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Abstract

In this paper, the periodicity of a class of nonautonomous fuzzy neural networks with impulses, reaction-

diffusion terms and distributed time delays are investigated. Some new sufficient conditions for the existence of

periodic solutions and global exponential stability of the systems are obtained using time delays integral differential

inequalities, Poincar mappings and fixed point theory. The validity and generality of the methods are illustrated by

two numerical examples.
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I. Introduction

In 1996, Yang and Yang studied fuzzy cellular neural networks (FCNNs) [1]–[3] by combining fuzzy logic with

traditional cellular neural networks based on the previous cellular neural networks [4]. It was shown that FCNNs

play an important role in image processing problems and pattern recognition. These applications rely heavily on the

dynamic behavior of FCNNs. Therefore, it is particularly important to analyze the dynamics of FCNNs. As we all

know, neural networks often have delays in the process of information processing. The existence of time delays may

cause the systems to oscillate, diverge or become unstable. Neural dynamics considering the delay problems are very

important for the stability and balance of the neural networks. Some scholars have studied the stability of FCNNs

with constant and time-varying delays [5], [6], and some have studied the stability of FCNNs with distributed

time delays [7] and leaky time delays [8]. Furthermore, diffusion effects in neural networks are unavoidable when

electrons move in asymmetric electromagnetic fields. Therefore, we must consider that the activation is different in

time and space. A number of neural network models with reaction-diffusion terms and various delays have been

developed and studied [9]- [11].

On the other hand, in neural network systems, in addition to time delays and diffusion effects, there are impulse

effects, which are because of the fact that many neural networks undergo abrupt changes at a given moment due

to transient disturbances. These changes occur in the fields of physics, chemistry, population dynamics, optimal

control, etc. Some results about impulse effects have been obtained in time delays neural networks [12]- [20]. In

particular, when we consider the long-term dynamic behaviours of systems, the parameters of the systems usually
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change over time and this nonautonomous phenomenons often occur in many practical systems. In [21], the authors

studied the stability of a nonautonomous fuzzy neural network with reaction-diffusion terms without impulses. Long

[22] studied the dynamic behaviors of nonautonomous cellular neural networks with time-varying delays. In [23],

the authors studied the existence, uniqueness and global stability of periodic solutions of general nonautonomous

impulsive cellular neural networks and obtained some criteria.

Based on what we know, there are no results on the exponential stability of FCNNs with impulses, distributed

time delays and reaction-diffusion terms at the same time, which is very important in theories and applications.

In terms of mathematical models, FCNNs have not only fuzzy logic but also impulse effects between its template

input and/or output, except the sum of product operations. The models include reaction-diffusion terms, fuzzy logic

and impulse characteristics, which have complex dynamic behaviors. It is therefore necessary to further investigate

the dynamic behaviours of FCNNs. We have used the properties of M-matrices and inequality tricks to establish a

new differential inequality that yields a sufficient condition for global exponentially stable periodic solutions of the

systems. Finally, the validity of the results are verified by means of arithmetic examples and numerical simulations

using [24].
Consider the nonautonomous FCNNs, which contains the reaction-diffusion terms, distributed time delays and

impulses.

∂up(t, x)
∂t

=

m∑
k=1

∂

∂xk

(
Dpk
∂up(t, x)
∂xk

)
− dp(t)up(t, x) +

n∑
q=1

hpq(t) fq
(
uq(t, x)

)
+

n∑
q=1

ypq(t)vq(t) + Jp(t) +
n∧

q=1

apq(t)
∫ t

−∞
Kpq(t − s)gq

(
uq(s, x)

)
ds

+

n∧
q=1

αpq(t)vq(t) +
n∨

q=1

bpq(t)
∫ t

−∞
Kpq(t − s)gq

(
uq(s, x)

)
ds

+

n∨
q=1

βpq(t)vq(t), t , ti, x ∈ X, (1a)

up(t+i , x) = φpi(up(t−i , x)), x ∈ X, i ∈ N , {0, 1, 2, · · · }, (1b)

up(t, x) = 0, t ≥ 0, x ∈ ∂X, (1c)

up(s, x) = γp(s, x), s ∈ [−∞, 0], (1d)

where p = 1, 2, . . . , n, t ∈ [0,+∞), x = (x1, x2, . . . , xm)T ∈ X ⊂ Rm, X = {x = (x1, x2, . . . , xm)T ||xk |< Lk, k =

1, 2, . . . ,m} is a bounded compact set with smooth boundary ∂X and mes X > 0 in space Rm (Lk > 0 ); Kpq(·)
represent the delay kernel function which is real valued piecewise continuous. up(t, x) denotes the pth neuron in

space x and at time t; f (·) and g(·) represent the signal activation function of the qth neuron; dp(t) > 0 denotes

the rate of potential recovery to isolated state of the pth neuron at moment t. hpq(t) and ypq(t) denote the elements

of the feedback template and the feedforward template at moment t;
∨

and
∧

represent the fuzzy AND and

fuzzy OR operations, respectively; apq(t) and bpq(t), represent elements of fuzzy feedback MIN template and fuzzy

feedback MAX template at time t,respectively; αpq(t) and βpq(t) represent elements of fuzzy feed-forward MIN

template and fuzzy feed-forward MAX template at time t, respectively; Jp(t) and vp(t) represent the input and bias

of the pth neuron at moment t; Dpk ≥ 0 represents the transmission diffusion coefficient. In (1b), ti > 0 satisfies

ti < ti+1, limi→+∞ ti = +∞; up

(
t−i , x

)
and up

(
t+i , x

)
represent the left and right limits at tk, respectively; φpi shows
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impulsive perturbation of the pth neuron at time ti. Let up

(
t+i , x

)
= up (ti, x) , i ∈ N. Equations (1c) denote the

Dirichlet boundary conditions and (1d) denote the initial conditions.
If impulsive operator φpi

