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Abstract

In the paper, we consider the penalty finite element methods (FEMs) for the stationary

Smagorinsky model. Firstly, a one-grid penalty FEM is proposed and analyzed. Since this

method is nonlinear, a novel linearized iteration scheme is derived for solving it. We also derived

the stability and convergence of numerical solutions for this iteration scheme. Furthermore, a

two-grid penalty FEM is developed for Smagorinsky model. Under ε << h, this method consist of

solving a nonlinear Smagorinsky model by the one-grid penalty FEM with the proposed linearized

iteration scheme on a coarse mesh with mesh width H, and then solving a linearized Smagorinsky

model based on the Newton iteration on a fine mesh with mesh width h = O(H2), respectively.

Stability and error estimates of numerical solutions for two-grid penalty FEM are presented.

Finally, some numerical tests are provided to confirm the theoretical analysis and the effectiveness

of the developed methods.

Keywords: Smagorinsky model, Penalty finite element method, Two-grid method, Stability,

Convergence.
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1 Introduction

In this paper, we consider the penalty FEMs for the stationary Smagorinsky model

−Re−1∆u−∇ ·
(
(CSδ)

2|∇u|∇u
)
+ (u · ∇)u+∇p = f in Ω, (1a)

∇ · u = 0 in Ω, (1b)

u = 0 on ∂Ω. (1c)

where Ω ⊂ Rd (d=2 or 3) is a bounded and regular domain with a Lipschitz continuous bound-

ary ∂Ω, u represents the velocity, p the pressure, f the spatially filtered forcing term, CS the
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Smagorinsky constant, δ the radius of the spatial filter radius employed in large eddy simulation

(LES), |σ| :=
√∑d

i,j=1 |σij |2 the Frobenius norm of the tensor σ and Re the Reynolds number

which is defined as Re = UL/ν, where U, L and ν represent the characteristic velocity, length

and the viscosity of fluid, respectively.

Nowadays, numerical simulation of turbulence is one of the most important but challenging

research topics in computational fluid dynamics since it is widely used in engineering and envi-

ronmental fields. The Smagorinsky model [1–5] is one of the most popular large eddy simulation

(LES) models [6–10]. This model has been widely used in many application fields, such as gas

dynamics [11] and geophysical flow [1]. The analysis of the model (1) can be found in [2,3], and we

can see [8–10] for the challenging simulations. Comparing the classical Navier-Stokes equations,

it is added an artificial viscosity term −∇·
(
(CSδ)

2|∇u|∇u
)
, which induces the dissipated energy

in the large scale structures at the same rate as the discarded small scale structures in model (1).

In the last decades, more and more studies have been attracted for the numerical methods of

the Smagorinsky model (1). Among the studies, finite element method (FEM) is one of the most

popular methods. For example, in [5], the authors applied a two-level FEM to the Smagorinsky

model, in which a nonlinear problem was solved on the coarse mesh firstly and then solve a

Newton linearization problem on the fine mesh. In [12], the authors combined the lowest equal-

order stabilized FEM with the two-level Newton iteration to solve the steady Smagorinsky model.

In [13], the stabilized FEM based on Gaussian quadrature rule is used to penalize the instability

induced by the domination of convection term in the Smagorinsky model for simulating large

Reynolds numbers. In [14], three iterative stabilized FEMs for the Smagorinsky model were

proposed and analyzed. In [15], a low order nonconforming mixed FEM for the Smagorinsky

model was studied. In [16], a two-step stabilized FEM for solving the Smagorinsky model was

established.

Two-grid method is an efficient numerical scheme for the nonlinear partial differential equa-

tions, this method was pioneered by Marion and Xu [17–19]. The basic idea is to solve a nonlinear

problem on a very coarse mesh, and then solve one linearized system on a fine mesh. It is a good

strategy to reduce computing costs. So, two-grid method has been massively studied in recent

years. For example, we can refer to [20–26] for the research of the incompressible flow. Another

main difficulty is that velocity and pressure are coupled, while the penalty method is an effective

method to overcome this difficulty. There are more and more researches devoted to study the

penalty method in different problems. For example, we can refer to [27] for the pure Neumann

problem, [28, 29] for the Stokes equations, and [30–37] for the Navier-Stokes equations. From

above literature, we know that combining two-grid method and penalty method is quite efficient

for the nonlinear and multi-physical quantity coupling problem. In this paper, we consider the

two-grid penalty FEMs for solving the Smagorinsky model (1). Setting the penalty parameter

0 < ε << 1 as a real number. Firstly, a one-grid penalty FEM and the corresponding linearized

iteration scheme are proposed and analyzed. Furthermore, we develop a two-grid penalty FEM

for solving the Smagorinsky model, which consists of solving a nonlinear Smagorinsky model by

the one-grid penalty FEM with the proposed linearized iteration scheme on a coarse mesh with

mesh width H, and then solving a linearized Smagorinsky model based on the Newton iteration

on a fine mesh with mesh width h = O(H2), respectively. Stability and error estimates of nu-

merical solutions for two-grid penalty FEM are derived. Some numerical tests are provided to
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confirm the theoretical analysis and the effectiveness of the proposed methods.

The rest of the article is organized as follows. In the next section, some basic statements

are provide. In Section 3, a two-grid penalty FEM for the Smagorinsky model is proposed

and analyzed. Meanwhile, a one-grid penalty FEM and the corresponding linearized iteration

scheme are also given out and analyzed. The numerical experiments are presented to validate

the theoretical predictions and the efficiency of the proposed method in Section 4. Finally, we

conclude the article.

2 Mathematical preliminaries

We first generalize some notations, definitions and preliminary lemmas which will be used

in the analysis. Let W k,p(Ω) and W k,p
0 (Ω) (k ∈ N, 1 ≤ p ≤ +∞) denote the standard Sobolev

spaces [38]. The norm and seminorm on W k,p(Ω) are denoted by ∥ · ∥k,p and | · |k,p, respectively.
The space Hk(Ω) is the standard Hilbertian Sobolev space of order k with norm ∥ · ∥k. All other

norms will be clearly labeled. The inner product and norm in L2(Ω) are denoted by (·, ·) and ∥·∥,
respectively. In addition, the vector spaces and vector functions will be indicated by boldface type

letters, e.g., the spaces Hk(Ω), Wk,p(Ω) and Lp(Ω) represent the vector Sobolev spaces Hk(Ω)d,

W k,p(Ω)d and Lp(Ω)d, respectively.

We introduce the following Sobolev spaces:

X := W1,3
0 (Ω) = {v ∈ W1,3(Ω) : v = 0 on ∂Ω},

V := H1
0(Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω},

Q := L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω
qdx = 0

}
.

Due to X ⊂ V, the weak formulation of the Smagorinsky model (1) is given by: Find (u, p) ∈
(X, Q) satisfying for all (v, q) ∈ (X, Q)

a(u,v) + (CSδ)
2(|∇u|∇u,∇v) + b(u,u,v)− d(p,v) = (f ,v),

d(q,u) = 0,
(2)

where

a(u,v) = Re−1

∫
Ω
∇u : ∇vdx ∀u,v ∈ X,

d(p,v) =

∫
Ω
p divvdx ∀v ∈ X, p ∈ Q,

b(u,v,w) =

∫
Ω
(u · ∇)v ·wdx+

1

2

∫
Ω
(∇ · u)v ·wdx

=
1

2

∫
Ω
(u · ∇)v ·wdx− 1

2

∫
Ω
(u · ∇)w · vdx ∀u,v,w ∈ X,

with ∇u : ∇v =
∑d

i,j−1
∂ui
∂xj

· ∂vi
∂xj

.

Define the following divergence-free function spaces:

V0 := {v ∈ H1
0(Ω) : ∇ · v = 0}, X0 := {v ∈ W1,3

0 (Ω) : ∇ · v = 0}.

