T ∈ [0,∞), there exists a KR ∈ L such that

2(x1 − x2)T
(
f(x1, t)− f(x2, t)

)
+
∣∣g(x1, t)− g(x2, t)

∣∣2 ≤ KR(t)|x1 − x2|2,

for all t ∈ [0, T ], x1, x2 ∈ Rd and |x1| ∨ |x2| ≤ R.

Assumption 3. For any T ∈ [0,∞) and p ∈ (0,∞), there exists a K ∈ L such that(
1 + |x|2

)(
2xT f(x, t) + |g(x, t)|2

)
− (2− p)

∣∣xT g(x, t)
∣∣2 ≤ K(t)

(
1 + |x|2

)2
,

for all t ∈ [0, T ] and x ∈ Rd.

For the sake of simplicity, throughout the paper, unless otherwise stated, C denotes a generic

constant, whose value may be changed in different appearance.

3. Existence and Uniqueness of Solution

In this section, we shall show that there exists a unique regular solution to (2.1). And according

to [6, 8, 16], we prepare a localization lemma below.

Lemma 3.1. Let Assumptions 1-3 hold with p > 0 and T ∈ [0,∞). For n ∈ N, {Xn(t)}t∈[0,T ] is a

continuous, Rd-valued, and Ft-adapted process on (Ω, F , P) such that for Xn(0) = X(0),

dXn(t) = f(Xn(t) + Pn(t), t)dt+ g(Xn(t) + Pn(t), t)dB(t), t ∈ [0, T ],

where Pn(t) is a progressively measurable process. Moreover, for n ∈ N and R ∈ [0,∞), suppose that
there exists a function r : [0,∞) → [0,∞) such that lim

R→∞
r(R) = ∞, and let τn(R) be Ft-stopping

times such that

(i) |Xn(t)|+ |Pn(t)| ≤ R if t ∈ [0, τn(R)] a.s.

(ii) lim
n→∞

E
[ ∫ T∧τn(R)

0 |Pn(t)|dt
]

= 0 for all T ∈ [0,∞).

(iii) For any T ∈ [0,∞),

lim
R→∞

lim
n→∞

P
{
τn(R) ≤ T, sup

t∈[0,τn(R)]
|Xn(t)| < r(R)

}
= 0.
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Then for any T ∈ [0,∞), we have

sup
t∈[0,T ]

|Xn(t)−Xm(t)| P−→ 0, as n,m→∞. (3.1)

Proof. We borrow the techniques from [16] mainly and divide the proof into 2 steps.

Step 1. For R ∈ [0,∞) and t ∈ [0, T ], from Assumption 1 we assume that

sup
|x|≤R

{
|f(x, t)| ∨ |g(x, t)|2

}
≤ KR(t),

(Otherwise, we regard KR(t) as the maximum of KR(t) and the integrand in Assumption 1).

Fix R ∈ [0,∞) and define the Ft-stopping time

τ(R, u) = inf
{
t ≥ 0|αR(t) > u

}
, u ∈ (0,∞),

where αR(t) =
∫ t
0 KR(s)ds <∞. Clearly, τ(R, u) ↑ ∞ as u→∞. In particular, there exists u(R) ∈

(0,∞) such that

P
{
τ(R, u(R)) ≤ R

}
≤ 1

R
.

Now, we let τ(R) = τ(R, u(R)), then τ(R)→∞ in probability as R→∞ and αR(t∧τ(R)) ≤ u(R).

Moreover, referring to [6] and [16], it is easy to prove that all three conditions (i)-(iii) still hold

if we replace τn(R) by τn(R) ∧ τ(R). So we can further assume that τn(R) ≤ τ(R), then we

have αR(t ∧ τn(R)) ≤ u(R). For a fixed R ∈ [0,∞), we define

λRn (t) =

∫ t

0
|Pn(s)|KR(s)ds, t ∈ [0, T ∧ τn(R)], n ∈ N,

and τ(n,m)(R) = τn(R) ∧ τm(R) for m,n ∈ N. Then we can obtain

lim
n→∞

E
[
λRn (T ∧ τn(R))

]
= 0. (3.2)

And under Assumption 2, we have

sup
t∈[0,T∧τ(n,m)(R)]

|Xn(t)−Xm(t)| P−→ 0, as n,m→∞. (3.3)

We omit the proof of (3.2) and (3.3) there as the reader can refer to [6] and [16] for more details.