(
up

)
= 0, p = 1, 2, . . . , n, i ∈ N, we obtain the following systems (2a) − (2c):

∂up(t, x)
∂t

=

m∑
k=1

∂

∂xk

(
Dpk
∂up(t, x)
∂xk

)
− dp(t)up(t, x) +

n∑
q=1

hpq(t) fq
(
uq(t, x)

)
+

n∑
q=1

ypq(t)vq(t) + Jp(t) +
n∧

q=1

apq(t)
∫ t

−∞
Kpq(t − s)gq

(
uq(s, x)

)
ds

+

n∧
q=1

αpq(t)vq(t) +
n∨

q=1

bpq(t)
∫ t

−∞
Kpq(t − s)gq

(
uq(s, x)

)
ds

+

n∨
q=1

βpq(t)vq(t), x ∈ X, (2a)

up(t, x) = 0, t ≥ 0, x ∈ ∂X, (2b)

up(s, x) = γp(s, x), s ∈ [−∞, 0]. (2c)

Systems (2a) − (2c) are continuous forms of systems (1a) − (1d).

The main contributions of this manuscript are

(a) We have developed a new neural network model, including nonautonomous fuzzy neural networks, reaction-

diffusion cellular neural networks, distributed time delays neural networks, impulsive neural networks and

Dirichlet boundary conditions.

(b) We have obtained several new criteria that guarantee the exponential stability of periodic solutions for consid-

ered networks. These criteria are expressed in the forms of simple algebraic inequalities which depend only

on systems (1a) − (1d) parameters.

II. Preliminaries

In this section, we explain some of the necessary assumptions, associated notations and definitions.

(H1) There exist diagonal matrices F=diag(F1, F2, · · · , Fn) and G=diag(G1,G2, · · · ,Gn) such that

Fp = sup
z1,z2

∣∣∣∣∣∣ fp(z1) − fp(z2)
z1 − z2

∣∣∣∣∣∣ ,Gp = sup
z1,z2

∣∣∣∣∣gp(z1) − gp(z2)
z1 − z2

∣∣∣∣∣ ,
for all z1, z2 ∈ R(z1 , z2), p = 1, 2 · · · n.

(H2) There exists a non-negative diagonal matrix Ψi = diag (φ1i, . . . , φni) such that∣∣∣φpi(z1) − φpi(z2)
∣∣∣ 6 φpi|z1 − z2|

for all z1, z2 ∈ R(z1 , z2), p ∈ {1, 2, · · · , n}, i ∈ N.

(H3) dp(t), hpq(t), apq(t) and bpq(t) are continuous bounded function defined on t ∈ [0,+∞).

(H4) there exists a positive number σ > 0 such that

Kpq(λ) =
∫ +∞

0
eλs

∣∣∣Kpq(s)
∣∣∣ ds

is continuous for λ ∈ [0, σ), p, q = 1, 2, . . . , n.
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Let PC(X) , {µ : [−∞, 0] × X → Rn | µ(s, x) is bounded on [−∞, 0] × X and µ (s+, x) = µ(s, x) for s ∈ [−∞, 0].

µ (s−, x) exists for s ∈ [−∞, 0] and µ (s−, x) = µ(s, x) for all but a finite number of points s ∈ [−∞, 0]}. For

µ(s, x) = (µ1(s, x), µ2(s, x), . . . , µn(s, x))T ∈ PC(X), ∥µ∥ is defined as

∥µ∥ = sup
−∞≤s≤0

n∑
p=1

∥∥∥µp(s, x)
∥∥∥

2 , (3)

where
∥∥∥up(t, x)

∥∥∥
2 =

[∫
X

∣∣∣up(t, x)
∣∣∣2 dx

] 1
2
, p = 1, 2, . . . , n.

Let PC , {µ : [−∞, 0]→ Rn | µ(s) is bounded on [−∞, 0] and µ (s+) = µ(s) for s ∈ [−∞, 0]. µ (s−) exists for

s ∈ [−∞, 0] and µ (s−) = µ(s) for all but a finite number of points s ∈ [−∞, 0]}.
Let C = (cpq)m×n, and B = (bpq)m×n, then the Schur product of C and B is defined by C ⊗ B =

(
cpqbpq

)
m×n

.

e = (1, 1, . . . , 1)T ∈ Rn and E denotes a n × n identity matrix.

Definition 1: If u(t, x)(u : R × X → Rn) satisfies

(i) u(t, x) is piecewise continuous and right-continuous at every discontinuity point ti i ∈ N which are the first

kind of discontinuity points;

(ii) u(s, x) = γ(s, x)(s ∈ [−∞, 0]) satisfies systems (1a) − (1d) for all t > 0.

Hence, u(t, γ, x) represents the special solution of systems (1a) − (1d) under initial condition γ ∈ PC(X).

Definition 2: In the initial condition of υ ∈ PC(X), u(t, υ, x) is any solution to the systems (1a) − (1d). If there

exist two positive numbers λ > 0 and M > 1 such that

∥u(t, γ, x) − u(t, υ, x)∥ 6 M ∥γ − υ∥ e−λt for all t > 0, (4)

then systems (1a) − (1d) are globally exponentially stable.

Definition 3: [25] If B =
(
bpq

)
n×n

is a real matrix, suppose that

(i) bpq 6 0, for all p, q = 1, 2, . . . , n, p , q;

(ii) all successive principal minors of B are positive.

Then, B is a non-singular M-matrix.

Lemma 1: [25]Setting B =
(
bpq

)
n×n

with bpq 6 0(p , q) for all p, q = 1, 2, · · · , n. Then the necessary and

sufficient conditions for B to be a non-singular M-matrix are that there exists a vector ξ = (ξ1, ξ2, · · · , ξn) > 0 such

that Bξ > 0 or BTξ > 0.