3



An equivalent weak formulation of the Smagorinsky model (1) reads as follows: Find u ∈ X0

satisfying for all v ∈ X0

a(u,v) + (CSδ)
2(|∇u|∇u,∇v) + b(u,u,v) = (f ,v). (3)

Following [5], the following three finite quantities are defined by

∥f∥∗ := sup
v∈H1

0(Ω)

|(f ,v)|
∥∇v∥

, ∥f∥∗3 := sup
v∈X

|(f ,v)|
|v|1,3

, γ3 := sup
v∈X

∥∇v∥
|v|1,3

.

It is easy to verify that the the trilinear b(·, ·, ·) has the following properties [42]:

b(u,v,w) = −b(u,w,v) ∀u,v,w ∈ V, (4)

and

|b(u,v,w)| ≤ N∥∇u∥∥∇v∥∥∇w∥ ∀u,v,w ∈ V, (5)

where

N = sup
u,v,w∈V

|b(u,v,w)|
∥∇u∥∥∇v∥∥∇w∥

.

We will use the following strong monotonicity and Lipschitz continuity of the r-Laplacian

[5, 39]:

Lemma 2.1 For all u1,u2,v ∈ W1,r(Ω), there exists a generic constant C1 depending on d, r

and Ω, but not on u1, u2 or v, such that the following inequalities hold:(
|∇u1|r−2∇u1,∇(u1 − u2)

)
−

(
|∇u2|r−2∇u2,∇(u1 − u2)

)
≥ C1∥∇(u1 − u2)∥r0,r,(

|∇u1|r−2∇u1,∇v
)
−

(
|∇u2|r−2∇u2,∇v

)
≤ C1M∥∇(u1 − u2)∥0,r∥∇v∥0,r,

where M := max{∥∇u1∥r−2
0,r , ∥∇u2∥r−2

0,r }.

Then we recall the well-posedness of the solution for the problem (3) in the following lemma

[2,4, 5]:

Lemma 2.2 There exists a weak solution u ∈ X0 to problem (3) satisfying

|u|1,3 ≤ (CSδ)
−1∥f∥1/2∗3 ,

∥∇u∥ ≤ Ψ(∥f∥∗),

where Ψ is defined as the inverse function of Φ : (0,+∞) −→ R:

Φ(x) := Re−1x+ (CSδ)
2γ−3

3 x2. (6)

Furthermore, if the following inequality holds,

NΨ(∥f∥∗) ≤ Re−1, (7)

then the problem (3) has a unique solution.
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Next, we recall the strong monotonicity, for all u,v,w ∈ X, we define

(F (u),v) = (CSδ)
2(|∇u|∇u,∇v).

Then F is strongly monotone and satisfies the following property [5, 39]:

(F
′
(w)u,u) ≥ 0, (8)

where

(F
′
(w)u,v) = (CSδ)

2(|∇w|∇u,∇v) + (CSδ)
2

(
[∇w : ∇u]

|∇w|
∇w,∇v

)
.

Let τµ = {Ωµ} is a quasi-uniform family of triangular partition of Ω with mesh size µ. The

real parameter µ > 0 takes h or H (h ≪ H) tending to 0. We take the fine grid partition τh

as a mesh refinement generated from the coarse grid τH . Define the following conforming finite

element subspaces of X and Q, respectively, by

Wµ = {vµ ∈ C(Ω̄) : vµ|K ∈ P2(K),∀K ∈ τh},

Vµ = Wµ ∩V, Xµ = Wµ ∩X,

Qµ = {qµ ∈ C(Ω̄) : qµ|K ∈ P1(K), ∀K ∈ τh} ∩Q,

where Pr(K) (r = 1, 2) is the space of the r-th order polynomial on K. With the choices of the

finite element spaces (Vµ, Qµ), we know that the spaces (Vµ, Qµ) is a pair of conforming finite

element space which satisfy the discrete inf-sup condition [43, 44], i.e., there exists a constant

β > 0 independent of µ such that

inf
qµ∈Qµ

sup
vh∈Vµ

(qµ,∇ · vµ)

∥qµ∥∥∇vµ∥
≥ β. (9)

The discrete divergence-free function spaces is defined as:

V0µ := {vµ ∈ Xµ : (qh,∇ · vµ) = 0 ∀qh ∈ Mh}.

We define the projection operations Rµ : V −→ Vµ and Qµ : Q −→ Qµ by

a(u−Rµu,vµ)− d(p−Qµp,vµ) = 0 ∀vµ ∈ Vh,

d(qµ,u−Rµu) = 0 ∀qµ ∈ Qh.
(10)

Then the following approximation properties hold [40–42]:

∥v −Rµv∥+ µ∥∇(v −Rµv)∥+ ∥q −Qµq∥ ≤ Cµ3(∥v∥3 + ∥p∥2),

∥v −Rµv∥1,3 ≤ Cµ2− d
6 ∥v∥3,

(11)

for any v ∈ H3(Ω) ∪V and q ∈ H2(Ω) ∪Q.

Furthermore, the Young’s inequality and the Poincaré’s inequality as follows will be used

frequently

ab ≤ ϵ

p
ap +

ϵ−q/p

q
bq, a, b, p, q, ϵ ∈ R,

1

p
+

1

q
= 1, p, q ∈ (1,∞), ϵ > 0,

∥v∥ ≤ Cp∥∇v∥, ∀v ∈ V, Cp = Cp(Ω).

To this end, we recall the following inverse inequality from [40]:

|vµ|1,3 ≤ Cinvµ
− d

6 ∥∇vµ∥ ∀vµ ∈ Xµ. (12)
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3 Two-grid penalty FEM for the Smagorinsky model

The proposed method consist of solving a nonlinear Smagorinsky model by the one-grid penal-

ty FEM on a coarse mesh, and then solving a linearized Smagorinsky model based on the Newton

iteration on a fine mesh. Before presenting the two-grid penalty FEM, we first give out the

one-grid penalty FEM.

3.1 One-grid penalty FEM

The one-grid penalty FEM for the problem (2) reads as the following algorithm.

Algorithm 3.1 (One-grid penalty FEM) Find (uεµ, pεµ) ∈ (Xµ, Qµ) such that for all (vµ, qµ) ∈
(Xµ, Qµ)

a(uεµ,vµ) + (CSδ)
2(|∇uεµ|∇uεµ,∇vµ) + b(uεµ,uεµ,vµ)− d(pεµ,vµ)

+ d(qµ,uεµ) + ε(pεµ, qµ) = (f ,vµ),
(13)

where 0 < ε ≪ 1 is a penalty parameter.

Now, we give and derive the stability and error estimations for Algorithm 3.1.

Theorem 3.2 Under the condition of (7), the discrete problem (13) admits a unique solution

(uεµ, pεµ) ∈ (Xµ, Qµ), which satisfies

|uεµ|1,3 ≤ (CSδ)
−1∥f∥

1
2
∗3, ∥∇uεµ∥ ≤ Ψ(∥f∥∗), ∥pεµ∥ ≤ ε−

1
2 (CSδ)

− 1
2 ∥f∥

3
4
∗3. (14)

Proof. Choosing (vµ, qµ) = (uεµ, pεµ) in (13), using (4) gives

Re−1∥∇uεµ∥2 + (CSδ)
2|uεµ|31,3 + ε∥pεµ∥2 ≤ ∥f∥∗3|uϵµ|1,3 (or ∥f∥∗∥∇uϵµ∥). (15)

Thus,

|uεµ|1,3 ≤ (CSδ)
−1∥f∥

1
2
∗3,

and

ε∥pεµ∥2 ≤ ∥f∥∗3|uϵµ|1,3 ≤ (CSδ)
−1∥f∥

3
2
∗3,

which yields ∥pεµ∥ ≤ ε−
1
2 (CSδ)

− 1
2 ∥f∥

3
4
∗3.

