Stable blue food supply can enhance the resilience of cropland ecosystem against the green food fluctuations shocks
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Abstract: Global changes in diets and frequent natural disasters have induced food production fluctuations, posing challenges to food security. The importance of blue food is attracting unprecedented attention, but research on its role in connection with terrestrial food and its mechanism is currently not available, especially there are significant challenges in how to carry out systematic food research on land and sea integration. Human demand for marine blue food affects cropland ecosystem through the food system and drives changes in its function and causes the loss of food security, while the interactions between land-sea food system and the response of cropland ecosystem resilience to terrestrial and marine food production have not been systematically studied. This study assesses the resilience of cropland ecosystem in coastal China based on early warning signal indicators calculated from net primary productivity (NPP), and analyzes the situation of shocks to production in the land-sea food sector to reveal the impact of green-blue food production on the resilience of cropland ecosystem. The results demonstrate that the marine food fluctuation had a significant impact on the resilience of cropland ecosystem in coastal China. Fujian and Guangdong provinces of China observed a significant decrease in cropland ecosystem resilience, with τ values of 0.27 and 0.07, respectively; the coefficient of variation of seafood production per capita as an essential influence on NPP resilience, with a contribution of 19.53%. The decoupling of blue food from green food in regions of increased cropland NPP resilience contributes to the land-sea food sector mutual complement through stable yields, and buffers the effects of food shocks on the resilience of cropland ecosystem. This study provides new perspectives on coordinating the balance between sustainable development of cropland ecosystem and human well-being.
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Highlights：
1. Analysis of the teleconnections of blue food production shocks on the resilience of cropland ecosystem from a land-sea integration perspective.
2. The coefficient of variation of per capita blue food production is a metric that matters for increasing the resilience of cropland ecosystem to environmental changes.
3. A stable supply of blue food can buffer against the effect of green food on NPP from shock disturbances.

Introduction
Future population growth and changes in human dietary preferences due to economic development will put more demands on blue food production. Blue foods are aquatic products captured from or cultivated in marine and freshwater systems (Naylor et al., 2021; Tigchelaar et al., 2022). The role of blue food in the food system is currently receiving increasing concern (Gephart et al., 2021). With the current feed demand linking marine fisheries and land-based agriculture (Froehlich et al., 2018), there is an urgent need for integrated land-sea food production and management schedule, and it is necessary to explore the linkages between marine fishery products of the blue food and land-based food (green food) system based on an integrated land-sea perspective. 
The food system is the primary driver that affects the ecosystem, e.g., reduction in marine shrimp catches due to agricultural water exploitation (Broadley et al., 2020), destruction of blue carbon ecosystem due to mangrove deforestation for mariculture (Ahmed & Thompson, 2019), warming driven by greenhouse gas emissions from marine fisheries (Gephart et al., 2021), the limitation of agricultural fertilizer and pesticide use on the soil organic carbon sequestration capacity of cropland (Zhao et al., 2018) et al. Copland is a vital production system for green food, green food provides feed for the farming of blue food, and blue food can mitigate terrestrial farming intensity; thus cropland is a critical terrestrial media for linking the marine food sector and suffering from blue food fluctuations.
Resilience is an essential nexus for linking land-sea food systems. A diverse food supply can enhance regional resilience to environmental change. By assessing the resilience of shifting land-sea linkages in response to external changes, it is possible to further assess the sustainability of food production (Blanchard et al., 2017). Examining whether the capability of coastal zone to maintain cropland ecosystem resilience is determined by the effective interconnection between blue and green food production, and if blue food is able to buffer the effect of green food production on cropland ecosystem, will help further ensure food security and sustaining human welfare and ecosystem health. Reduced ecosystem resilience refers to a long-term decline in ecosystem function due to external disturbances that do not recover unaided (Li et al., 2020). Net primary productivity (NPP) is the initial production stage for vegetation to fix atmospheric CO2 (Liu et al., 2019), which absorbs carbon from the atmosphere and can reflect the ability of vegetation to fix atmospheric CO2 and affect carbon storage (Wieder et al., 2015), while the adaptability of NPP to external changes has not been systematically studied, especially in response to terrestrial and marine food production. NPP of cropland can characterize ecosystem productivity levels and carbon sink functions (Pan et al., 2021; Zaveri et al., 2020), this study considers NPP as a vital ecosystem indicator to characterize the resilience of cropland ecosystem. 
Early warning indicators (EWIs) have been widely used to measure resilience indicators (Dakos et al., 2012; Feng et al., 2021; Zhang et al., 2018), and understanding the effect of shock events can help further analyze ecosystem resilience by analyzing the ability of human well-being to remain stable when receiving the shocks, i.e., resilience, and identify regional differences in resilience, which can allow for targeted resilience-based management tools. Therefore, this study will combine resilience algorithms and shock detection algorithms to assess the mechanisms for the effect of green-blue food influence on the cropland NPP resilience.
This study calculated the composite EWI (CEWI) of the NPP of cropland ecosystem in China coastal zone over the past three decades, and characterized the cropland ecosystem resilience by calculating the trend of CEWI of NPP (an increase in CEWI indicates a decrease in resilience), then quantified the effect of green-blue food on CEWI; aggregated the shocks to China's terrestrial and marine food sectors, and statistical correlations between green-blue food production to assess the mechanisms by which green-blue food production activities affect cropland resilience. The objectives of this study are as follows: 
(1) Identify the spatial distribution of NPP resilience of different cropland ecosystem in the coastal zone of China.
(2) Is the green food system decreasing or increasing the NPP resilience of cropland ecosystem.
(3) If blue food can decrease or increase the resilience of green food-mediated cropland ecosystem to environmental changes or human activities.