Lemma 2: [26] Let f (x) is a real-valued function and X = {x = (x1, x2, . . . , xm)T ||xk |< Lk, k = 1, 2, . . . ,m} is a

cube. If f (x) meets f (x)|∂X = 0, that is f (x) is equal to zero at the boundary of X. Then∫
X

f 2(x)dx 6 L2
k

∫
X

∣∣∣∣∣ ∂ f
∂xk

∣∣∣∣∣2 dx.

Lemma 3: [25] Let µ = (µ1, µ2, . . . , µn) and ν = (ν1, ν2, . . . , νn) be two states of neural networks (1a)− (1d), and

f (·) be a real-valued function. Then following inequalities hold:∣∣∣∣∣∣∣∣
n∧

q=1

αpq(t) fq
(
µq

)
−

n∧
q=1

αpq(t) fq
(
νq

)∣∣∣∣∣∣∣∣ ≤
n∑

q=1

∣∣∣αpq(t)
∣∣∣ ∣∣∣∣ fq (
µq

)
− fq

(
νq

)∣∣∣∣
and ∣∣∣∣∣∣∣∣

n∨
q=1

βpq(t) fq
(
µq

)
−

n∨
q=1

βpq(t) fq
(
νq

)∣∣∣∣∣∣∣∣ ≤
n∑

q=1

∣∣∣βpq(t)
∣∣∣ ∣∣∣∣ fq (
µq

)
− fq

(
νq

)∣∣∣∣ .
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Lemma 4: Let a < b 6 +∞, If V(t) = (V1(t),V2(t), . . . ,Vn(t))T ∈ C [[a, b),Rn] makes the following differential

inequality hold:  D+V(t) 6 P(t)V(t) +
∫ +∞

0 (R(t) ⊗ |K(s)|)V(t − s)ds, a 6 t < b,

V(a + s) ∈ PC, −∞ < s 6 0,

where P(t) =
(
ppq(t)

)
n×n

with ppq(t) > 0 (p , q), K(s) = (Kpq(s))n×n, R(t) = (rpq(t))n×n with rpq(t) > 0. If the initial

condition meets

V(t) 6 κξe−λ(t−a), κ > 0, t ∈ (−∞, a], (5)

where λ > 0 and ξ = (ξ1, ξ2, . . . , ξn)T > 0 satisfy the following inequality:

[λE + P(t) + R(t) ⊗ K(λ)]ξ < 0, K(λ) = (Kpq(λ))n×n, (6)

then V(t) 6 κξe−λ(t−a), t ∈ [a, b).

Proof: For p ∈ {1, 2, . . . , n}, ∀ε > 0, let ωp(t) , (κ + ε)ξpe−λ(t−a). Then

Vp(t) 6 ωp(t) = (κ + ε)ξpe−λ(t−a), t ∈ [a, b), p = 1, 2, . . . , n. (7)

If the above is false, that is there exist a number t∗ ∈ [a, b) and several integer l such that

Vl (t∗) = ωl (t∗) , D+Vl (t∗) > ω̇l (t∗) , Vp(t) 6 ωp(t), t ∈ [
a, t∗

]
, p = 1, 2, . . . , n. (8)

According to Lemma 4 and (7), we obtain

D+Vl(t∗) 6
n∑

q=1

[
plq(t∗)Vq (t∗) +

∫ +∞

0
rlq(t)|Klq(s)|Vq(t∗ − s)ds

]

6
n∑

q=1

[
plq(t∗)(κ + ε)ξqe−λ(t

∗−a) + rlq(t∗)
∫ +∞

0

∣∣∣Klq(s)
∣∣∣ (κ + ε)ξqe−λ(t

∗−s−a)ds
]

=

n∑
q=1

[
plq(t∗)(κ + ε)ξqe−λ(t

∗−a) + rlq(t∗)(κ + ε)ξqe−λ(t
∗−a)

∫ +∞

0
eλs

∣∣∣Klq(s)
∣∣∣ ds

]

6
n∑

q=1

[
plq(t∗) + rlq(t∗)Klq(λ)

]
(κ + ε)ξqe−λ(t

∗−a). (9)

From [λE + P(t) + R ⊗ K(λ)]ξ < 0, ppq(t∗) > 0(p , q), rpq(t∗) > 0 and Kpq(λ) > 0, it follows that
n∑

q=1

[
plq(t∗) + rlq(t)Klq(λ)

]
ξq < −λξl < 0,

From (9), we obtain

D+Vl (t∗) < −λξl(κ + ε)e−λ(t
∗−l) = ω̇l (t∗) . (10)

That is

D+Vl (t∗) < ω̇l (t∗) ,

This is contradictory to (8). Therefore, the inequality (7) holds for all t ∈ [a, b).

Now, letting ε→ 0 in (7), we have that

Vp(t) 6 κξpe−λ(t−a), t ∈ [a, b), p = 1, 2, . . . , n.
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That is,

V(t) 6 κξe−λ(t−a) for all t ∈ [a, b).

III. Main Results

In this section, we introduce the main results of systems (1a) − (1d) and their proof process.

Theorem 1: If assumptions (H1)–(H4) are satisfied, suppose that

(C1) There exist ξ = (ξ1, ξ2, . . . , ξn)T > 0 and λ > 0 such that

[λE −W(t) + H(t)F + R(t) ⊗ K(λ)]ξ < 0, t > 0,

where W(t) = diag (w1(t),w2(t), . . . ,wn(t)) with wp(t) = dp(t) +
∑m

k=1
Dpk

L2
k

, R(t) = [A(t) + B(t)]G,

A(t) =
(∣∣∣apq(t)

∣∣∣)
n×n
, B(t) =

(∣∣∣bpq(t)
∣∣∣)

n×n
, H(t) =

(∣∣∣hpq(t)
∣∣∣)

n×n
, R(t) = (rpq(t))n×n, K(λ) = (Kpq(λ))n×n,

F =diag(F1, F2, · · · , Fn), G =diag(G1,G2, · · · ,Gn);

(C2) There exists a constant ϕ > 0 such that

sup
i∈N

{
ln ϕi

ti − ti−1

}
6 ϕ < λ,

where ϕi = max16p6n

{
1, φpi

}
, i ∈ N;

then systems (1a) − (1d) are globally exponentially stable.