From Re−1∥∇uεµ∥2 + (CSδ)
2|uεµ|31,3 ≤ ∥f∥∗∥∇uϵµ∥, we can derive that

∥∇uεµ∥ ≤ Ψ(∥f∥∗),

where Ψ is defined in (6). To sum up, the proof is completed. 2

Theorem 3.3 Under the discrete inf-sup condition (9) and the uniqueness condition (7), if the

solution of (2) satisfies u ∈ X ∩H3(Ω), p ∈ Q ∪H2(Ω), and ∥∇u∥∞ does not depend on δ, then

the solution of problem (13) satisfies the following estimates:

∥∇(u− uεµ)∥+ µ
d
6 |u− uεµ|1,3 ≤ C

(
µ2 + ε+ δµ2− d

3
)
, (16)

∥p− pεµ∥ ≤ C
(
µ2 + ε+ δµ2− d

3 + δ4εµ− 2d
3 + δ3µ2− 2d

3
)
. (17)
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Proof. Subtracting (13) from (2), we obtain the following error equation

a(u− uεµ,vµ) + (CSδ)
2(|∇u|∇u,∇vµ)− (CSδ)

2(|∇uεµ|∇uεµ,∇vµ)

+ b(u,u,vµ)− b(uεµ,uεµ,vµ)− d(p− pεµ,vµ)

+ d(qµ,u− uεµ)− ε(pεµ, qµ) = 0,

(18)

for all (vµ, pµ) ∈ (Xµ,Mµ). Set

eεµ = uεµ −Rµu, eu = u−Rµu, ξεµ = pεµ −Qµp, ηp = p−Qµp.

Choose (vµ, pµ) = (eεµ, ξεµ) in (18), using (4) we have

a(eεµ, eεµ) + (CSδ)
2(|∇uεµ|∇uεµ,∇eεµ)− (CSδ)

2(|∇Rµu|∇Rµu,∇eεµ)

+ b(eεµ,uεµ, eεµ) + ε∥ξεµ∥2

= a(eu, eεµ) + b(u, eu, eεµ) + (CSδ)
2(|∇u|∇u,∇eεµ)− (CSδ)

2(|∇Rµu|∇Rµu,∇eεµ)

+ b(eu,uεµ, eεµ)− d(p− χµ, eεµ)− ε(Qµp, ξεµ),

(19)

where χµ ∈ Mµ. By (5) and Theorem 3.2, the terms on the left-hand side of (19) can be bounded

as:

a(eεµ, eεµ) = Re−1∥∇eεµ∥2,

b(eεµ,uεµ, eεµ) ≥ −N∥∇uεµ∥∥∇eεµ∥2 ≥ −NΨ(∥f∥∗)∥∇eεµ∥2.
(20)

By Lemma 2.1, we find

(CSδ)
2(|∇uεµ|∇uεµ,∇eεµ)− (CSδ)

2(|∇Rµu|∇Rµu,∇eεµ) ≥ C1(CSδ)
2|eεµ|31,3 > 0. (21)

Next, we bound the terms on the right-hand side of (19) as follows. Using (5) and Theorem 3.2,

we have

a(eu, eεµ) ≤ Re−1∥∇eu∥∥∇eεµ∥,

b(u, eu, eεµ) ≤ N∥∇u∥∥∇eu∥∥∇eεµ∥,

b(eu,uεµ, eεµ) ≤ N∥∇uεµ∥∥∇eu∥∥∇eεµ∥ ≤ NΨ(∥f∥∗)∥∇eu∥∥∇eεµ∥.

(22)

Following (4.21) in [5], we have

(CSδ)
2(|∇u|∇u,∇eεµ)− (CSδ)

2(|∇Rµu|∇Rµu,∇eεµ)

≤ C1(CSδ)
2(∥∇u∥∞ + ∥∇Rµu∥∞)∥∇eu∥∥∇eεµ∥

≤ C(CSδ)
2∥∇eu∥∥∇eεµ∥.

(23)

For the next term, we know

d(p− χµ, eεµ) ≤
√
d∥p− χµ∥∥∇eεµ∥, (24)

ε(Qµp, ξεµ) ≤ ε∥Qµp∥∥ξεµ∥ ≤ ε∥Qµp∥(∥p−Qµp∥+ ∥p− pεµ∥). (25)

Choosing qµ = 0 in (18), we have

(p− pεµ,∇ · vµ)

≤ Re−1∥∇(u− uεµ)∥∥∇vµ∥+N(∥∇u∥+ ∥∇uεµ∥)∥∇(u− uεµ)∥∥∇vµ∥

+ (CSδ)
2(|∇u|∇u,∇vµ)− (CSδ)

2(|∇uεµ|∇uεµ,∇vµ).
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By Lemma 2.1 and the inverse inequality (12), we can derive that

(CSδ)
2(|∇u|∇u,∇vµ)− (CSδ)

2(|∇uεµ|∇uεµ,∇vµ)

≤ C1(CSδ)
2max{|u|1,3, |uεµ|1,3}|u− uεµ|1,3|vµ|1,3

≤ C1Cinvµ
− d

6 (CSδ)
2max{|u|1,3, |uεµ|1,3}|u−Rµu|1,3∥∇vµ∥

+ C1C
2
invµ

− d
3 (CSδ)

2max{|u|1,3, |uεµ|1,3}∥∇(uεµ −Rµu)∥∥∇vµ∥.

By the discrete inf-sup condition (9), one has

β∥p− pεµ∥ ≤ Re−1∥∇eu∥+Re−1∥∇eεµ∥+ C∥∇eu∥+ C∥∇eεµ∥

+ Cµ− d
6 (CSδ)

2|eu|1,3 + C(CSδ)
2µ− d

3 ∥∇eεµ∥.
(26)

Combining the estimates (20)-(26) into (19), we have

σ∥∇eεµ∥2 + ε∥ξεµ∥2

≤
(
Re−1∥∇eu∥+N∥∇u∥∥∇eu∥+NΨ(∥f∥∗)∥∇eu∥+ C(CSδ)

2∥∇eu∥+
√
d∥p− χµ∥

+ Cβ−1ε∥Qµp∥+ Cβ−1ε(CSδ)
2µ− d

3
)
∥∇eεµ∥+ ε∥Qµp∥∥ηp∥+ Cβ−1ε∥Qµp∥∥∇eu∥

+ Cβ−1ε∥Qµp∥µ− d
6 (CSδ)

2|eu|1,3

≤ σ

2
∥∇eεµ∥2 + C

(
∥∇eu∥2 + (CSδ)

4∥∇eu∥2 + ∥p− χµ∥2 + ε2 + ε2(CSδ)
4µ− 2d

3
)

+ Cε∥ηp∥+ Cε∥∇eu∥+ Cεµ− d
6 (CSδ)

2|eu|1,3,

(27)

where σ = Re−1 −NΨ(∥f∥∗) > 0.

From (27), we find

∥∇eεµ∥2 ≤ C
(
∥∇eu∥2 + (CSδ)

4∥∇eu∥2 + ∥p− χµ∥2 + ε2 + ε2(CSδ)
4µ− 2d

3
)

+ Cε∥ηp∥+ Cε∥∇eu∥+ Cεµ− d
6 (CSδ)

2|eu|1,3

≤ C
(
∥∇eu∥+ ∥ηp∥+ ε+ εδ + δµ− d

6 |eu|1,3
)2

≤ C
(
∥∇eu∥+ ∥ηp∥+ ε+ δµ− d

6 |eu|1,3
)2
.

(28)

By the approximation properties (11), we have

∥∇eεµ∥ ≤ C
(
∥∇eu∥+ ∥ηp∥+ ε+ δµ− d

6 |eu|1,3
)

≤ C
(
µ2 + ε+ δµ2− d

3
)
.