Step 2. In order for (3.1), we need to show that

lim
R→∞

lim
n→∞

P{τn(R) ≤ T} = 0,

for any given T ∈ [0,∞). For t ∈ [0, T ], let κ be a negative constant and define

ψ(t) = exp
(
κβ(t)− |X(0)|

)
,

where β(t) =
∫ t
0 K(s)ds. For t ∈ [0, T ∧ τn(R)], applying the Itô formula, we have(

1 + |Xn(t)|2
) p

2ψ(t)
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=
(
1 + |X(0)|2

) p
2ψ(0) +

∫ t

0
κK(s)

(
1 + |Xn(s)|2

) p
2ψ(s)ds+

p

2

∫ t

0
ψ(s)

(
1 + |Xn(t)|2

) p−4
2

×
{(

1 + |Xn(t)|2
)(

2
(
Xn(t)

)T
f(Xn(s) + Pn(s), s) + |g(Xn(s) + Pn(s), s)|2

)
− (2− p)

∣∣(Xn(t)
)T
g(Xn(s) + Pn(s), s)

∣∣2}ds+ JRn (t),

where

JRn (t) = p

∫ t

0
ψ(s)

(
1 + |Xn(s)|2

) p−4
2
(
Xn(t)

)T
g(Xn(s) + Pn(s), s)dB(s).

Then, we further write that(
1 + |Xn(t)|2

) p
2ψ(t)

=
(
1 + |X(0)|2

) p
2ψ(0) +

∫ t

0
κK(s)

(
1 + |Xn(s)|2

) p
2ψ(s)ds

+
p

2

∫ t

0
ψ(s)

(
1+ |Xn(t)|2

) p−4
2

{(
1+|Xn(s)+Pn(s)|2−2

(
Xn(s)+ Pn(s)

)T
Pn(s)+|Pn(s)|2

)
×
(

2
(
Xn(s) + Pn(s)

)T
f(Xn(s) + Pn(s), s) + |g(Xn(s) + Pn(s), s)|2

− 2(Pn(s))T f(Xn(s) + Pn(s), s)
)
− (2− p)

[∣∣(Xn(s) + Pn(s)
)T
g(Xn(s) + Pn(s), s)

∣∣2
− 2(Pn(s))T

(
Xn(s) + Pn(s)

)
|g(Xn(s) + Pn(s), s)|2

+
∣∣(Pn(s))T g(Xn(s) + Pn(s), s)

∣∣2]}ds+ JRn (t)

=
(
1 + |X(0)|2

) p
2ψ(0) +

∫ t

0
κK(s)

(
1 + |Xn(s)|2

) p
2ψ(s)ds+

5∑
i=1

Ji(t) + JRn (t), (3.4)

where

J1(t) =
p

2

∫ t

0
ψ(s)

(
1 + |Xn(s)|2

) p−4
2

{(
1 + |Xn(s) + Pn(s)|2

)
×
[
2
(
Xn(s) + Pn(s)

)T
f(Xn(s) + Pn(s), s) + |g(Xn(s) + Pn(s), s)|2

]
− (2− p)

∣∣(Xn(s) + Pn(s)
)T
g(Xn(s) + Pn(s), s)

∣∣2}ds,

J2(t) =
p

2

∫ t

0
ψ(s)

(
1 + |Xn(s)|2

) p−4
2

(
− 2
(
Xn(s) + Pn(s)

)T
Pn(s) + |Pn(s)|2

)
×
[
2
(
Xn(s) + Pn(s)

)T
f(Xn(s) + Pn(s), s) + |g(Xn(s) + Pn(s), s)|2

]
ds,

J3(t) =
p

2

∫ t

0
ψ(s)

(
1 +|Xn(s)|2

) p−4
2
(
1 +|Xn(s)+ Pn(s)|2

)(
− 2(Pn(s))Tf(Xn(s)+ Pn(s), s)

)
ds,

J4(t) =
p

2

∫ t

0
ψ(s)

(
1 + |Xn(s)2

) p−4
2

(
− 2
(
Xn(s) + Pn(s)

)T
Pn(s) + |Pn(s)|2

)
×
(
− 2(Pn(s))T f(Xn(s) + Pn(s), s)

)
ds,
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J5(t) =
p

2

∫ t

0
ψ(s)

(
1 + |Xn(s)|2

) p−4
2

×
{
− (2− p)

(
− 2
(
Xn(s) + Pn(s)

)T
Pn(s)|g(Xn(s) + Pn(s), s)|2

+
∣∣(Pn(s))T g(Xn(s) + Pn(s), s)

∣∣2)}ds.