Proof: For θ, ϑ ∈ PC(X), let u(t, θ, x) = (u1(t, θ, x), u2(t, θ, x), . . . , un(t, θ, x))T and u(t, ϑ, x) =

(u1(t, ϑ, x), u2(t, ϑ, x), . . . , un(t, ϑ, x))T be solutions of systems (1a) − (1d) through (0, θ) and (0, ϑ) , respectively.

Define ut(θ, x) = u(t + s, θ, x), ut(ϑ, x) = u(t + s, ϑ, x),−∞ < s 6 0, t > 0, that is ut(θ, x), ut(ϑ, x) ∈ PC(X) for all

t > 0.

Let Up(t, γ, x) = up(t, θ, x) − up(t, ϑ, x), p = 1, 2, . . . , n, γ = θ − ϑ , then

∂Up(t, γ, x)
∂t

=

m∑
k=1

∂

∂xk

(
Dpk
∂Up(t, γ, x)
∂xk

)
− dp(t)Up(t, γ, x)

−
n∑

q=1

hpq(t)[ fq(uq(t, θ, x)) − fq(uq(t, ϑ, x))]

+

n∧
q=1

apq(t)
∫ t

−∞
Kpq(t − s)gq

(
uq(s, θ, x)

)
ds

−
n∧

q=1

apq(t)
∫ t

−∞
Kpq(t − s)gq

(
uq(s, ϑ, x)

)
ds

+

n∨
q=1

bpq(t)
∫ t

−∞
Kpq(t − s)gq

(
uq(s, θ, x)

)
ds

−
n∨

q=1

bpq(t)
∫ t

−∞
Kpq(t − s)gq

(
uq(s, ϑ, x)

)
ds (11)

for t , ti, x ∈ X, p = 1, 2, . . . , n.
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Multiply both sides of (11) by Up(t, γ, x) and integrate it, one can obtain
d
dt

∫
X

(
Up(t, γ, x)

)2
dx

= 2
∫

X
Up(t, γ, x)

m∑
k=1

∂

∂xk

(
Dpk
∂Up(t, γ, x)
∂xk

)
dx − 2

∫
X

dp(t)U2
p(t, γ, x)dx

+2
n∑

q=1

hpq(t)
∫

X
Up(t, γ, x)

[
fq

(
uq(t, θ, x)

)
− fq

(
uq(t, ϑ, x)

)]
dx

+

∫
X

Up(t, γ, x)
[ n∧

q=1

apq(t)
∫ t

−∞
Kpq(t − s)gq

(
uq(s, θ, x)

)
ds

−
n∧

q=1

apq(t)
∫ t

−∞
Kpq(t − s)gq

(
uq(s, ϑ, x)

)
ds

]
dx.

+

∫
X

Up(t, γ, x)
[ n∨

q=1

bpq(t)
∫ t

−∞
Kpq(t − s)gq

(
uq(s, θ, x)

)
ds

−
n∨

q=1

bpq(t)
∫ t

−∞
Kpq(t − s)gq

(
uq(s, ϑ, x)

)
ds

]
dx. (12)

Due to Greens formula and Dirichlet boundary conditions, one has∫
X

Up(t, γ, x)
m∑

k=1

∂

∂xk

(
Dpk
∂Up(t, γ, x)
∂xk

)
dx = −

m∑
k=1

∫
X

Dpk

∂
(
Up(t, γ, x)

)
∂xk


2

dx.

From Lemma 2, we can obtain ∫
X

Up(t, γ, x)
m∑

k=1

∂

∂xk

(
Dpk
∂Up(t, γ, x)
∂xk

)
dx

6 −
m∑

k=1

Dpk

L2
k

∫
Ξ

(
Up(t, γ, x)

)2
dx

= −
m∑

k=1

Dpk

L2
k

∥∥∥Up(t, γ, x)
∥∥∥2

2 . (13)

According to (H1) and Hoder inequality, we have
n∑

q=1

hpq(t)
∫

X
Up(t, γ, x)

[
fq

(
uq(t, θ, x)

)
− fq

(
uq(t, ϑ, x)

)]
dx

6
n∑

q=1

∣∣∣hpq(t)
∣∣∣ ∫

X

∣∣∣Up(t, γ, x)
∣∣∣ ∣∣∣∣ fq (

uq(t, θ, x)
)
− fq

(
uq(t, ϑ, x)

)∣∣∣∣ dx

6
n∑

q=1

∣∣∣hpq(t)
∣∣∣ ∫

X

∣∣∣Up(t, γ, x)
∣∣∣ ∣∣∣Uq(t, γ, x)

∣∣∣ Fqdx

6
n∑

q=1

∣∣∣hpq(t)
∣∣∣ ∥∥∥Up(t, γ, x)

∥∥∥
2 Fq

∥∥∥Uq(t, γ, x)
∥∥∥

2 . (14)

By assumption (H1), Lemma 2 and Hoder inequality, one obtains∫
X

Up(t, γ, x)
[ n∧

q=1

apq(t)
∫ t

−∞
Kpq(t − s)gq

(
uq(s, θ, x)

)
ds −

n∧
q=1

apq(t)
∫ t

−∞
Kpq(t − s)gq

(
uq(s, ϑ, x)

)
ds

]
dx

6
n∑

q=1

∣∣∣apq(t)
∣∣∣Gq

∫ t

−∞

∣∣∣Kpq(t − s)
∣∣∣ ∥∥∥Up(t, γ, x)

∥∥∥
2

∥∥∥Uq(s, γ, x)
∥∥∥

2 ds. (15)
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By the same way, we can obtain∫
X

Up(t, γ, x)
[ n∨

q=1

bpq(t)
∫ t

−∞
Kpq(t − s)gq

(
uq(s, θ, x)