(29)

Applying the triangle inequality we obtain

∥∇(u− uεµ)∥ ≤ C
(
µ2 + ε+ δµ2− d

3
)
. (30)

Combining (26) with (29), the pressure error can be bounded by

∥p− pεµ∥ ≤ C
(
µ2 + ε+ δµ2− d

3 + δ4εµ− 2d
3 + δ3µ2− 2d

3
)
. (31)

Finally, by the triangle inequality and the inverse inequality (12) we gain

|u− uεµ|1,3 ≤ |u−Rµu|1,3 + |Rµu− uεµ|1,3

≤ |u−Rµu|1,3 + Cinvµ
− d

6 ∥∇(Rµu− uεµ)∥

≤ Cµ− d
6 (µ2 + ε+ δµ2− d

3 )

(32)

and complete the proof. 2
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Remark 1 If we choose ε ≪ µ2 and δ = O(µ
d
3 ) in Theorem 3.3, then we can derive

∥∇(u− uεµ)∥+ µ
d
6 |u− uεµ|1,3 + ∥p− pεµ∥ ≤ Cµ2. (33)

3.2 The linearized iteration scheme of one-grid penalty FEM

Since the one-grid penalty FEM (13) is a nonlinear scheme. In practice computation, iterative

methods are needed to solve it. In this section, we give a linearized iteration scheme for solving

the solution (uεµ, pεµ) of the one-grid penalty FEM (13). The iteration initial value (u0
εµ, p

0
εµ) is

selected by solving the following Stokes problem:

a(u0
εµ,vµ)− d(p0εµ,vµ) + d(qµ,u

0
εµ) + ε(p0εµ, qµ) = (f ,vµ) ∀(vµ, qµ) ∈ (Xµ, Qµ). (34)

Then we solve (un
εµ, p

n
εµ), n = 1, 2, · · ·,M , by the following linearized problem:

a(un
εµ,vµ) + (CSδ)

2(|∇un−1
εµ |∇un

εµ,∇vµ) + (CSδ)
2

(
[∇un−1

εµ : ∇un
εµ]

|∇un−1
εµ |

∇un−1
εµ ,∇vµ

)
+ b(un−1

εµ ,un
εµ,vµ)− d(pnεµ,vµ) + d(qµ,u

n
εµ) + ε(pnεµ, qµ)

= (f ,vµ) + (CSδ)
2(|∇un−1

εµ |∇un−1
εµ ,∇vµ) ∀(vµ, qµ) ∈ (Xµ, Qµ).

(35)

The stability of solution of above iteration scheme (34)-(35) is given out in the following theorem.

Theorem 3.4 If CS , δ, Cinv, N and µ satisfy (CSδ)
2C3

invµ
− d

2 ≤ N and the following condition

holds that

7NRe2∥f∥∗ < 1, (36)

then we have

∥∇un
εµ∥ ≤ 2Re∥f∥∗, ∥pnεµ∥ ≤ 2(Re/ε)

1
2 ∥f∥∗. (37)

Proof. We prove it by mathematical induction method. Firstly, we choose (vµ, qµ) = (u0
εµ, p

0
εµ)

in (34) and deduce that

Re−1∥∇u0
εµ∥2 + ε∥p0εµ∥2 ≤ ∥f∥∗∥∇u0

εµ∥.

Thus, ∥∇u0
εµ∥ ≤ Re∥f∥∗ and ε∥p0εµ∥2 ≤ Re∥f∥2∗, which implies that the conclusions hold for

n = 0.

Next, assuming the conclusions hold for n ≤ k − 1, that

∥∇un
εµ∥ ≤ 2Re∥f∥∗, ∥pnεµ∥ ≤ 2(Re/ε)

1
2 ∥f∥∗ for n ≤ k − 1. (38)

Finally, we prove that the conclusion hold for n = k. Set n = k in (35) and choose (vµ, qµ) =

(uk
εµ, p

k
εµ), we have

Re−1∥∇uk
εµ∥2 + (CSδ)

2(|∇uk−1
εµ |∇uk

εµ,∇uk
εµ) + (CSδ)

2

(
[∇uk−1

εµ : ∇uk
εµ]

|∇uk−1
εµ |

∇uk−1
εµ ,∇uk

εµ

)
+ ε∥pkεµ∥2 = (f ,uk

εµ) + (CSδ)
2(|uk−1

εµ |uk−1
εµ ,uk

εµ).

(39)
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By (8) and the inverse inequality (12), we have

Re−1∥∇uk
εµ∥2 + ε∥pkεµ∥2

≤ ∥f∥∗∥∇uk
εµ∥+ (CSδ)

2C3
invµ

− d
2 ∥∇uk−1

εµ ∥2∥∇uk
εµ∥

≤ ∥f∥∗∥∇uk
εµ∥+ 4Re2(CSδ)

2C3
invµ

− d
2 ∥f∥2∗∥∇uk

εµ∥

≤ ∥f∥∗∥∇uk
εµ∥+ 4NRe2∥f∥2∗∥∇uk

εµ∥

≤ 2∥f∥∗∥∇uk
εµ∥.

(40)

From (40), we know that

∥∇uk
εµ∥ ≤ 2Re∥f∥∗,

and

ε∥pkεµ∥2 ≤ 2∥f∥∗∥∇uk
εµ∥ ≤ 4Re∥f∥2∗.

To sum up, the proof is completed. 2

Remark 2 According to Lemma 6.1 in [4], we know Ψ(∥f∥∗) < Re∥f∥∗, thus, from Theorem 3.2,

we can get another upper bound of ∥∇uεµ∥ as follows:

∥∇uεµ∥ ≤ Re∥f∥∗. (41)

The iteration error estimates of scheme (34)-(35) is presented in the following theorem.

Theorem 3.5 Under the assumptions of Theorem 3.4, then the solution of (13) and the solution

of (35) satisfy

∥∇(uεµ − un
εµ)∥+ µ

d
6 |uεµ − un

εµ|1,3 ≤
2

7
Re∥f∥∗(7NRe2∥f∥∗)n. (42)

∥pεµ − pnεµ∥ ≤ (18 + 2C1)β
−1Re−1

7
(7NRe2∥f∥∗)n. (43)

Proof. Subtracting (34) from (13), we obtain

a(uεµ − u0
εµ,vµ)− d(pεµ − p0εµ,vµ) + d(qµ,uεµ − u0

εµ) + ε(pεµ − p0εµ, qµ)

= −b(uεµ,uεµ,vµ)− (CSδ)
2(|∇uεµ|∇uεµ,∇vµ),

(44)

Setting (vµ, qµ) = (uεµ − u0
εµ, pεµ − p0εµ) and using (5), the Hölder inequality and the inverse

inequality (12), we get

Re−1∥∇(uεµ − u0
εµ)∥2 + ε∥pεµ − p0εµ∥2

≤ N∥∇uεµ∥2∥∇(uεµ − u0
εµ)∥+ (CSδ)

2|uεµ|21,3|uεµ − u0
εµ|1,3

≤ N∥∇uεµ∥2∥∇(uεµ − u0
εµ)∥+ (CSδ)

2C3
invµ

− d
2 ∥∇uεµ∥2∥∇(uεµ − u0

εµ)∥

≤ 2N∥∇uεµ∥2∥∇(uεµ − u0
εµ)∥.

(45)

This lead to

∥∇(uεµ − u0
εµ)∥ ≤ 2

7
Re(7NRe2∥f∥∗)∥f∥∗ ≤

2

7
Re∥f∥∗. (46)
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Choosing qµ = 0 in (44), by the inf-sup condition (9), the inverse inequality (12) and (41), we

have

∥pεµ − p0εµ∥ ≤ β−1
(
Re−1∥∇(uεµ − u0

εµ)∥+N∥∇uεµ∥2 + (CSδ)
2C3

invµ
− d

2 ∥∇uεµ∥2
)

≤ β−1
(
Re−1∥∇(uεµ − u0

εµ)∥+ 2N∥∇uεµ∥2
)

≤ 4

7
β−1∥f∥∗.