Materials and Methods
Study area
The coastal region of mainland China (Figure 1) is China's most densely populated and fastest-growing economic region (Meng et al., 2020), including Tianjin (TJ), Hebei (HB), Liaoning (LN), Shandong (SD), Jiangsu (JS), Shanghai (SH), Zhejiang (ZJ), Fujian (FJ), Guangdong (GD), Guangxi (GX), and Hainan (HN). According to the National Bureau of Statistics of China (https://data.stats.gov.cn/english/), the GDP of China coastal zone accounted for 56.60% of mainland China in 2020, and the total population accounted for 46.60% of mainland China. Coastal grain production in 2020 was about 200 million tons, accounted for 29.20% of mainland China; seafood production was about 3×107 tons, accounted for 50.61% of mainland China.
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Figure 1. Map of China coastal zone and link of land-sea food; the study area is located in the green box.

Data source
The terrestrial NPP data used in this study were obtained from Chen et al. (2019), a dataset based on the Carnegie-Ames-Stanford Approach (CASA) model (Field et al., 1995; Potter et al., 1993), which simulates the 1 × 1 km month-by-month NPP data over land in China from 1985 to 2015. The CASA model was widely used in regional and global NPP estimation (Liu et al., 2019). This dataset is within the normal fluctuation range of NPP values compared to data from other studies, has a high degree of compliance with existing data, and has been used in several studies (Naeem et al., 2020; Zhong et al., 2021). Land use data, temperature and precipitation data for China from 1985 to 2015 were obtained from the Resource and Environment Science and Data Center (https://www.resdc.cn/Default.aspx) with a resolution of 1 × 1 km. Provincial data on grain production (green food), seafood production (blue food) and socioeconomic data were obtained from the National Bureau of Statistics of China (https://data.stats.gov.cn/english/). Spatial crop production data were obtained from the Spatial Production Allocation Model (SPAM) database (International Food Policy Research Institute (IFPRI), 2016; Yu et al., 2020) with a resolution of 5 arcmins. In this study, all spatial data were standardized to 5 arcmins to accommodate the resolution of crop yields. The data used and the specific data are shown in Table 1. 
Table 1. Data sources and descriptions
	Data
	Data descriptions
	Data sources