)
ds −

n∨
q=1

bpq(t)
∫ t

−∞
Kpq(t − s)gq

(
uq(s, ϑ, x)

)
ds

]
dx

6
n∑

q=1

∣∣∣bpq(t)
∣∣∣Gq

∫ t

−∞

∣∣∣Kpq(t − s)
∣∣∣ ∥∥∥Up(t, γ, x)

∥∥∥
2

∥∥∥Uq(s, γ, x)
∥∥∥

2 ds. (16)

Applying (12)–(16) to (11), we can obtain

1
2

d
dt

∥∥∥Up(t, γ, x)
∥∥∥2

2 6 −
dp(t) +

m∑
k=1

Dpk

L2
k

 ∥∥∥Up(t, γ, x)
∥∥∥2

2

+

n∑
q=1

∣∣∣hpq(t)
∣∣∣ ∥∥∥Up(t, γ, x)

∥∥∥
2 Fq

∥∥∥Uq(t, γ, x)
∥∥∥

2

+

n∑
q=1

∣∣∣apq(t)
∣∣∣Gq

∫ t

−∞

∣∣∣Kpq(t − s)
∣∣∣ ∥∥∥Up(t, γ, x)

∥∥∥
2

∥∥∥Uq(s, γ, x)
∥∥∥

2 ds

+

n∑
q=1

∣∣∣bpq(t)
∣∣∣Gq

∫ t

−∞

∣∣∣Kpq(t − s)
∣∣∣ ∥∥∥Up(t, γ, x)

∥∥∥
2

∥∥∥Uq(s, γ, x)
∥∥∥

2 ds.

i.e.

D+
∥∥∥Up(t, γ, x)

∥∥∥
2 ≤ −

dp(t) +
m∑

k=1

Dpk

L2
k

 ∥∥∥Up(t, γ, x)
∥∥∥

2 +

n∑
q=1

∣∣∣hpq(t)
∣∣∣ Fq

∥∥∥Uq(t, γ, x)
∥∥∥

2

+

n∑
q=1

[∣∣∣apq(t)
∣∣∣ + ∣∣∣bpq(t)

∣∣∣]Gq

∫ +∞

0

∣∣∣Kpq(s)
∣∣∣ ∥∥∥Uq(t − s, γ, x)

∥∥∥
2 ds. (17)

Let Vp(t) =
∥∥∥Up(t, γ, x)

∥∥∥
2 ,V(t) = (V1(t),V2(t), . . . ,Vn(t))T , wp(t) = dp(t) +

∑m
k=1

(
Dpk/L

2
k

)
, p = 1, 2, . . . , n, W(t) =

diag (w1(t) w2(t), . . . ,wn(t)), P(t) = −W(t) + H(t)F,R(t) = [A(t) + B(t)]G,K(s) = (Kpq(s))n×n. Then, (17) can be

simplified into the following form:

D+V(t) 6 P(t)V(t) +
∫ +∞

0
(R(t) ⊗ |K(s)|)V(t − s)ds (18)

From condition (C1), There exist ξ = (ξ1, ξ2, . . . , ξn)T > 0 and λ > 0, then

[λE −W(t) + H(t)F + R(t) ⊗ K(λ)]ξ < 0, (19)

Here, taking κ = ∥γ∥/min16p6n

{
ξp

}
, we have

V(t) 6 κξe−λt, t ∈ [−∞, t0], t0 = 0. (20)

From Lemma 4, one can obtain

V(t) 6 κξe−λt, t ∈ [t0, t1).

If the following inequality is true for m 6 i

V(t) 6 κϕ0 · · · ϕm−1ξe−λt, t ∈ [tm−1, tm), ϕ0 = 1. (21)
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When m = i + 1, we can obtain

V (ti) = ∥u(ti, θ, x) − u(ti, ϑ, x)∥2
= ∥φi

(
u(t−i , θ, x)

) − φi
(
u(t−i , ϑ, x)

) ∥2
6 Ψi∥V(t−i , γ, x)∥2
= ΨiV

(
t−i

)
6 κϕ0 · · · ϕi−1ϕiξ lim

t→t−i
e−λti

6 κϕ0 · · · ϕi−1ϕiξe−λti . (22)

By (21), (22) and ϕi > 1, we have

V(t) 6 κϕ0 · · · ϕi−1ϕiξe−λt, −∞ 6 t 6 ti. (23)

Combining (19),(20),(23) and Lemma 3, one has

V(t) 6 κϕ0 · · · ϕi−1ϕiξe−λt, ti 6 t < ti+1. (24)

According to mathematical induction, then we have

V(t) 6 κϕ0 · · · ϕi−1ξe−λt, ti−1 6 t < ti, i ∈ N. (25)

applying the condition (C2) and (25), one obtain

V(t) 6 κeϕt1eϕ(t2−t1) · · · eϕ(ti−1−ti−2)ξe−λt 6 κξeϕte−λt = κξe−(λ−ϕ)t (26)

for all i ∈ N, ti−1 6 t < ti.

This implies that

∥u(t, θ, x) − u(t, ϑ, x)∥ =
n∑

p=1

∥∥∥up(t, θ, x) − up(t, ϑ, x)
∥∥∥

2

=

n∑
p=1

Vp(t)

6
n∑

p=1

κξpe−(λ−ϕ)t

=

n∑
p=1
ξp

min
16p6n

{
ξp

}∥θ − ϑ∥e−(λ−ϕ)t.

That is,

∥ut(θ, x) − ut(ϑ, x)∥ 6 M∥θ − ϑ∥e−(λ−ϕ)t, t > 0, (27)

where M =
(

n∑
p=1
ξp/ min

16p6n

{
ξp

})
.