(47)

Next, we consider iteration error of (35). Subtracting (35) from (13), we obtain

a(uεµ − un
εµ,vµ)− d(pεµ − pnεµ,vµ) + d(qµ,uεµ − un

εµ) + ε(pεµ − pnεµ, qµ)

= b(un−1
εµ ,un

εµ,vµ)− b(uεµ,uεµ,vµ) + (CSδ)
2(|∇un−1

εµ |∇un
εµ,∇vµ)

+ (CSδ)
2

(
[∇un−1

εµ : ∇un
εµ]

|∇un−1
εµ |

∇un−1
εµ ,∇vµ

)
− (CSδ)

2(|∇un−1
εµ |∇un−1

εµ ,∇vµ)

− (CSδ)
2(|∇uεµ|∇uεµ,∇vµ).

(48)

Setting (vµ, qµ) = (uεµ − un
εµ, pεµ − pnεµ) in (48), we obtain

Re−1∥∇(uεµ − un
εµ)∥2 + ε∥pεµ − pnεµ∥2

= −b(uεµ − un−1
εµ ,uεµ,uεµ − un

εµ) + (CSδ)
2(|∇un−1

εµ |∇(un
εµ − uεµ),∇(uεµ − un

εµ))

+ (CSδ)
2

(
[∇un−1

εµ : ∇(un
εµ − uεµ)]

|∇un−1
εµ |

∇un−1
εµ ,∇(uεµ − un

εµ)

)
+ (CSδ)

2
(
|∇un−1

εµ |∇(uεµ − un−1
εµ ),∇(uεµ − un

εµ)
)

+ (CSδ)
2

(
[∇un−1

εµ : ∇uεµ]

|∇un−1
εµ |

∇un−1
εµ ,∇(uεµ − un

εµ)

)
− (CSδ)

2(|∇uεµ|∇uεµ,∇(uεµ − un
εµ)) = J1 + J2 + J3 + J4 + J5 + J6.

(49)

Using (5) and (41), we know

J1 ≤ N∥∇(uεµ − un−1
εµ )∥∥∇uεµ∥∥∇(uεµ − un

εµ)∥

≤ NRe∥f∥∗∥∇(uεµ − un−1
εµ )∥∥∇(uεµ − un

εµ)∥.

By (8), we find

J2 + J3 ≤ 0.
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From the Frobenius norm inequality |A||B| − [A : B] ≤ |A−B|2, the inequality |a| − |b| ≤ |a− b|,
the inverse inequality (12), Theorem 3.4 and (41), we have

J4 + J5 + J6 = (CSδ)
2
(
|∇un−1

εµ |∇(uεµ − un−1
εµ ),∇(uεµ − un

εµ)
)

− (CSδ)
2
(
|∇uεµ|∇(uεµ − un−1

εµ ),∇(uεµ − un
εµ)

)
− (CSδ)

2

( |∇uεµ||∇un−1
εµ |

|∇un−1
εµ |

∇un−1
εµ ,∇(uεµ − un

εµ)

)
+ (CSδ)

2

(
[∇un−1

εµ : ∇uεµ]

|∇un−1
εµ |

∇un−1
εµ ,∇(uεµ − un

εµ)

)
≤ (CSδ)

2
(
|∇(uεµ − un−1

εµ )|2, |∇(uεµ − un
εµ)|

)
+ (CSδ)

2

( |∇(uεµ − un−1
εµ )|2

|∇un−1
εµ |

|∇un−1
εµ |, |∇(uεµ − un

εµ)|
)

≤ 2(CSδ)
2C3

invµ
− d

2 ∥∇(uεµ − un−1
εµ )∥2∥∇(uεµ − un

εµ)∥

≤ 2N(∥∇uεµ∥+ ∥∇un−1
εµ ∥)∥∇(uεµ − un−1

εµ )∥∥∇(uεµ − un
εµ)∥

≤ 6NRe∥f∥∗∥∇(uεµ − un−1
εµ )∥∥∇(uεµ − un

εµ)∥.

(50)

Combining these estimates for J1 to J6 into (49), we derive

∥∇(uεµ − un
εµ)∥ ≤ (7NRe2∥f∥∗)∥∇(uεµ − un−1

εµ )∥

≤ · · · ≤ (7NRe2∥f∥∗)n∥∇(uεµ − u0
εµ)∥ ≤ 2

7
Re∥f∥∗(7NRe2∥f∥∗)n.

Choosing qµ = 0 in (48), we know

(pεµ − pnεµ,∇ · vµ)

≤ Re−1∥∇(uεµ − un
εµ)∥∥∇vµ∥+

[
b(uεµ,uεµ,vµ)− b(un−1

εµ ,un
εµ,vµ)

]
+
[
(CSδ)

2(|∇uεµ|∇uεµ,∇vµ)− (CSδ)
2(|∇un−1

εµ |∇un
εµ,∇vµ)

]
+

[
(CSδ)

2(|∇un−1
εµ |∇un−1

εµ ,∇vµ)− (CSδ)
2

(
[∇un−1

εµ : ∇un
εµ]

|∇un−1
εµ |

∇un−1
εµ ,∇vµ

)]
= Re−1∥∇(uεµ − un

εµ)∥∥∇vµ∥+ J7 + J8 + J9.

(51)

Using (5) and (41), we have

J7 = b(uεµ − un−1
εµ ,uεµ,vµ) + b(un−1

εµ ,uεµ − un
εµ,vµ)

≤ N∥∇(uεµ − un−1
εµ )∥∥∇uεµ∥∥∇vµ∥+N∥∇un−1

εµ ∥∥∇(uεµ − un
εµ)∥∥∇vµ∥

≤ NRe∥f∥∗∥∇(uεµ − un−1
εµ )∥∥∇vµ∥+ 2NRe∥f∥∗∥∇(uεµ − un

εµ)∥∥∇vµ∥.

(52)

By the Hölder inequality and the inverse inequality (12) and Lemma 2.1, one has

J8 = (CSδ)
2(|∇uεµ|∇uεµ,∇vµ)− (CSδ)

2(|∇un
εµ|∇un

εµ,∇vµ)

+ (CSδ)
2(|∇un

εµ|∇un
εµ,∇vµ)− (CSδ)

2(|∇un−1
εµ |∇un

εµ,∇vµ)

≤ C1(CSδ)
2max{|uεµ|1,3, |un

εµ|1,3}|uεµ − un
εµ|1,3|vµ|1,3

+ (CSδ)
2|un

εµ|1,3|un
εµ − un−1

εµ |1,3|vµ|1,3

≤ C1(CSδ)
2C3

invµ
− d

2 max{∥∇uεµ∥, ∥∇un
εµ∥}∥∇(uεµ − un

εµ)∥∥∇vµ∥

+ (CSδ)
2C3

invµ
− d

2 ∥∇un
εµ∥∥∇(un

εµ − un−1
εµ )∥∥∇vµ∥

≤ 2C1NRe∥f∥∗∥∇(uεµ − un
εµ)∥∥∇vµ∥+ 2NRe∥f∥∗∥∇(uεµ − un

εµ)∥∥∇vµ∥

+ 2NRe∥f∥∗∥∇(uεµ − un−1
εµ )∥∥∇vµ∥,

(53)
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and

J9 = (CSδ)
2

(
[∇un−1

εµ : ∇(un−1
εµ − un

εµ)]

|∇un−1
εµ |

∇un−1
εµ ,∇vµ

)
≤ (CSδ)

2|un−1
εµ |1,3|un−1

εµ − un
εµ|1,3|vµ|1,3

≤ 2NRe∥f∥∗(∥∇(uεµ − un
εµ)∥+ ∥∇(uεµ − un−1

εµ )∥)∥∇vµ∥,

(54)

Combining estimates J7,J8 and J9 into (51), and using the discrete inf-sup condition (9), one

has

∥pεµ − pnεµ∥ ≤ β−1(Re−1 + 6NRe∥f∥∗ + 2C1NRe∥f∥∗)∥∇(uεµ − un
εµ)∥

+ 5β−1ReN∥f∥∗∥∇(uεµ − un−1
εµ )∥

≤ β−1(Re−1 +
6

7
Re−1 +

2C1

7
Re−1)∥∇(uεµ − un

εµ)∥

+
5

7
β−1Re−1(7NRe2∥f∥∗)∥∇(uεµ − un−1

εµ )∥

≤ (18 + 2C1)β
−1Re−1

7
(7NRe2∥f∥∗)n.