	Terrestrial net primary productivity
	Compiling month-by-month meteorological data, soil texture data and land cover and vegetation index data products based on MODIS and AVHRR remote sensing images in China during 1985-2015, simulated and calculated 1 × 1 km land-based NPP data in China from 1985 to 2015 by inputting the CASA model.
	Chen, 2019

	Grain production and seafood production and socioeconomic data
	Annual data by provinces and municipalities, 1985-2015
	National Bureau of Statistics of China 

	Land use and climate data
	Annual spatial data from 1985-2015
	Resource and Environment Science and Data Center 

	Crop production
	Global crop production data for 2005 and 2010, including 42 crops
	Spatial Production Allocation Model Crop Production Statistics Data 



Resilience measure
Composite Early warning indicators
Early warning indicators (EWI) describe the ‘critical slowing down’ phenomenon through indirect statistics of ecosystem behavior, including increasing memory, increasing variability and flickering (Scheffer et al., 2009, 2018), i.e., the increase in ecosystem sensitivity to disturbance and the decrease in the rate of ecosystem recovery when approaching a disturbance-induced steady-state transition, and resilience can be measured by the recovery rate after perturbation, so EWI can quantify the resilience of an indicator by calculating its correlation with time (Feng et al., 2021). 
This study refers to the resilience measure method of Feng et al. (2021). It calculates the EWI of each pixel in the study area based on the monthly NPP sliding window of time detrending; the sliding window is set to an integer multiple of 12 for 36 months. The seven commonly used EWIs include autocorrelation at first lag (ACF1), autoregressive coefficient of a first-order model (AR1), standard deviation (SD), skewness (SK), kurtosis (KURT), return rate (RR), and density ratio (DR). The specific calculation procedure for the seven EWIs is referred to Feng et al. (2021) and can be found in appendix Text S1.
Since a single EWI indicator can only partially describe the system's resilience, this study measures the resilience from an integrated perspective by overlaying EWI indicators to generate a composite EWI (CEWI). Highly correlated indicators are removed using the variance inflation factor (VIF) algorithm (AR1 indicators are removed in this section) to ensure that all remaining VIFs are less than 10. Then the remaining indicators (all indicators except AR1) are Z-score transformed and assigned equal weights to sum to generate CEWI.
Trends in composite Early warning indicators
The rank correlation coefficient between CEWI and time (Kendall's τ) is a suitable indicator to assess the trend of CEWI (Feng et al., 2021). A larger Kendall's τ with a positive value indicates a faster-rising trend of CEWI, and a more significant trend indicates a greater risk of system collapse, i.e., a faster-decreasing trend of resilience (Dakos et al., 2012). In this study, Kendall's τ index of the CEWI of NPP was calculated for each cell in the spatial scale, and generated a spatial distribution of the resilience of cropland ecosystem in the study area. 
The CEWI of cropland was also statistics at the regional scales. Firstly, the NPP was aggregated into the average annual NPP of cropland by provinces from 1985 to 2015. The EWI of annual cropland NPP was calculated for each province and municipality with a 50% sliding window. The highly correlated indicators were removed based on the VIF algorithm to calculate the CEWI, and its Kendall's τ index to finally measure the ecosystem resilience value of cropland in each province and municipality directly in the study area.

