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Abstract The current research numerically investigates the Marangoni convection in a
cylindrical annulus filled with hybrid nanofluid saturated porous media. The interior
and exterior walls are subjected to spatially varying sinusoidal thermal distributions with
various amplitude ratios and phase deviations. The limits at the top and bottom are adi-
abatic. To solve the system of non-dimensional governing equations, the finite difference
approach is applied. The major goal of the ongoing study is to investigate the impact of
the Marangoni convection, amplitude ratio and phase deviation on the fluid flow, thermal
characteristics, local and average Nusselt numbers in the hybrid nanofluid filled verti-
cal cylindrical annulus with magnetic effects. The findings indicate that the sinusoidal
temperature promotes multicellular flow in the porous annular region. In the annulus
with sinusoidal boundaries, the Marangoni number underperforms while the nanoparticle
volume fraction outperforms.

1 Introduction

The fluid flow generated by changes in surface tension caused by temperature gradients
is known as Marangoni convection. It plays a prominent role in crystal growth melt,
material processing and so on. Sasmal and Hochstein [1] developed a new computational
model to study thermocapillary convection in a rectangular cavity with curved and lin-
early varying surface tension at the free surface, and discovered that increasing capillary
number enhances surface deformation, and increasing Marangoni number causes a large
distortion in the isotherms. Chen and Xu [2] investigated the Marangoni flow in an en-
closure with evenly heated walls using numerical simulation and scaling analysis. Zhang
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et al. [3] numerically examined the thermocapillary convective flow behaviours in a cavity
region with solutal boundary condition and their results show that a steady flow exists
for smaller Marangoni number.

Many authors have studied convective heat transfer with non-uniform boundary con-
ditions because it demonstrates higher thermal transmission rates than uniform thermal
conditions. Bilgen and Ben [4] numerically examined the convective thermal transport in
an enclosure with single vertical wall imposed to sinusoidally varying thermal conditions.
Deng and Chang [5] analyzed buoyancy convection in a cavity with sinusoidal thermal
distributions applied on both side vertical walls of the cavity region and discovered that
heat distribution is greater in an enclosure with sinusoidal thermal distributions applied
on both walls than in a single wall with non uniform heating. A numerical analysis on
free convection in a cavity filled with cold water has been made by Janagi et al. [6] with
sinusoidal temperature distribution at the walls.

A study on fluid flow and heat transfer behaviour in various enclosures with magnetic
effects has been met with great interest due to its wide variety of applications in food
processing, solar collections, drying technologies and other fields. Hendy and Attar [7]
examined the free convection thermal and mass transport in a vertical surface with the
effects of magnetic field. Kefayati [8] used the Lattice Boltzmann method to simulate
MHD buoyancy driven convection in an enclosure with sinusoidal heat conditions on the
walls. Numerous research on convection in cavities with sinusoidal temperature distribu-
tions applied to the walls, taking magnetic effects into account, have been found in the
literature [9], [10], [11].

Now-a-days nanofluids are the matter of interest in many researches due to its im-
proved thermal profile. Sheremet and Pop [12] explored convection in a porous cavity
saturated with nanofluid, employing Buongiorno’s proposed model for nanofluid as well
as non-uniform thermal conditions at the walls. Bouhalleb and Abbasi [13] conducted a
numerical analysis on convection in a nanofluid-filled inclined rectangular cavity under si-
nusoidal temperature circumstances and discovered that nanoparticle dispersion in water
has great thermal performance. Wang et al. [14] analyzed the impact of heat dependent
characteristics on buoyancy-driven convection in rectangular cavities filled with power-law
nanofluids. Quite recently, using hybrid nanofluids in place of traditional fluids and mono-
nanofluids has become more widespread due to their superior thermal performance in a
variety of applications. Mashayekhi et al. [15] investigated the flow of a hybrid nanofluid
in a silicon-made double-layered microchannel heat sink and discovered that increasing
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the volume fraction of the nanoparticle results in superior thermal profiles. Biswas et
al. [16] evaluated convection in a square porous enclosure saturated with hybrid nanofluid
with half-sinusoidal non uniform heating. Shaik et al. [17] exhibited convection in a hybrid
nanofluid-filled sinusoidal wavy cavity with magnetic field and heat radiation. Alsabery
et al. [18] investigated buoyant convection in a wavy cavity filled with hybrid nanofluid,
taking into account the effects of amplitude and thermal source.