(55)

Finally, we derive the estimate |uεµ − un
εµ|1,3 by the inverse inequality (12) and complete the

proof. 2

As a direct consequence of Theorems 3.3 and 3.5, we immediately obtain the following theorem.

Theorem 3.6 Under the assumptions of Theorems 3.3 and 3.5, then we have the following esti-

mates:

∥∇(u− un
εµ)∥+ µ

d
6 |u− un

εµ|1,3 ≤
(
µ2 + ε+ δµ2− d

3 +
2

7
Re∥f∥∗(7NRe2∥f∥∗)n

)
, (56)

∥p− pnεµ∥ ≤
(
µ2 + ε+ δµ2− d

3 + δ4εµ− 2d
3 + δ3µ2− 2d

3 +
(18 + 2C1)β

−1Re−1

7
(7NRe2∥f∥∗)n

)
. (57)

3.3 Two-grid penalty FEM

The two-grid penalty FEM for the problem (2) reads as the following algorithm.

Algorithm 3.7 (Two-grid penalty FEM)

Step 1: Solve a nonlinear Smagorinsky model on the coarse mesh τH : Find (uεH , pεH) ∈
(XH , QH) such that for all (vH , qH) ∈ (XH , QH)

a(uεH ,vH) + (CSδ)
2(|∇uεH |∇uεH ,∇vH) + b(uεH ,uεH ,vH)− d(pεH ,vH)

+ d(qH ,uεH) + ε(pεH , qH) = (f ,vH).
(58)

Step 2: Solve the following linearized Smagorinsky model on the fine mesh τh: Find (uεh, pεh) ∈
(Xh, Qh) such that for all (vh, qh) ∈ (Xh, Qh)

a(uεh,vh) + (CSδ)
2(|∇uM

εH |∇uεh,∇vh) + (CSδ)
2

(
[∇uM

εH : ∇uεh]

|∇uM
εH |

∇uM
εH ,∇vh

)
+ b(uM

εH ,uεh,vh) + b(uεh,u
M
εH ,vh)− d(pεh,vh) + d(qh,uεh) + ε(pεh, qh)

= (f ,vh) + (CSδ)
2(|∇uM

εH |∇uM
εH ,∇vh) + b(uM

εH ,uM
εH ,vh) + ε(pMεH , qh),

(59)

where uM
εH is the solution of (58) solved by the iteration scheme (35).
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The stability and error estimates of solution of Algorithm 3.7 in step 1 are obtained in The-

orems 3.2 and 3.3. Here, we only need to consider the theoretical results of the solution of

Algorithm 3.7 in step 2. We first give out the stability of solution in the following theorem.

Theorem 3.8 Under the assumptions of Theorem 3.6, the solution solved by (59) satisfies

σ1∥∇uεh∥2 + ε∥pεh∥2 ≤
1

σ1
(2∥f∥∗ + (h/H)−

d
6 ∥f∥∗

)2
+ 4Re∥f∥2∗, (60)

where σ1 = Re−1 − 2NRe∥f∥∗ > 0.

Proof. Setting (vh, qh) = (uεh, pεh) in (59), we have

a(uεh,uεh) + (CSδ)
2(|∇uM

εH |∇uεh,∇uεh) + (CSδ)
2

(
[∇uM

εH : ∇uεh]

|∇uM
εH |

∇uM
εH ,∇uεh

)
+ b(uεh,u

M
εH ,uεh) + ε(pεh, pεh)

= (f ,uεh) + (CSδ)
2(|∇uM

εH |∇uM
εH ,∇uεh) + b(uM

εH ,uM
εH ,uεh) + ε(pMεH , pεh).

(61)

By (8), (5), Theorem 3.4, the Hölder inequality and the inverse inequality (12), one has

σ1∥∇uεh∥2 + ε∥pεh∥2

≤ ∥f∥∗∥∇uεh∥+ (CSδ)
2|uM

εH |21,3|uεh|1,3 +N∥∇uM
εH∥2∥∇uεh∥+ ε∥pMεH∥∥pεh∥

≤ ∥f∥∗∥∇uεh∥+N(h/H)−
d
6 ∥∇uM

εH∥2∥∇uεh∥+N∥∇uM
εH∥2∥∇uεh∥+ ε∥pMεH∥∥pεh∥

≤
(
2∥f∥∗ + (h/H)−

d
6 ∥f∥∗

)
∥∇uεh∥+ ε∥pMεH∥∥pεh∥

≤ σ1
2
∥∇uεh∥2 +

1

2σ1
(2∥f∥∗ + (h/H)−

d
6 ∥f∥∗

)2
+

ε

2
∥pεh∥2 +

ε

2
∥pMεH∥2,

(62)

where σ1 = Re−1 − 2NRe∥f∥∗ > 0. From the bound of pressure in Theorem 3.4, we can derive

estimate (60) and complete the proof. 2

Next, the error estimate of solution of Algorithm 3.7 in step 2 is presented in the following

theorem.

Theorem 3.9 Under the assumptions of Theorem 3.6, and the following condition holds

(CSδ)
2C3

invH
− d

6h−
d
3 ≤ C0, (63)

then we have

∥∇(u− uεh)∥+ h
d
6 |u− uεh|1,3 + ∥p− pεh∥

≤ C
(
h2 + ∥∇(u− uM

εH)∥2 + ε∥p− pMεH∥+ (CSδ)
2h−

d
6 |u− uM

εH |21,3
+ (CSδ)

2∥∇(u− uM
εH)∥+ (CSδ)

2H− d
6h2−

d
3 + (CSδ)

2H− d
6h−

d
6 |u− uM

εH |1,3∥
)
.

(64)

Proof. Subtracting (59) from (2), we obtain

a(u− uεh,vh) + (CSδ)
2(|∇u|∇u,∇vh)− (CSδ)

2(|∇uM
εH |∇uεh,∇vh)

− (CSδ)
2

(
[∇uM

εH : ∇uεh]

|∇uM
εH |

∇uM
εH ,∇vh

)
+ (CSδ)

2(|∇uM
εH |∇uM

εH ,∇vh)

+ b(u,u,vh)− b(uM
εH ,uεh,vh)− b(uεh,u

M
εH ,vh) + b(uM

εH ,uM
εH ,vh)

− d(p− pεh,vh) + d(qh,u− uεh)− ε(pεh, qh) + ε(pεH , qh) = 0.

(65)
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Set

eh = uεh −Rhu, eu = u−Rhu, ξh = pεh −Qhp, ηp = p−Qhp.

Choose (vh, qh) = (eh, ξh) in (65) gives

Re−1∥∇eh∥2 + ε∥ξh∥2 + (CSδ)
2(|∇uM

εH |∇eh,∇eh) + (CSδ)
2

(
[∇uM

εH : ∇eh]

|∇uM
εH |

∇uM
εH ,∇eh

)
= a(ηu, eh) + b(ηu,u

M
εH , eh)− b(eh,u

M
εH , eh) + b(uM

εH , ηu, eh)− b(uM
εH , eh, eh)

+ b(u− uM
εH ,u− uM

εH , eh)− d(p− χh, eh) + (CSδ)
2(|∇u|∇u,∇eh)

− (CSδ)
2(|∇uM

εH |∇Rhu,∇eh) + (CSδ)
2

(
[∇uM

εH : ∇(uM
εH −Rhu)]

|∇uM
εH |

∇uM
εH ,∇eh

)
− ε(Qhp− pMεH , ξh) =

11∑
i=1

Ii.