Data Analysis
Cropland changes
Based on the land use data of 1985 and 2015, the cropland of each year was extracted as the study area to carry out resilience measures, and the cropland use of the study area was divided into five major categories based on the change of cropland: 1) areas that were always cropland (PC), i.e., areas that were cropland in both 1985 and 2015; 2) areas where cropland was converted to natural land (CN), i.e., areas that were cropland in 1985 but grassland, forest land, watershed, and unused land in 2015; 3) areas where cropland was converted to built-up land (CB), i.e., areas that were cropland in 1985 but built-up land in 2015; 4) areas where natural land was converted to cropland (NC), the opposite of CN; 5) areas where built-up land was converted to cropland (BC), the opposite of CB.
Diversity of crops
The Shannon information index (H’) (Renard & Tilman, 2019)was used to quantify crop diversity. The crop diversity index, H', was calculated for each cell using the spatial distribution of yields of 42 crops provided by the SPAM database as follows:
	
	[1]


Where i is the crop type, N is the number of crop categories (42), and  is the proportion of crop production of each cell i to the production of all crops.
Green-blue food shock detection
Shocks to food production may cause disturbances to the food system, and the ability of the system to cope with such shocks without irreversible changes is resilience. Referring to Gephart (2017) and Cottrell (2019) to calculate the shocks to food system, calculated the shocks to the green-blue food system in China coastal zone over the past three decades (1985-2019), and analyzed whether shocks to green-blue food production affected cropland ecosystem and the ability of cropland ecosystem in different regions to resist shocks to green-blue food production, taking into account the NPP resilience levels in the coastal zone.
Referring to the shock detection method proposed by Gephart (2017) and Cottrell (2019), a local polynomial regression (Locally Weighted Scatterplot Smoothing, LOESS, with a span of 0.6) was first performed on time series data of green-blue food production by subregion and classification. Then the residuals of the model were regressed on the residuals with a time lag of order 1, and the outliers in this regression were defined as shocks, where the outliers were defined as Cook's D > 0.3 (Cottrell et al., 2019, 2021). All methods in this study were implemented in the R language.
Correlation analysis
The effect of green-blue food on cropland resilience is estimated by panel regression analysis. Cropland CEWI as the dependent variable, per capita grain production, per capita seafood production, and macro socioeconomic data (GDP per capita, urbanization rate, and total population) as independent variables to analyze the correlation between cropland CEWI and green-blue food, controlling for other socioeconomic drivers, while including regional fixed effects and year fixed effects to control for differences across regions and over time; regarding the statistical approach of Cottrell et al. (2021), the 10-year coefficients of variation of both per capita grain production and per capita seafood production were introduced as independent variables to serve as drivers of past instability in the land-sea food sector to further assess the impact of lagged fluctuations in green-blue food products on trends in cropland CEWI. The correlation equations for the panel regression analysis were as follows:
	CEWIit = α0+α1×Cropppit+α2×CropppCVit+α3×Seafdppit+α4×SeafdppCVit+α5×GDPppit+α6×Urbit+α7×Popitit+fc (t)+fc (Region)
	[2]


Where i is each coastal region and of China, t is time, CEWIit is the CEWI of cropland in region i in year t, Cropppit is the per capita grain production in region i in year t, CropppCVit is the coefficient of variation of per capita grain production in province i between years t-10 and t, Seafdppitis the per capita seafood production in region i in year t, SeafdppCVit is the coefficient of variation of seafood production per capita in province i between years t-10 and t, GDPpp is GDP per capita, Urb is urbanization rate, Pop is total population, α0 is the intercept term, α1-7 are the explanatory coefficients of each independent variable on the dependent variable, fc (t) is the annual fixed effect, and fc (Region) is the regional fixed effect. Considering the availability of available data, and the time horizon of NPP data, the time series selected for the CEWI regression analysis is 1999-2015.
The effect of seafood on secular trends in land-based food was further analyzed with per capita grain production as the dependent variable, 10-year coefficients of variation for per capita seafood production, per capita grain production and per capita seafood production, and macro socioeconomic data (GDP per capita, urbanization rate, total population) as independent variables, while including regional fixed effects. The correlation equation for the panel regression analysis is as follows:
	Cropppit = β0+β1×Seafdppit+β2×SeafdppCVit+β3×GDPppit+β4×Urbit+β5×Popitit+fc (t)+fc (Region)
	[3]