By Assumption 3, we have

J1(t) ≤
p

2

∫ t

0
ψ(s)

(
1 + |Xn(t)|2

) p−4
2 K(s)

(
1 + |Xn(s) + Pn(s)|2

)2
ds

≤ C
∫ t

0
ψ(s)

(
1 + |Xn(t)|2

) p−4
2 K(s)

((
1 + |Xn(s)|2

)2
+ |Pn(s)|4

)
ds

≤ C
∫ t

0
ψ(s)K(s)

(
1 + |Xn(t)|2

) p
2 ds+ C

∫ t

0
ψ(s)K(s)

(
1 + |Xn(t)|2

) p−4
2 |Pn(s)|4ds.

For 0 < p ≤ 4, we have
(
1 + |Xn(t)|2

) p−4
2 ≤ 1. For t ∈ [0, T ∧ τn(R)], using the condition (i), we

have |Xn(t)|+ |Pn(t)| ≤ R a.s.. Then we can derive that

J1(t) ≤ C
∫ t

0
ψ(s)K(s)

(
1 + |Xn(t)|2

) p
2 ds+ CR

∫ t

0
ψ(s)K(s)|Pn(s)|ds, (3.5)

where CR denotes a generic positive constant related to R in this paper. While p > 4, using Young’s

inequality, we have

J1(t) ≤ C
(∫ t

0
ψ(s)K(s)

(
1 + |Xn(t)|2

) p
2 ds+

∫ t

0
ψ(s)K(s)|Pn(s)|pds

)
≤ C

∫ t

0
ψ(s)K(s)

(
1 + |Xn(t)|2

) p
2 ds+ CR

∫ t

0
ψ(s)K(s)|Pn(s)|ds. (3.6)

For p > 0, combining (3.5) and (3.6), we have

J1(t) ≤ C
∫ t

0
ψ(s)K(s)

(
1 + |Xn(t)|2

) p
2 ds+ CR

∫ t

0
ψ(s)K(s)|Pn(s)|ds, (3.7)

Next, we compute J2(t), that is

J2(t) ≤ C
∫ t

0
ψ(s)

(
1 + |Xn(s)|2

) p−4
2 KR(s)

(
|Xn(s) + Pn(s)||Pn(s)|+

∣∣Pn(s)
∣∣2)

×
(
|Xn(s) + Pn(s)|+ 1

)
ds

≤ C
∫ t

0
ψ(s)

(
1 + |Xn(s)|2

) p−4
2 KR(s)

(
|Xn(s) + Pn(s)|+

∣∣Pn(s)
∣∣)|Pn(s)|

×
(
|Xn(s)|+ |Pn(s)|+ 1

)
ds

≤ C
∫ t

0
ψ(s)

(
1 + |Xn(s)|2

) p−4
2 KR(s)

(
1 + |Xn(s)|+ |Pn(s)|

)2
|Pn(s)|ds

≤ C
∫ t

0
ψ(s)

(
1 + |Xn(s)|2

) p−4
2 KR(s)

(
1 + |Xn(s)|2 + |Pn(s)|2

)
|Pn(s)|ds. (3.8)
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Obviously, we also need to consider (3.8) in two cases respectively: 0 < p ≤ 4 and p > 4. By the

condition (i), for p > 0, it is easy to show that

J2(t) ≤
(
1 + CR

) ∫ t

0
ψ(s)KR(s)|Pn(s)|ds. (3.9)

For J3(t), we can write that

J3(t) ≤ C
∫ t

0
ψ(s)

(
1 + |Xn(s)|2

) p−4
2 KR(s)

(
1 + |Xn(s) + Pn(s)|2

)
|Pn(s)|ds.