Remark 1: Condition (C1) is equivalent to that Υ(t) = W(t) − H(t)F − R(t) ⊗ K(0) is a nonsingular M-matrix

for all t > 0. As a matter of fact, if Υ(t) is a nonsingular M-matrix for any t > 0, by using Lemma 1, there exist

ξ = (ξ1, ξ2, . . . , ξn)T > 0 such that

[W(t) − H(t)F − R(t) ⊗ K(0)]ξ > 0. (28)
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By the uniform continuity, there exists λ > 0 satisfies:

[λE −W(t) + H(t)F + R(t) ⊗ K(λ)]ξ < 0. (29)

It tells us that (C1) is true. Reversely, setting λ = 0 in (C1), we can easily get that Υ(t) = W(t)−H(t)F−R(t)⊗K(0)

is a nonsingular M-matrix for all t > 0.

Corollary 1: If assumptions (H1), (H3) and (H4) are satisfied, suppose that condition (C1) holds. Then systems

(2a) − (2c) are globally exponentially stable.
Corollary 2: When the coefficient of system (1a) − (1d) are constants, they degenerate into the following

autonomous FCNNs with reaction-diffusion terms and distribution delays

∂up(t, x)
∂t

=

m∑
k=1

∂

∂xk

(
Dpk
∂up(t, x)
∂xk

)
− dpup(t, x) +

n∑
q=1

hpq fq
(
uq(t, x)

)
+

n∑
q=1

ypqvq + Jp(t) +
n∧

q=1

apq

∫ t

−∞
Kpq(t − s)gq

(
uq(s, x)

)
ds

+

n∧
q=1

αpqvq +

n∨
q=1

bpq

∫ t

−∞
Kpq(t − s)gq

(
uq(s, x)

)
ds

+

n∨
q=1

βpqvq, t , ti, x ∈ X, (30a)

up(t+i , x) = ϕpi(up(t−i , x)), x ∈ X, i ∈ N , {0, 1, 2, · · · }, (30b)

up(t, x) = 0, x ∈ ∂X, (30c)

up(s, x) = γp(s, x), s ∈ [−∞, 0], (30d)

For assumption (H1), (H2) and (H4), Theorem 1 can be expressed in the following form:

(C′1) There exist ξ = (ξ1, ξ2, . . . , ξn)T > 0 and λ > 0 such that

[λE −W + HF + R ⊗ K(λ)]ξ < 0,

where W = diag (w1,w2, . . . ,wn) with wp = dp +
∑m

k=1
Dpk

L2
k

, R = (A + B)G, A =
(∣∣∣apq

∣∣∣)
n×n
, B =

(∣∣∣bpq

∣∣∣)
n×n

,

H =
(∣∣∣hpq

∣∣∣)
n×n

, R = (rpq)n×n, K(λ) = (Kpq(λ))n×n, F =diag(F1, F2, · · · , Fn), G =diag(G1,G2, · · · ,Gn);

(C2) There exists a constant ϕ > 0 such that

sup
i∈N

{
ln ϕi

ti − ti−1

}
6 ϕ < λ,

where ϕi = max16p6n

{
1, φpi

}
, i ∈ N;

then systems (30a) − (30d) are globally exponentially stable.

Remark 2: Some existing neural network models (see [21,26]) are special cases such as systems (2a)− (2c) and

systems (30a)− (30d). Compared with the methods of constructing Lyapunov functional in [21], our results is more

concise, and it is not difficult to find that some of the standards have been improved. Moreover, in [26], the authors

gave sufficient conditions for the existence of uniqueness and global exponential stability of the equilibrium point

of impulsive FCNNs with distributed time delays and reaction-diffusion terms, but we have to say that the method

we using is similar.

Next, in order to consider the periodic solution of the systems (1a)− (1d), we add the following two assumptions.
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(H5) dp(t), hpq(t), apq(t), bpq(t), αpq(t), βpq(t), ypq(t), vq(t) and Jp(t) are periodic continuous functions with a common

period ϖ > 0 for all t > 0.

(H6) For Ψi = diag (φ1i, . . . , φni) and the impulsive time {ti}i∈N , there exists a positive integer l such that

φp(i+l) = φpi, ti+l = ti +ϖ.

Combined with assumptions (H5) and (H6), we have the following results for periodic systems (1a)− (1d), based

on the discussion of global exponential stability of the systems in Theorem 1.

Theorem 2: If assumptions (H1)–(H6) are satisfied, suppose that

(C1) There exist ξ = (ξ1, ξ2, . . . , ξn)T > 0 and λ > 0 such that

[λE −W(t) + H(t)F + R(t) ⊗ K(λ)]ξ < 0, t > 0,

where W(t) = diag (w1(t),w2(t), . . . ,wn(t)) with wp(t) = dp(t) +
∑m

k=1
Dpk

L2
k

, R(t) = [A(t) + B(t)]G,

A(t) =
(∣∣∣apq(t)

∣∣∣)
n×n
, B(t) =

(∣∣∣bpq(t)
∣∣∣)

n×n
, H(t) =

(∣∣∣hpq(t)
∣∣∣)

n×n
, R(t) = (rpq(t))n×n, K(λ) = (Kpq(λ))n×n,

F =diag(F1, F2, · · · , Fn), G =diag(G1,G2, · · · ,Gn);

(C2) There exists a constant ϕ > 0 such that

sup
i∈N

{
ln ϕi

ti − ti−1

}
6 ϕ < λ,

where ϕi = max16p6n

{
1, φpi

}
, i ∈ N;

then systems (1a) − (1d) have exactly one globally exponentially stable ϖ-periodic solution.

Proof: To choose a positive integer η > 0 such that Me−(λ−ϕ)ηϖ 6
1
2

and we define a Poincare mapping

Γ : PC(X) −→ PC(X) by Γ(θ) = uϖ(θ, x),

it follows that Γη(θ) = uηϖ(θ, x). Setting t = ηϖ, we get

∥Γη(θ) − Γη(ϑ)∥ ≤ 1
2
∥θ − ϑ∥.

Obviously, Γη is a contraction mapping, therefore there exists one unique fixed point θ∗ ∈ PC(X) such that

Γη (θ∗) = θ∗.