Where β0 is the intercept term and β1-5 are the explanatory coefficients of each independent variable on the dependent variable. The time series selected for the regression analysis was 1988-2016, which is the time series with the most available data. Meanwhile, this study divided the study area into provinces with reduced and unreduced resilience of coastal cropland in China, and regression in each of these two areas to analyze the correlation between green-blue food in cropland ecosystem with different resilience changes and further analyze the influence mechanism of blue food on the resilience of cropland ecosystem
Relative importance analysis
The relative importance algorithm was applied to explain the annual changes in CEWI of cropland to per capita grain production, per capita seafood production, 10-year coefficient of variation of per capita grain production, and 10-year coefficient of variation of per capita seafood production, and explore the relative contribution of each driver to the changes in CEWI of cropland by calculating the driving mechanism of CEWI in cropland. This study uses the Lindeman-Merenda-Gold (LMG) algorithm to identify the contributions of different drivers in multiple linear regression and estimate the relative importance of each driver by decomposing the sum of variances into the non-negative contributions shared by each independent variable. LMG is based on the r package "relaimpo" implementation (Groemping, 2007), and has been widely used (Feng et al., 2021; Yao et al., 2018).

Results and discussion
Cropland ecosystem resilience and correlation with green-blue food
The spatial distribution of cropland ecosystem (NPP) resilience in coastal China was mapped in Figure2, and the distribution was extracted only from the cell where Kendall's τ was significantly positive because only the resilience of areas with a positive CEWI trend of NPP decreased (Feng et al., 2021). The statistical results showed that the mean and median of the areas with positive CEWI trends exceeded 0.1 for all cropland types, and the variation in resilience varied widely among cropland types, with the fastest decreasing trend in ecosystem resilience for cropland to natural land (the highest median and mean for Kendall's τ), i.e., this type of land has the lowest ability to resist external disturbances and the lowest recovery rate after disturbance. In addition, the types of cropland changes and their monthly average NPP temporal trends in coastal China are presented in the appendix section of this study (Text S2, Figure S1).
This study also mapped the spatial distribution of grain production and crop diversity indices in coastal China (Figure S2, Text S3), and analyzed the effects of cropping activities on the resilience of cropland ecosystem. The highest mean of crop cultivation diversity and mean grain production (Figure3(a-b)) were found in the CN type of cropland in the area of reduced resilience, which shows that the highly productive cropland in the area of reduced resilience was converted to natural land. Meanwhile, this study also calculated the effects of temperature and precipitation on the resilience of cropland in coastal China, and the detailed analysis and discussion can be found in appendix Text S4, Text S5 and Table S1.
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Figure 2. Spatial patterns of cropland resilience in coastal China. Resilience is characterized by Kendall’s τ of the composite early warning indicator. The box boundaries of the top left subplot indicate the interquartile range (IQR), black lines in the boxes show the median values of each group, black points in the boxes show the mean values of each group, whiskers identify extreme data points that are not more than 1.5 times the IQR on both sides. The subplot at the bottom right shows the time trends of mariculture, marine fishing and grain production in the study area.
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Figure 3. Effects of crop cultivation on the resilience of cropland ecosystem in coastal China. (a). statistics on the distribution of crop diversity by cropland type in areas of declining resilience (b). statistics on crop yield distribution by cropland type in areas of declining resilience. 
The box boundaries of the figure (a-b) indicate the interquartile range (IQR), black lines in the boxes show the median values of each group, black points in the boxes show the mean values of each group, whiskers identify extreme data points that are not more than 1.5 times the IQR on both sides.