(66)

From (8), we know

(CSδ)
2(|∇uM

εH |∇eh,∇eh) + (CSδ)
2

(
[∇uM

εH : ∇eh]

|∇uM
εH |

∇uM
εH ,∇eh

)
≥ 0. (67)

Next, we estimate Ii, i = 1, · · ·, 11, one by one below. It is easy to verify the following estimates:

I1 ≤ Re−1∥∇ηu∥∥∇eh∥,

I2 + I4 ≤ 2N∥∇ηu∥∥∇uM
εH∥∥∇eh∥ ≤ 4NRe∥f∥∗∥∇ηu∥∥∇eh∥,

I3 ≤ N∥∇uM
εH∥∥∇eh∥2 ≤ 2NRe∥f∥∗∥∇eh∥2,

I5 = 0,

I6 ≤ N∥∇(u− uM
εH)∥2∥∇eh∥,

I7 ≤
√
d∥p− χh∥∥∇eh∥.

(68)

Following (6.11)-(6.16) in [5], we have

I8 + I9 + I10 ≤ 2(CSδ)
2|u− uM

εH |21,3|eh|1,3 + 2(CSδ)
2|uM

εH |1,3|ηu|1,3|eh|1,3

≤ 2Cinv(CSδ)
2h−

d
6
(
|u− uM

εH |21,3 + 2CinvH
− d

6Re∥f∥∗|ηu|1,3
)
∥∇eh∥.

(69)

For the term I11, we have

I11 ≤ ε
(
∥p−Qhp∥+ ∥p− pMεH∥

)(
∥p− pεh∥+ ∥p−Qhp∥

)
. (70)

Choosing qh = 0 in 65, we have

(p− pεh,∇ · vh)

= a(u− uεh,vh) + (CSδ)
2(|∇u|∇u,∇vh)− (CSδ)

2(|∇uM
εH |∇uεh,∇vh)

+ (CSδ)
2(|∇uM

εH |∇uM
εH ,∇vh)− (CSδ)

2

(
[∇uM

εH : ∇uεh]

|∇uM
εH |

∇uM
εH ,∇vh

)
+ b(u− uεh,u

M
H ,vh) + b(uM

εH ,u− uεh,vh) + b(u− uM
εH ,u− uM

εH ,vh)

=

8∑
i=1

Ai,
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where Ai, i = 1, · · ·, 8, can be bounded below. Firstly,

A1 ≤ Re−1∥∇(u− uεh)∥∥∇vh∥.

By the Hölder inequality and the inverse inequality (12), we get

A2 +A3 ≤ (CSδ)
2(|∇(u− uM

εH)|∇u,∇vh)− (CSδ)
2(|∇uM

εH |∇(u− uεh),∇vh)

≤ (CSδ)
2∥∇(u− uM

εH)∥∥∇u∥L∞∥∇vh∥+ (CSδ)
2|uM

εH |1,3|u− uεh|1,3|vh|1,3

≤ (CSδ)
2∥∇(u− uM

εH)∥∥∇u∥L∞∥∇vh∥+ 2(CSδ)
2C2

invH
− d

6h−
d
6Re∥f∥∗|ηu|1,3∥∇vh∥

+ 2(CSδ)
2C3

invH
− d

6h−
d
3Re∥f∥∗∥∇eh∥∥∇vh∥,

and

A4 +A5 = (CSδ)
2

(
[∇uM

εH : ∇(uM
εH − uεh)]

|∇uM
εH |

∇uM
εH ,∇vh

)
≤ (CSδ)

2|uM
εH |1,3|uM

εH − uεh|1,3|vh|1,3

≤ (CSδ)
2C2

invH
− d

6h−
d
6 ∥∇uM

εH∥
(
|u− uM

εH |1,3 + |u− uεh|1,3|
)
∥∇vh∥

≤ 2(CSδ)
2C2

invH
− d

6h−
d
6Re∥f∥∗|u− uM

εH |1,3∥∇vh∥+ 2(CSδ)
2C2

invH
− d

6h−
d
6Re∥f∥∗|ηu|1,3∥∇vh∥

+ 2(CSδ)
2C3

invH
− d

6h−
d
3Re∥f∥∗∥∇eh∥∥∇vh∥.

From (5), we know

A6 +A7 ≤ 2N∥∇(u− uεh)∥∥∇uM
H ∥∥∇vh∥

≤ 4NRe∥f∥∗∥∇ηu∥∥∇vh∥+ 4NRe∥f∥∗∥∇eu∥∥∇vh∥,

and

A8 ≤ N∥∇(u− uM
εH)∥2∥∇vh∥.

Now, using the discrete inf-sup condition (9), we have

∥p− pεh∥

≤ β−1
(
Re−1∥∇ηu∥+Re−1∥∇eu∥+ (CSδ)

2∥∇(u− uM
εH)∥∥∇u∥L∞

+ 4(CSδ)
2C2

invH
− d

6h−
d
6Re∥f∥∗|ηu|1,3 + 4(CSδ)

2C3
invH

− d
6h−

d
3Re∥f∥∗∥∇eh∥

+ 2(CSδ)
2C2

invH
− d

6h−
d
6Re∥f∥∗|u− uM

εH |1,3 +Re−1∥∇ηu∥

+Re−1∥∇eu∥+N∥∇(u− uM
εH)∥2,

(71)
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Combining the estimates (67)-(71) into (66), we have

σ1∥∇eh∥2 + ε∥ξh∥2

≤
[
2Re−1∥∇ηu∥+N∥∇(u− uM

εH)∥2 +
√
d∥p− χh∥

+ 2Cinv(CSδ)
2h−

d
6
(
|u− uM

εH |21,3 + 2CinvH
− d

6Re∥f∥∗|ηu|1,3
)

+ β−1ε
(
∥p−Qhp∥+ ∥p− pMεH∥

)(
2Re−1 + 4(CSδ)

2C3
invH

− d
6h−

d
3Re∥f∥∗

)]
∥∇eh∥

+ β−1ε
(
∥p−Qhp∥+ ∥p− pMεH∥

)(
Re−1∥∇ηu∥+ (CSδ)

2∥∇(u− uM
εH)∥∥∇u∥L∞

+ 4(CSδ)
2C2

invH
− d

6h−
d
6Re∥f∥∗|ηu|1,3 + 2(CSδ)

2C2
invH

− d
6h−

d
6Re∥f∥∗|u− uM

εH |1,3
+N∥∇(u− uM

εH)∥2 + ∥p−Qhp∥
)

≤ σ1
2
∥∇eh∥2 + C

(
∥∇ηu∥2 + ∥∇(u− uM

εH)∥4 + ∥p− χh∥2

+ (CSδ)
4h−

d
3 (|u− uM

εH |41,3 +H− d
3 |ηu|21,3) + ε2

(
∥p−Qhp∥2 + ∥p− pMεH∥2

)
+ Cε

(
∥p−Qhp∥+ ∥p− pMεH∥

)(
∥∇ηu∥+ (CSδ)

2∥∇(u− uM
εH)∥+ (CSδ)

2H− d
6h−

d
6 |ηu|1,3

+ (CSδ)
2H− d

6h−
d
6 |u− uM

εH |1,3 + ∥∇(u− uM
εH)∥2 + ∥p−Qhp∥

)
≤ σ1

2
∥∇eh∥2 + C

(
∥∇ηu∥+ ∥∇(u− uM

εH)∥2 + ∥p− χh∥+ ε(∥p−Qhp∥+ ∥p− pMεH∥)