Hence, we obtain

Γη (Γ (θ∗)) = Γ (Γη (θ∗)) = Γ (θ∗) ,

this implies that Γ (θ∗) ∈ PC(X) is also a fixed point of Γη. Then

Γ (θ∗) = θ∗, i.e. uθ (θ∗, x) = θ∗.

Hence, if u (t, θ∗, x) is a solution of system (1) through (0, θ∗) , then u (t +ϖ, θ∗, x) is also a solution to systems

(1a) − (1d). Distinctly,

ut+ϖ (θ∗, x) = ut (uϖ (θ∗, x)) = ut (θ∗, x) , t > 0,

i.e.

u (t +ϖ, θ∗, x) = u (t, θ∗, x) .
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This shows that u(t, θ∗, x) has one solution for systems (1a)−(1d) with ϖ-period and all other solution of systems

(1a) − (1d) converge exponentially to it as t → +∞.

Remark 3: In Theorem 1 and Theorem 2, the condition (C2) (ϕ = sup
i∈N
{ln ϕi/ti − ti−1} ) describes the influence

of the impulsive intensity and the impulsive interval on the global exponential stability of systems (1a) − (1d). In

the absence of impulses, the following optimization problem can be solved in order to estimate the exponential

convergence rate of the systems (1a) − (1d).

(OP)

 max λ

s.t. (C1) holds.

Obviously, λ is related to delay kernel function, diffusion coefficients, Dirichlet boundary conditions, and system

parameters. Theorem 1 shows that when ϕ ∈ [0, λ), systems (1a) − (1d) is globally exponentially stable and its

exponential convergence rate equals λ − ϕ.
Corollary 3: Under assumptions (H1), (H2), (H4) and (H5),suppose that

(C1) There exist ξ = (ξ1, ξ2, . . . , ξn)T > 0 and λ > 0 such that

[λE −W(t) + H(t)F + R(t) ⊗ K(λ)]ξ < 0, t > 0,

where W(t) = diag (w1(t),w2(t), . . . ,wn(t)) with wp(t) = dp(t) +
∑m

k=1
Dpk

L2
k

, R(t) = [A(t) + B(t)]G,

A(t) =
(∣∣∣apq(t)

∣∣∣)
n×n
, B(t) =

(∣∣∣bpq(t)
∣∣∣)

n×n
, H(t) =

(∣∣∣hpq(t)
∣∣∣)

n×n
, R(t) = (rpq(t))n×n, K(λ) = (Kpq(λ))n×n,

F =diag(F1, F2, · · · , Fn), G =diag(G1,G2, · · · ,Gn);

then systems (2a) − (2c) have exactly one globally exponentially stable ϖ-periodic solution.

Remark 4: If Dpk = 0 or Dpk ≪ Lk, that is, when the diffusion effect is negligible, systems (1a) − (1d) will

degenerate into a non-autonomous FCNN with distributed delays. By Theorem 2, We can obtain a corollary for

the global exponentially stable periodic solution of the systems (1a) − (1d).

Corollary 4: If assumptions (H1)–(H6) are satisfied, suppose that

(C′′1) There exist ξ = (ξ1, ξ2, . . . , ξn)T > 0 and λ > 0 such that

[λE − D(t) + H(t)F + R(t) ⊗ K(λ)]ξ < 0, t > 0,

where D(t) = diag (d1(t), d2(t), . . . , dn(t)), R(t) = [A(t) + B(t)]G, A(t) =
(∣∣∣apq(t)

∣∣∣)
n×n
, B(t) =

(∣∣∣bpq(t)
∣∣∣)

n×n
,

H(t) =
(∣∣∣hpq(t)

∣∣∣)
n×n

, R(t) = (rpq(t))n×n, K(λ) = (Kpq(λ))n×n, F =diag(F1, F2, · · · , Fn),

G =diag(G1,G2, · · · ,Gn);

(C2) There exists a constant ϕ > 0 such that

sup
i∈N

{
ln ϕi

ti − ti−1

}
6 ϕ < λ,

where ϕi = max16p6n

{
1, φpi

}
, i ∈ N;

then systems (1a) − (1d) have exactly one globally exponentially stable ϖ-periodic solution.
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IV. Illustrative examples

Finally, two examples are given to verify the validity and universality of our results.

Example 1: Consider the following two-neuron impulsive system:

∂up(t, x)
∂t

=

1∑
k=1

∂

∂xk

(
Dpk
∂up(t, x)
∂xk

)
− dp(t)up(t, x) +

n∑
q=1

hpq(t) fq
(
uq(t, x)

)
+

n∑
q=1

ypq(t)vq(t) + Jp(t) +
n∧

q=1

apq(t)
∫ t

−∞
Kpq(t − s)gq

(
uq(s, x)

)
ds

+

n∧
q=1

αpq(t)vq(t) +
n∨

q=1

bpq(t)
∫ t

−∞
Kpq(t − s)gq

(
uq(s, x)

)
ds

+

n∨
q=1

βpq(t)vq(t), t , ti, x ∈ X (1a)

up(t+i , x) = 2.5up(t−i , x), x ∈ X, i ∈ N , {0, 1, 2, · · · }, (1b)

up(t, x) = 0, t ≥ 0, x ∈ ∂X, (1c)

up(s, x) = 1, s ∈ [−∞, 0], (1d)

for p = 1, 2, where X = [0, 1], ti = 1.5πi ,i = 1, 2, · · · .
In system(1a)-(1d), choosing D11 = D21 = 1, d1(t) = 5.8+ |sint|, d2(t) = 6.9+ |sint|, h11(t) = y11(t) = y12(t) =

y21(t) = y22(t) = 0.25sint, h12(t) = −0.2 − 0.3cost, h21(t) = 0.5 + 0.1sint, h22(t) = 0.6 + 0.2cost, a11(t) =

b11(t) = 0.1 + 0.5cost, a12(t) = b12(t) = 0.6cost, a22(t) = b22(t) = 0.7sint, a21(t) = b21(t) = 0.8sint, K11(s) =

K12(s) = K21(s) = K22(s) = e−s, v1(t) = v2(t) = 1 + 0.25sint, α11(t) = α21(t) = cost, α21(t) = α22(t) =

sint, β11(t) = β12(t) = sint + 0.8, β21(t) = β22(t) = 2cost − 0.5, J1(t) = 0.3cost, J2(t) = 0.6sint, f1(u) =

f2(u) = g1(u) = g2(u) = tanhu.