In the same way as discussed above, we have

J3(t) ≤
(
1 + CR

) ∫ t

0
ψ(s)KR(s)|Pn(s)|ds. (3.10)

Repeating the similar procedures, we also have

J4(t) ≤ C
∫ t

0
ψ(s)

(
1 + |Xn(s)|2

) p−4
2 KR(s)

(
|Xn(s) + Pn(s)||Pn(s)|+ |Pn(s)|2

)
|Pn(s)|ds,

and

J5(t) ≤ C
∫ t

0
ψ(s)

(
1 + |Xn(s)|2

) p−4
2

(
|Xn(s) + Pn(s)||Pn(s)||g(Xn(s) + Pn(s), s)|2

+ |(Pn(s))|2|g(Xn(s) + Pn(s), s)|2
)

ds

≤ C
∫ t

0
ψ(s)

(
1 + |Xn(s)|2

) p−4
2 KR(s)

(
|Xn(s) + Pn(s)||Pn(s)|+ |(Pn(s))|2

)
ds.

Therefore, for t ∈ [0, T ∧ τn(R)] and p > 0, by virtue of the condition (i), we derive that

J4(t) ≤
(
1 + CR

) ∫ t

0
ψ(s)KR(s)|Pn(s)|ds, (3.11)

and

J5(t) ≤
(
1 + CR

) ∫ t

0
ψ(s)KR(s)|Pn(s)|ds. (3.12)

Substituting (3.7), (3.9), (3.10), (3.11) and (3.12) into (3.4), we have

(
1 + |Xn(t)|2

) p
2ψ(t) ≤

(
1 + |X(0)|2

) p
2ψ(0) +

∫ t

0
κK(s)

(
1 + |Xn(s)|2

) p
2ψ(s)ds

+ C

∫ t

0
ψ(s)K(s)

(
1 + |Xn(t)|2

) p
2 ds+ CR

∫ t

0
ψ(s)K(s)|Pn(s)|ds

+
(
1 + CR

) ∫ t

0
ψ(s)KR(s)|Pn(s)|ds+ JRn (t). (3.13)

Choosing κ = −C and then replacing KR(s) by K(s) ∨KR(s), we have

(
1 + |Xn(t)|2

) p
2ψ(t) ≤

(
1 + |X(0)|2

) p
2ψ(0) +

(
1 + CR

) ∫ t

0
ψ(s)KR(s)|Pn(s)|ds+ JRn (t). (3.14)
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Furthermore, since ψ(t) ≤ 1 and JRn (t) is a continuous local Ft-martingale with JRn (0) = 0, accord-

ing to [11], for any R, T ∈ [0,∞), taking expectations on both sides of (3.14), it is easy to see

that

E
[(

1 + |Xn(ς)|2
) p

2
ψ(ς)

]
≤ ψ(0)E

[
(1 + |X(0)|2)

p
2
]

+
(
1 + CR

)
E
[
λRn (T ∧ τn(R)

]
.

where ς represents any Ft-stopping time satisfying ς ≤ T ∧ τn(R). Then, based on [8, pp.584,

Lemma 1], for any l ∈ (0,∞), we have

lP
{

sup
t∈[0,T∧τn(R)]

|Xn(t)|pψ(t) ≥ l
}
≤
(
1 + CR

)(
1 + E

[
λRn (T ∧ τn(R))

])
.

We then have

P
{

sup
t∈[0,T∧τn(R)]

|Xn(t)|pψ(t) ≥ l
}
≤

(
1 + CR

)(
1 + E

[
λRn (T ∧ τn(R))

])
l

.

Thanks to (3.2), it is easy to derive that

lim
l→∞

sup
R∈[0,∞)

lim
n→∞

P
{

sup
t∈[0,T∧τn(R)]

|Xn(t)|pψ(t) ≥ l
}

= 0. (3.15)

Recalling that r(R)→∞ as R→∞ and choosing l = rp(R)ψ(t) in (3.15) , we have

lim
R→∞

lim
n→∞

P
{

sup
t∈[0,T∧τn(R)]

|Xn(t)| ≥ r(R)
}

= 0,

which implies

lim
R→∞

lim
n→∞

P
{

sup
t∈[0,τn(R)]

|Xn(t)| ≥ r(R), τn(R) ≤ T
}

= 0.