While conducting studies on thermocapillary convection in a cylindrical enclosure filled
with hybrid nanofluid, the works are limited to the impact of buoyant convection in a
sinusoidal boundary cavity, but no such work has been focused on Marangoni convection
in a cylindrical enclosure with sinusoidally varying thermal boundary condition. As a
result, the primary goal of this research is to investigate Marangoni convection in hybrid
nanofluid filled cylindrical porous annular region and are subjected to sinusoidal thermal
conditions at the vertical walls with magnetic effects.

2 Mathematical Formulation

Fig. 1 depicts the physical model explored in the current investigation. The fluid flow
is examined in the porous annular section MNOP produced by two concentric cylinders.
With water as the base fluid, the porous annular region is saturated with silver (Ag) and
magnesium oxide (MgO) nanoparticles. The bottom and top surfaces are assumed to be
adiabatic. The inner and the outer walls of the annulus are subjected to spatially chang-
ing sinusoidal thermal distributions with various phase deviations and amplitude ratios
and are given as follows,

T1(x)=T0 + Alsin(2πx
D

) at inner wall

T2(x)=T0 + Arsin(2πx
D

+ γ) at outer wall

where, Al and Ar are the amplitude of the sinusoidal profiles.

The governing equations use the Brinkman extended Darcy model. The Boussinesq
approximation is being considered here. For the nanoparticles, the thermal equilibrium
condition holds. Table 1 summarises the thermophysical characteristics of nanoparticles.
It is assumed that the fluid flow is axisymmetric and laminar. Considering the aforemen-
tioned assumptions, the governing equations in dimensional form [19] are mentioned as
follows:
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Here u and v corresponds to the velocity components along r and x directions respectively.
K and δ indicates the porous medium’s permeability and porosity.

By removing the pressure term from Eqs. (2) and (3), the dimensionless equations are
framed as follows.
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In the preceding equations, the non-dimensional variables listed below are used.
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The following are the initial and boundary conditions in non-dimensional form.
t = 0 : Ψ = η = 0; θ = 0, U = V = 0, 0 ≤ X ≤ 1, 0 ≤ R ≤ 1

For t > 0 : Ψ= ∂Ψ
∂R=0, θ1(X)=sin(2πXA); R = 0

Ψ= ∂Ψ
∂R=0, θ2(X)=εsin(2πXA+ γ); R = 1

Ψ= ∂Ψ
∂X=0, ∂θ

∂X=0; X = 0

Ψ= ∂U
∂X= ∂2Ψ

∂X2 =0, ∂θ
∂X=0; X = 1

The association between surface tension differences and shear stress determines the
boundary condition for the vorticity near the free surface. This causes thermocapillary
flow to develop in the annulus. The Taylor series expansion for the stream function is
used to derive the boundary condition for vorticity near solid boundaries.