To explore the possible consequences of changes in the resilience of cropland ecosystem, this study calculated the association between the CEWI and green-blue food of cropland at the regional scale. Also, it counted the resilience of cropland at the provincial and municipal scales (Table 2). It can be seen that Kendall's τ of CEWI of NPP in Liaoning, Hebei, Tianjin, Shandong, Jiangsu, Shanghai and Zhejiang have negative values and significantly higher resilience (p < 0.01), while Kendall's τ of CEWI in Fujian and Guangdong have positive values and significantly lower resilience (p < 0.01). The trend of Kendall's τ for CEWI of NPP in Guangxi and Hainan was not significant (p > 0.05).
To determine whether the resilience decrease on the cell scale can be reflected on the regional scale, this study also analyzed the average value of Kendall's τ of the cell in the coastal zone by province and municipal (TableS2). The results show that the positive and negative CEWI trends in each province and municipal are consistent with the positive and negative NPP averages of the sub-provincial statistics, so the resilience decrease on the cell scale is consistent with the regional scale.
Panel regressions were used to analyze the relative importance of land-sea food production per capita and coefficient of variation of land-sea food production per capita in the CEWI of cropland in coastal provinces, controlling for socioeconomic drivers and temporal and regional variability, to explore the combined effect of land-sea food sectors on cropland ecosystem resilience. The results (Table3) showed that the coefficient of variation of seafood production per capita, i.e., the volatility shock (instability) of seafood production per capita, was the most important influencing factor (p > 0.05) which affected the resilience of cropland ecosystem in each land and seafood time series data, with a contribution of 19.53%.

Table 2. Average Kendall's τ for CEWI in China's coastal provinces
	Kendall's τ
	LN
	HB
	TJ
	SD
	JS
	SH
	ZJ
	FJ
	GD
	GX
	HN

	By province
	-0.44
***
	-0.72
***
	-0.60
***
	-0.56
***
	-0.75
***
	-0.58
***
	-0.10
***
	0.27
***
	0.07
**
	0.32
	-0.04


Statistical significance is given by *** p < 0.001, ** p < 0.01.

Table 3. Contribution of food in regional cropland CEWI
	Variable
	Crop per capita
	Crop per capita CV
	Seafood per capita
	Seafood per capita CV

	Relative importance
	1.08% *
	0.41% *
	0.21%
	19.53% *


Statistical significance is given by *** p < 0.001, ** p < 0.01, * p < 0.05.