Distinctly, assumptions (H1)-(H6) are satisfied, and then we have

W(t) =

 6.8 + |sint| 0

0 7.9 + |sint|

 , F = G =

 1 0

0 1

 ,
R(t) =

 |0.2 + cost| |1.2cost|
|1.6sint| |1.4sint|

 ,
H(t) =

 |0.25sint| | − 0.2 − 0.3cost|
|0.5 + 0.1sint| |0.6 + 0.2cost|

 , K(λ) =


1

1 − λ
1

1 − λ
1

1 − λ
1

1 − λ

 .
λ ∈ [0, 1), ϕi = max{1, 2.5} = 2.5, γ = supi∈N

ln γi

ti − ti−1
=

ln 2.5
1.5π

≈ 0.1944.

By solving the optimization problem:

(OP)

 max λ

s.t. (C1) holds.

ones can obtain that λ ≈ 0.4931 and ξ = (2745063, 3715964) > 0. Thus, we know that the systems (1a)−(1d) have

exactly one globally exponentially stable 2π-periodic solution and the estimation of its exponential convergence

rate is λ − ϕ ≈ 0.4931 − 0.1944 ≈ 0.2987.
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Fig. 1: 2π-periodic solutions of impulsive systems (1a) − (1d) in x ∈ [0, 1] and t ∈ [−5, 50].

Remark 5: However, the results in [21] do not contain the impulsive perturbation, and if the parameters in [21]

are taken and the impulsive condition of Example 1 is added to solve the above optimization problem, we get

λ ≈ 0.4669 and ξ = (9218617, 9668710) > 0. From Theorem 1, systems (1a) − (1d) are globally exponentially

stable and the exponential convergence rate is estimated as λ − ϕ ≈ 0.4669 − 0.1944 ≈ 0.2725.

Example 2: Consider the reaction-diffusion two-neuron system without impulses:

∂up(t, x)
∂t

=

1∑
k=1

∂

∂xk

(
Dpk
∂up(t, x)
∂xk

)
− dp(t)up(t, x) +

n∑
q=1

hpq(t) fq
(
uq(t, x)

)
+

n∑
q=1

ypq(t)vq(t) + Jp(t) +
n∧

q=1

apq(t)
∫ t

−∞
Kpq(t − s)gq

(
uq(s, x)

)
ds

+

n∧
q=1

αpq(t)vq(t) +
n∨

q=1

bpq(t)
∫ t

−∞
Kpq(t − s)gq

(
uq(s, x)

)
ds

+

n∨
q=1

βpq(t)vq(t), t , ti, x ∈ X (2a)

up(t, x) = 0, t ≥ 0, x ∈ ∂X, (2b)

up(s, x) = essin(πx), s ∈ [−∞, 0], (2c)

for p = 1, 2, X = [0, 1].

In system (2a) − (2c), choosing D11 = D21 = 1, d1(t) = 3 + |sint|, d2(t) = 2 + |cost|, h11(t) = y11(t) =

y12(t) = y21(t) = y22(t) = sint, h21(t) = h12(t) = 0 h22(t) = cost, a11(t) = b11(t) = 0.15cost, a12(t) =

b12(t) = 0.1cost, a22(t) = b22(t) = 0.1sint, a21(t) = b21(t) = 0.1sint, K11(s) = K12(s) = K21(s) = K22(s) =

e−s, v1(t) = v2(t) = sint, α11(t) = α21(t) = cost, α21(t) = α22(t) = sint, β11(t) = β12(t) = sint, β21(t) =

β22(t) = cost, J1(t) = cost, J2(t) = sint, f1(u) = f2(u) = g1(u) = g2(u) =
|u + 1| − |u − 1|

2
.

Distinctly, assumptions (H1) and (H3)-(H5) are satisfied, and then we have
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W(t) =

 4 + |sint| 0

0 3 + |sint|

 , F = G =

 1 0

0 1

 , R(t) =

 |0.3cost| |0.2cost|
|0.2sint| |0.2sint|

 ,
H(t) =

 |sint| 0

0 |cost|

 , K(λ) =


1

1 − λ
1

1 − λ
1

1 − λ
1

1 − λ

 .
ones can obtain that λ ≈ 0.6659 and ξ = (15354274, 18850909) > 0. Thus, the systems (2a) − (2c) have exactly

one globally exponentially stable 2π-periodic solution.

Fig. 2: 2π-periodic solutions of system (2a) − (2c) without impulses in x ∈ [0, 1] and t ∈ [−5, 50].

V. Conclusion

We have developed and studied a new class of neural network models that bring together nonautonomous neural

networks, fuzzy neural networks, reaction-diffusion terms, distributed time delays, impulses, and Dirichlet boundary

conditions. In the form of a simple algebraic inequality, several new sufficient conditions are obtained to guarantee

the global exponential stability and periodicity of the systems (1a) − (1d). In particular, in order to estimate the

exponential convergence rate of the systems (1a)−(1d), an optimisation method is proposed which relies on diffusion

coefficients, Dirichlet boundary conditions, distributed time delays, system parameters and impulses. The method

is simpler and more effective than the Lyapunov generalized method used in much of the previous literature for the

stability and periodicity analysis of complex systems. Two examples show that our results improve and generalize

previously known criteria. In the near future, we will continue to investigate the global exponential stability and

periodicity of nonautonomous impulsive neural networks with leakage time delays.
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