Under condition (iii), we obtain

lim
R→∞

lim
n→∞

P
{
τn(R) ≤ T

}
= 0.

Hence for any ε > 0, thanks to (3.3), we have

P
{

sup
t∈[0,T ]

|Xn(t)−Xm(t)| > ε
}

= P
{

sup
t∈[0,T ]

|Xn(t)−Xm(t)| > ε, τ(n,m)(R) ≤ T
}

+ P
{

sup
t∈[0,T∧τ(n,m)(R)]

|Xn(t)−Xm(t)| > ε, τ(n,m)(R) > T
}

≤ P
{
τn(R) ≤ T

}
+ P

{
τm(R) ≤ T

}
+ P

{
sup

t∈[0,T∧τ(n,m)(R)]
|Xn(t)−Xm(t)| > ε

}
,

which leads to (3.1).

We now give the theorem about the existence and uniqueness of the exact solution to (2.1).
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Theorem 3.2. Let Assumptions 1-3 hold with p > 0. Then, for any T ∈ [0,∞), there exists a
unique process {X(t)}t∈[0,T ] that satisfies equation (2.1) with the property

sup
t∈[0,T ]

E[|X(t)|p] < C. (3.16)

Proof. Based on Euler’s method, we construct a sequence {Xn(·)}, n ∈ N. For n ∈ N, we define

{Xn(t)}t≥0 as follows Xn(0) = X(0),

Xn(t) = Xn( kn) +
∫ t

k
n
f(Xn( kn), s)ds+

∫ t
k
n
g(Xn( kn), s)dB(s), t ∈ [ kn ,

k+1
n ), k ∈ {0} ∪ N

We further define ι(n, t) = bntc/n. Then for t ≥ 0, we have

Xn(t) = Xn(ι(n, t)) +

∫ t

ι(n,t)
f(Xn(ι(n, s)), s)ds+

∫ t

ι(n,t)
g(Xn(ι(n, s)), s)dB(s),

which can be written as

Xn(t) = Xn(0) +

∫ t

0
f(Xn(ι(n, s)), s)ds+

∫ t

0
g(Xn(ι(n, s)), s)dB(s). (3.17)

This is equivalent to

Xn(t) = Xn(0) +

∫ t

0
f(Xn(s) + Pn(s), s)ds+

∫ t

0
g(Xn(s) + Pn(s), s)dB(s),

where Pn(t) = Xn(ι(n, t))−Xn(t) = −
∫ t
ι(n,t) f(Xn(ι(n, s)), s)ds−

∫ t
ι(n,t) g(Xn(ι(n, s)), s)dB(s). In

order for the existence and uniqueness, we need to show that there exists an Ft-adapted continuous

process {X(t)}t∈[0,T ] and

X(t) = X(0) +

∫ t

0
f(X(s), s)ds+

∫ t

0
g(X(s), s)dB(s) P− a.s.

after taking limits on both sides of (3.17). And in terms of Lemma 3.1, the proofs of these are same

as [8] and [16], so we omit it there. It remains to prove the pth moment boundedness. In fact, an

application of the Itô formula, we have(
1 + |Xn(t)|2

) p
2

=
(
1+|X(0)|2

) p
2 +

p

2

∫ t

0

(
1+|Xn(t)|2

) p−4
2

{(
1+|Xn(t)|2

)(
2
(
Xn(t)

)T
f(Xn(s), s)+|g(Xn(s), s)|2

)
− (2−p)

∣∣(Xn(t)
)T
g(Xn(s), s)

∣∣2}ds+Hn(t),

where

Hn(t) = p

∫ t

0

(
1 + |Xn(s)|2

) p−4
2
(
Xn(t)

)T
g(Xn(s), s)dB(s).

We recall that
(
1 + |Xn(t)|2

) p−4
2 ≤ 1 for 0 < p ≤ 4, and Young’s inequality can be used in the case

of p > 4. Therefore, by Assumption 3, (3.16) follows directly from [10, pp.851, Theorem 2.3].

9



References

[1] Arnold, L., Stochastic Differential Equations: Theory and Applications, New York: John

Wiley and Sons, 1974.

[2] Black, F. and Scholes, M., The pricing of options and corporate liabilities, Journal of political

economy, 81 (3) (1973), 637-654.
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