η=
(

ri

Pr(RD+ri)

)
∂2Ψ
∂R2 ; 0 ≤ X ≤ 1 and R = 0; R = 1

η=
(

ri

A2Pr(RD+ri)

)
∂2Ψ
∂X2 ; 0 ≤ R ≤ 1 and X = 0

η= ∂U
∂X=MaA ∂θ

∂R ; 0 ≤ R ≤ 1 and X = 1

The dimensionless parameters Ra, Ha, Pr, Da, Ma, λ, A, L, ε are respectively
the Rayleigh number, Hartmann number, Prandtl number, Darcy number, Marangoni
number, radii ratio, aspect ratio, amplitude ratio and γ is the phase deviation. These
parameters are described as,

Ra = gβf4TD3

νfαf
, Ha = B0D

√
σe/ρfνf , Pr = νf

αf
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D2 ,

Ma = -∂σf

∂T
4TD
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The local thermal transfer rate is specified along the inner and outer walls of the
annulus as follows:

Nul = −khnf
kf

∂θ

∂R
(9)

Nur = −khnf
kf

∂θ

∂R
(10)
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The average Nusselt number of the annulus is defined as the sum of the average Nusselt
number along heating halves of the inner and outer walls and it is given as follows,

Nu = 1
A

∫
heatinghalf

NuldX + 1
A

∫
heatinghalf

NurdX (11)

A solid structured nanolayer formed by the molecules of liquid near a solid surface is
considered in the modified Maxwell model [?]. This model is used in this study to define
the hybrid nanofluid’s effective thermal conductivity and it is provided as follows,

khnf = kf
2(keq − kf )(1 + ι)3φ+ (keq + 2kf )
(2kf + keq)− (1 + ι)3φ(keq − kf )

(12)

Here, ι = hnl

rp
, where hnl denotes the thickness of the nanolayer. rp denotes the novel

radius of the nanoparticles.
The equivalent thermal conductivity of the nanoparticles is represented by keq and it

is provided as

keq
kp

= ξ
2(1− ξ) + (1 + ι)3(1 + 2ξ)
(1 + ι)3(1 + 2ξ)− (1− ξ) (13)

where ξ stands for the ratio of heat conductivity of the nanolayer to the nanoparticles
heat conductivity ξ = knl

kp
. Here the values for rp, hnl and knl are taken as 3nm,2nm,

and 100kf respectively. The applied models for the working hybrid nanofluid are given as
in [20]

2.1 Numerical solution procedure

The PDEs for energy, vorticity and the elliptic form of stream function equation with
the boundary conditions are evaluated using the Finite Difference Method(FDM) (Wilkes
[21]). In this study, an Alternating Direction Implicit (ADI) technique is used to discretize
the vorticity and energy equations where the energy equation is solved initially along
horizontal direction for the first half of the time and then solved along vertical direction for
the another half time. After the discretization process, a tri-diagonal system of equations
are formed and it is solved by using Thomas Algorithm. The obtained values of the
temperature are used in the vorticity equation and the same procedure is repeated to
evaluate the vorticity equation. Finally the elliptic stream function equation is resolved
using the Successive Over Relaxation(SOR) scheme and the velocity terms are assessed
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using central difference scheme. To get a converged solution, the following convergence
condition must be attained.

|Φn+1 (i, j)− Φn (i, j)|
|Φn+1 (i, j)| ≤ 10−5 (14)

where Φ represents T , η, Ψ and n denotes the time step.

2.2 Grid sensitivity analysis and numerical validation

An analysis of grid sensitivity has been carried out for numerous grid sizes and the changes
in the average Nusselt number is scrutinized in the enclosure. The obtained outputs are
displayed in the Table 2. The optimal grid size for the given problem is 81 × 81, taking
into account the accuracy and the processing time.

Before generating simulation results for the ongoing work, the currently created com-
putational code is validated against benchmark results available in the literature. Table
3 compares the numerical results for the square enclosure to the De Vahl Davis G re-
sults. [22]. The fluctuation of the average Nusselt number in a cylindrical annular enclo-
sure is associated with the outputs of Sankar et al. in Table 4. [19]. In Fig. 2, the fluid
flow and thermal variation for sinusoidally varying thermal profiles are compared with
the outputs of Deng and Chang [5]. An excellent degree of agreement is achieved from
the above comparison results.