Green-blue food production shock detection and analysis of the effect of blue food on green food
Shocks to green-blue food in the coastal zone by province and municipal from 1985-2019 were analyzed to assess whether abrupt changes in green-blue food production affect the NPP resilience of cropland and further verify whether the integration of land-sea food sectors can produce a positive effect on cropland ecosystem. Shocks to the production of green-blue food in the region were calculated (Table S3), and shock detection was conducted on blue food (Figure 4) and green food (Figure 5). According to the shock detection results, the coastal provinces with reduced cropland resilience received shocks from the land-sea food sectors, while among the coastal provinces with significantly higher cropland resilience, the land-sea food sectors did not detect shocks at the same time during the study period, except for Tianjin. It should be noted that although the marine food sector in Jiangsu province detected shocks in 2019, 2019 as the last year of the study needs more time series to be validated, while the NPP time series of this study is 1985-2015, accordingly the 2019 shock of Jiangsu is excluded from the analysis.
Specifically, regions where both land and sea food sectors were subject to shocks during the study period were relatively more likely to experience a decline in cropland resilience, i.e., cropland ecosystem in regions where both green-blue food production were subject to shocks are relatively less likely to recover from the shock disturbance, because the shock of green food to cropland ecosystem was not buffered, and more likely to induce changes in cropland ecosystem, i.e., reduced cropland resilience; whereas regions where only land or sea food sectors were subject to shocks or where neither land nor sea food sectors was subject to shocks could recover more rapidly from the shock disturbance. The regions where only blue food was subject to shocks did not experience a cross-ecosystem spillover, i.e., the shocks of blue food didn’t diffuse to the land and thus cause a decline in the resilience of cropland ecosystem; while the shocks of regions where only green food was influenced can be buffered by unshocked blue food because blue food can supplement terrestrial food with stable production, which can help grain production to recover from shocks as rapidly as possible, thereby buffering and reducing the negative impact of shocks on cropland ecosystem. The steady growth of blue food can also reduce agricultural activities on land, further reducing the pressure of human production activities on cropland ecosystem. Hence, an integrated land-sea food system increases the substitutability of production and consumption, further increasing the flexibility of the system.
Fujian and Guangdong are among the coastal regions where green-blue food is simultaneously subjected to shocks and where the resilience of cropland ecosystem has also declined. Fujian is a province with enormous marine resources and marine economy, geographical predominance and potential for seaward development. Fujian ranks among the top in China in terms of mariculture production, offshore fishery production, fishery products export value and fishery products per capita possession, but fishery activities such as extensive aquaculture in the bay and uncontrolled offshore fishing have further aggravated the ecological and environmental pressure in the sea and coastal zone near Fujian and result in the land-sea ecosystem resilience loss. Guangdong-Hong Kong-Macao Greater Bay Area, as the critical coastal zone of Guangdong Province, has become the most economically dynamic region in China under its advanced coastal location and policy benefits. The Pearl River estuary waters in the Greater Bay Area, as an essential economic fish and shrimp breeding ground, a baiting ground and a vital seedling bank of aquatic resources, are affected by development activities and overfishing, causing a decrease in the number of fishery resources, and the fluctuation of seafood in the region, as well as the high-intensity development of land in the coastal and the expansion of aquaculture, have jointly triggered a decrease in the resilience of the cropland ecosystem.
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Figure 4. Shock detection of seafood production in China coastal provinces. Points with Cook’s D greater than 0.3 were identified as the year of the shock
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Figure 5. Shock detection of grain yield production in China coastal provinces. Points with Cook’s D greater than 0.3 were identified as the year of the shock
To further confirm the nexus between blue food fluctuation shocks and green food to analyze the mechanism of teleconnections of blue food on the carrier of green food, i.e., the resilience of cropland, this study analyzed the correlation between seafood production per capita, coefficient of variation of seafood production per capita and grain production. The regression results in Table 4 show that the coefficient of variation of seafood production per capita and seafood production per capita in regions with significant decrease in CEWI of NPP in cropland (LN, HB, TJ, SD, JS, SH, ZJ) in coastal China are not significantly correlated with grain production per capita. Therefore, blue food is decoupled from green food in regions with no significant decline in cropland resilience.
Given that the coefficient of variation of per capita seafood production is an essential factor influencing the CEWI of cropland, such decoupling can buffer the pressure of fluctuations in blue food on cropland ecosystem; at the same time decoupling between different food sectors can adapt to natural fluctuations in productivity (Cottrell et al., 2021), by stabilizing yields to mutual complement without reciprocal impacts, and thus the changes in cropland ecosystem caused by fluctuations in blue food in areas of increasing resilience can be buffered by stable green food. However, the decoupling of green-blue food may further result in the excessive expansion of seafood, especially mariculture, which will squeeze the coastal wetland space at the land-sea interface and influence the terrestrial ecosystem. At the same time, the overfishing of the marine will also affect the marine ecosystem. The 10-year coefficient of variation of per capita seafood production was significantly positively correlated with per capita grain production in areas of China with significantly reduced coastal cropland resilience (FJ, GD). So green food in these regions is vulnerable to fluctuations in blue food, resulting in shocks from blue food that are not buffered by green food. Therefore, shocks from blue food production further collectively affect cropland ecosystem by affecting grain production. There is an urgent need to find a balance between blue food and green food to achieve diversified food sources and well-coordinated management while enhancing the resilience of ecosystem to shocks, therefore food system management based on land-sea integration needs to be on the agenda as soon as possible.