3 Results and discussions

The effect of the thermocapillary convection in a hybrid nanofluid filled cylindrical enclo-
sure with vertical walls having sinusoidally varying thermal distributions is examined in
the current study. The numerical simulations are carried out for a wide variety of param-
eters Marangoni number Ma : 102− 104, Ra : 103− 106, Hartmann number Ha : 10− 70,
amplitude ratio ε = 0 − 1, phase deviation γ : 0 − π, nanoparticle volume fraction
φ = 0.02, 0.04, 0.08 and the geometrical parameter radii ratio λ = 1, 2, 5, 10. Constraints
such as Aspect ratio A = 1, Prandtl number Pr = 6.2, Darcy number Da = 10−2 and
the porosity of the porous medium δ = 0.4 are held constant. The numerically simulated
results are depicted in the form of streamlines and isotherm profiles, the local and global
Nusselt number plots along the vertical walls.

Fig. 3 depicts the streamlines and isotherms for various Marangoni number. At the
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lower Marangoni number (Ma = 102), the flow structure reveals the formation of four
eddies with relatively symmetry about the centre of the enclosure. Since the isotherms
show modest convection, it is clear that the conduction dominates the thermal field. With
an increase in the Marangoni value (Ma = 103), two eddies emerge towards the upper
boundary, joining previously existing cells. This is due to shear stress created at the free
surface boundary as a result of Marangoni flow. As the value of the Marangoni number
enhances, the eddies created near the free surface grow larger and become more intense,
and so the main stream flow reduces. The isotherms don’t vary greatly.

The influence of the amplitude ratio on streamlines and isotherms are demonstrated
in Fig. 4. When ε = 0, a tri-cellular flow structure is found. The cell generated near
the free surface by Marangoni convection disrupts the flow field’s horizontal symmetric
pattern. The isotherms demonstrate that the thermal transport is highly concentrated
near the left wall. As ε grows further, the sinusoidal thermal state at the right wall also
drives fluid motion, resulting in the formation of two more eddies near the right wall. The
isotherm also begins to appear near the right wall. When ε = 1, the eddies produced by
the sinusoidal temperature near the right wall overpower the cells formed near the left
wall. Near the free surface, two more minor eddies can be detected. The isotherm profile
remains unchanged.

Fig. 5 illustrates the variation on flow and thermal contours due to the impact of
phase deviation. At γ = 0, four large eddies are seen, with two tiny eddies at the top
boundary.The eddies at the top corner of the right wall and the bottom corner of the left
wall expand and merge together when the value of phase deviation augments (γ = π/4).
The other diagonal cells have shrunk in size. For γ = π/2, a two-cellular structure is
found, with additional cell produced towards the upper boundary. Finally, as the phase
deviation increases from 0 to π, the four-cellular structure with top two minor eddies is
transformed to a two-cellular structure with a single eddy near the top boundary. Ac-
cording to the isotherm pattern, thermal transfer occurs more on the right wall than on
the left wall.

The fluctuation of the local Nusselt number along the enclosure’s left and rightwalls
for varied amplitude ratio (ε) is shown in Fig. 6. It is clear from the Fig. 6(a) that the
local Nusselt curve of the left side wall is almost same for varying values of amplitude
ratio. It demonstrates that the thermal transfer rate at the left side wall does not vary
much with increasing amplitude ratio. On the contrary, the local Nusselt curve of the
rightwall displays a considerable change, indicating that thermal transfer is significant
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along the right side wall but has little effect on thermal transport at the right side wall.
At ε = 1, the amplitude ratio reaches its maximum value as well.

Fig. 7 reports the impact of the phase deviation (γ) on local Nusselt number along
the enclosure’s left and right side walls. For varied phase deviation values, the local Nus-
selt curve along the annulus’s left wall does not change appreciably, however the thermal
transport rate along the annulus’s right wall is significantly affected by the phase devia-
tion. The phase deviation has only a little effect on the thermal transport rate along the
left wall, but it does affect the thermal transfer rate along the right wall, as shown in the
figure.