Table 4. Results from panel regression analysis of the impact of seafood on regional crop production per capita
	Variable
	Coastal China (r+)
	Coastal China (r-)

	Seafood per capita
	-0.06
	-0.20

	Seafood per capita CV
	-0.03
	0.28 ***


Statistical significance is given by *** p < 0.001, ** p < 0.01, * p < 0.05.

Green-blue food system management based on land-sea integration
Future dietary trends in China will divert to more diverse food and protein sources. China is transforming from a focus on food production to increased production capacity (Tortajada & Zhang, 2021), while decreasing cropland productivity could not fulfill diverse dietary requirements in the future. Attention will shift to marine ecosystem that can provide more food. Blue food, as a vital source of nutrition, can enhance nutrition levels with a low environmental burden and contribute to the achievement of sustainable development goals, including reducing hunger or poverty (SDG2), ensuring sustainable consumption and production (SDG12), and sustainable use of marine resources (SDG14) (Gephart et al., 2021). Therefore, exploring appropriate land-sea integrated food supply pathways needs to be soon on the agenda, but currently integrated food supply solutions across sectors and ecosystems have not gotten the attention they deserve. 
Cropland resource in China coastal zone is receiving a trade-off between increasing production and conservation. Green-blue food production is interconnected and constrained through shared resources and cross-ecosystem influences, and uncertainty of future climate change may contribute to fluctuations in green food production, while the effect of land-sea food demand on ecosystem and environmental change cannot be ignored (Gephart et al., 2021). Cottrell et al. (2018) noted that current linkages between the land-sea food sectors include interactions between ecosystems, forage, livelihoods, and climate feedback, with forage being the key factor linking the land-based food and mariculture (Froehlich et al., 2018). The expansion of marine fisheries has partly reduced the demand for green foods, but in response to rising fishmeal prices, the mariculture has begun to increasingly use green food to replace food sources provided by the ocean (Blanchard et al., 2017; Cottrell et al., 2018). Green food will be supplied to the mariculture in addition to human use. Fry et al. (2016) estimated that the land area occupied by land-based feeds needed to supply aquaculture is approximately equal to the area of Iceland. According to the National Bureau of Statistics of China, grain production, marine capture and mariculture continue to increase, and mariculture production is the fastest growing (Figure 2), and China is the world's largest mariculture producer (Clawson et al., 2022). The high growth of China's mariculture will laterally drive increased production on cropland in regions where the land-sea food sectors have not been decoupled, further leading to a reduction in the resilience of cropland ecosystem. Therefore, China urgently needs to balance the trade-off between the expansion of mariculture and the dependence on terrestrial agricultural land, introduce blue food into complete terrestrial food policymaking, and reduce the dependence of mariculture on terrestrial food by increasing feed utilization or developing ecologically sustainable feed products, alleviate spatial conflicts, achieve a sustainable decoupling between green-blue food, assess the sustainable balance between food supply and cropland ecosystem from an integrated perspective of land and sea, and at the same time meet the requirements of dietary diversity through a diverse food supply.

Conclusion
This study analyzed the coupling effect of blue and green food systems and their impact on cropland ecosystem functions based on NPP data, resilience, and land-sea integration perspectives. Evaluated the influence mechanisms of green and blue food production on cropland ecosystem resilience based on early warning signals and shock detection methods, and explored the possible reasons for the decrease in cropland resilience in coastal China. The key conclusions were: (1) the coefficient of variation of blue food production per capita is a critical influence factor in increasing the ability of cropland ecosystem to resist environmental changes; (2) blue food and green food in regions where the CEWI of cropland NPP significantly reduced are decoupled, and the decoupling between green-blue food can mutually complement through stable production, which in turn buffers the impact of green food production shock disturbance on cropland ecosystem resilience. This study provides a new perspective for a paradigm shift in food management in China, and offers unique insights into reconciling the balance between sustainable development of cropland ecosystem and human well-being in climate change and increased human activities.
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