The effect of the Marangoni number on the amplitude ratio (ε) and the phase devi-
ation (γ) is examined in Fig. 8. The average Nusselt curve continuously improves with
amplitude ratio, as shown in Fig. 8(a). As a result, assuming a sinusoidal boundary
condition on the side walls is more useful than choosing adiabatic or insulated boundary
conditions for achieving a high thermal transmission rate. Until ε = 0.5, the average Nus-
selt number augments with the Marangoni number. As the ε value further improves, the
Nu drops with Marangoni number. According to Fig. 8(b), the average Nusselt number
value decreases with phase deviation, but there is no noticeable change in the Nu curve
with respect to Marangoni number except for the greater value of Marangoni number at
γ = π.

Fig. 9 represents the impact of the Hartmann number on the amplitude ratio (ε) and
the phase deviation (γ).The Nu curve grows with increasing amplitude ratio, although
the Hartmann number marginally reduces the thermal transport rate, as seen in Fig. 9(a).
From Fig. 9(b) it is clear that the average Nusselt number values decrease with phase
deviation, but there is no discernible change in the Nu curve for Hartmann number.

Fig. 10 indicates the impact of nanoparticle volume fraction on amplitude ratio (ε)
and phase deviation (γ). Figs. 10(a) and 10(b) show that the thermal transmission rate
increases with amplitude ratio and nanoparticle volume fraction, but the thermal trans-
port rate falls with phase deviation.

The effect of radii ratio (λ) on the amplitude ratio (ε) and phase deviation (γ) is shown
in Fig. 11. The augmentation in λ for amplitude ratio and phase deviation results in a
high thermal transmission rate. The annular cavity (λ = 2, 5, 10) clearly outperforms the
rectangular cavity (λ = 1).
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4 Conclusions

The numerical simulation of thermocapillary convection in a porous annular region sat-
urated with Ag-MgO/water hybrid nanofluid and with sinusoidally variable temperature
conditions at the vertical walls has been performed. The following are the findings of this
research.

• In the porous annular enclosure, the sinusoidal thermal condition generates a mul-
ticellular flow.

• The Marangoni and Hartmann numbers have little effect on the phase deviation (γ)
and amplitude ratio (ε).

• The Nu improves significantly when the nanoparticle volume fraction (φ) and the
radii ratio (λ) increase.
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Table 1 The thermophysical characteristics of the base fluid and the nanoparticles [23],
[24]are as follows:

Properties Water MgO Ag
cp(Jkg−1K−1) 4179 955 235
ρ(kgm−3) 997.1 3560 10500

k(Wm−1K−1) 0.613 45 429
β × 10−5(K−1) 21 1.13 1.89
µ(kgm−1s−1) 8.9× 104 - -
σ(Ω−1m−1) 0.05 1.42× 10−3 6.30× 107

Table 2 The grid independent study for the cylindrical annulus for Ra = 104, Ma = 103,
ε = 1, γ = 0, Ha = 10, φ = 0.02, λ = 2, A = 1.

Grid size Average Nusselt number
41× 41 2.4038
61× 61 2.5563
81× 81 2.6441

101× 101 2.7001

Table 3 The comparison of Nu on the closed cavity.

Ra = 103 Ra = 104 Ra = 105 Ra = 106

De Vahl Davis. G [22] 1.117 2.238 4.509 8.817
Present study 1.137 2.263 4.549 8.862

Error 2.1% 1.1% 0.8% 0.5%

Table 4 The comparison of average nusselt number on annular enclosure.

Ra = 103 Ra = 104 Ra = 105 Ra = 106

Sankar et al. [19] 1.48 1.59 3.17 8.39
Present study 1.23 1.33 3.00 8.11


	Introduction
	Mathematical Formulation
	Numerical solution procedure
	Grid sensitivity analysis and numerical validation

	Results and discussions
	Conclusions