+ (CSδ)
2h−

d
6 (|u− uM

εH |21,3 +H− d
6 |ηu|1,3) + (CSδ)

2∥∇(u− uM
εH)∥

+ (CSδ)
2H− d

6h−
d
6 |ηu|1,3 + (CSδ)

2H− d
6h−

d
6 |u− uM

εH |1,3∥
)2
,

(72)

here (63) is used. Thus, By the approximation properties (11), we have

∥∇eh∥ ≤ C
(
∥∇ηu∥+ ∥∇(u− uM

εH)∥2 + ∥p− χh∥+ ε(∥p−Qhp∥+ ∥p− pMεH∥)

+ (CSδ)
2h−

d
6 (|u− uM

εH |21,3 +H− d
6 |ηu|1,3) + (CSδ)

2∥∇(u− uM
εH)∥

+ (CSδ)
2H− d

6h−
d
6 |ηu|1,3 + (CSδ)

2H− d
6h−

d
6 |u− uM

εH |1,3∥
)

≤ C
(
h2 + ∥∇(u− uM

εH)∥2 + ε∥p− pMεH∥+ (CSδ)
2h−

d
6 |u− uM

εH |21,3
+ (CSδ)

2∥∇(u− uM
εH)∥+ (CSδ)

2H− d
6h2−

d
3 + (CSδ)

2H− d
6h−

d
6 |u− uM

εH |1,3
)
.

(73)

Combining (73) with (71), we get the pressure error bound.

∥p− pεh∥ ≤ C
(
h2 + ∥∇(u− uM

εH)∥2 + ε∥p− pMεH∥+ (CSδ)
2h−

d
6 |u− uM

εH |21,3
+ (CSδ)

2∥∇(u− uM
εH)∥+ (CSδ)

2H− d
6h2−

d
3 + (CSδ)

2H− d
6h−

d
6 |u− uM

εH |1,3
)
.
(74)

Finally, by the triangle inequality and the inverse inequality (12) we obtain

|u− uεh|1,3 ≤ |u−Rhu|1,3 + |eh|1,3

≤ |u−Rhu|1,3 + Cinvh
− d

6 ∥∇eh∥

≤ Ch−
d
6 ∥∇eh∥,

(75)

and complete the proof. 2

Remark 3 If we choose ε ≪ H2 and δ = O(H
d
3 ) in Theorem 3.6, for sufficient large iterations

M , thanks to the stable condition (36), then we have

∥∇(u− uM
εH)∥+H

d
6 |u− uM

εH |1,3 + ∥p− pMεH∥ ≤ CH2. (76)
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Thus, we can derive that

∥∇(u− uεh)∥+ h
d
6 |u− uεh|1,3 + ∥p− pεh∥

≤ C
(
h2 +H4 + εH2 + δ2h−

d
6H4− d

3 + δ2H2 + δ2H− d
6h2−

d
3 + δ2H2− d

3h−
d
6
)
,

(77)

if we choose ε ≪ h and H = O(h
1
2 ), δ = O(h

3+d
6 ), then we have

∥∇(u− uεh)∥+ h
d
6 |u− uεh|1,3 + ∥p− pεh∥ ≤ Ch2. (78)

4 Numerical experiments

In this section, we will present some numerical experiments to confirm our theoretical analysis

and to verify the stability and effectiveness of the presented methods. We first present some

numerical experiments to verify the optimal rate of convergence derived in this paper and verify

the high efficiency of the proposed two-grid penalty FEM. Next, we will test a popular benchmark

problem lid driven cavity flow in both two and three dimensional. In all the experiments, we

choose the Smagorinsky constant Cs = 0.17, which is the most commonly used choice in practice

for simulating turbulence, and the iteration tolerance as 10−8. All computations are carried out

by the public finite element software package Freefem++ [45].

4.1 Rates of convergence study

In this test, we take Ω = [0, 1]2 and the analytical solution for the velocity u = (u1, u2) and

the pressure p are given as follows:

u1 = 10x2(x− 1)2y(y − 1)(2y − 1),

u2 = −10x(x− 1)(2x− 1)y2(y − 1)2,

p = x2 − y2,

where the forcing function f = (f1, f2) and the boundary values of (u, p) are determined by (1).

We consider the case of the Reynolds number Re = 1.0. In order to verify the optimal rates of

convergence, we select δ = 0.1h2/3 and ε = 0.0001h2 for one-grid penalty method, and δ = h5/6,

ε = 0.0001h2 and h = H2 for two-grid penalty FEM, respectively. The numerical results of the

one-grid penalty FEM and two-grid penalty FEM are displayed in Tables 1 and 2, respectively.

We can see from Tables 1 and 2 that these results are in good agreement with the theoretical

convergence rates predictions for the proposed methods. What’more, corresponding the mesh size

h = 1
4 ,

1
16 ,

1
36 ,

1
64 ,

1
100 ,

1
144 , the two-grid penalty FEM can save 11.32%, 41.84%, 50.01%, 50.68%,

51.80%, 52.23% CPU time comparing with the one-grid penalty FEM.

Further more, we shall discuss the dependency upon the spatial filter radius δ. The conver-

gence rates of the solutions for the velocity and pressure computed by two-grid penalty FEM with

σ = h2, h5/6, h1/2, 1, 2, 5, 10 and 30 are displayed in Fig. 1, which shows that no obvious difference

was observed between the accuracy of the solutions when δ < 1, while when δ > 1, the accuracy

and the convergence rates of the solutions are getting worse and worse. From this numerical

experiment we summarize that, the proposed two-grid penalty FEM seems to be less sensitive to

the choices of δ when δ < 1. However, when the value of δ is large, the proposed method can not

do well. One guess reason is that the small data condition (7) may be dissatisfied.
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Fig. 1: Convergence rates of the velocity and the pressure by two-grid penalty FEM with different

σ.

Table 1: Numerical results by using one-grid penalty FEM.

1/h ∥u−uh∥1
∥u∥1 uH1-Rate

∥p−ph∥
∥p∥ pL2-Rate it CPU(s)

4 0.164752 0.0159364 2 0.053

16 0.0113162 1.93191 0.000976974 2.01393 2 0.717

36 0.00225199 1.99083 0.000192908 2.00048 2 3.639

64 0.000713519 1.99762 6.10356e-005 2.00005 2 11.484

100 0.000292371 1.99913 2.50001e-005 2.00001 2 28.867

144 0.000141017 1.99961 1.20563e-005 2.00000 2 62.585

4.2 The 2D lid-driven cavity flow

The 2D lid-driven cavity flow is a popular benchmark problem for testing the numerical

schemes of incompressible flow, which has been analyzed in [46]. In this problem, computations

are carried out in the domain Ω = [0, 1]2. Flow is driven by the tangential velocity field on

the top boundary and imposed no-slip boundary conditions on other boundaries. The presented

numerical results are compared to the benchmark datum of Ghia et al [46].

We use the present two-grid penalty FEM to compute solution for the lid-driven cavity flow at

Re = 1000, 3200, 5000 and 7500, where h = 1/100 and H = 1/50 are used. We have tested various

values of δ = 4h, h, 0.1h and 0.1h2 in this experiment. This test shows that at Re = 5000, 7500

with both δ = 0.1h and 0.1h2, the two-grid penalty FEM failed to compute a solution and

diverges; see Table 3 for details. With δ = h, the computed streamlines at Re = 1000, 3200, 5000

and 7500 are plotted in Fig. 2, showing that our results are comparable to those of Ghia et

al. [46]. Figs. 3 and 4 draw the computed u1-velocity along the vertical centerline and u2-velocity

along the horizontal centerlines by the two-grid penalty FEM compared with the benchmark data

of Ghia et al. [46]. From Figs. 2-4 one can observe that good consistency with the data of Ghia

et al. [46] verifies effectiveness of the proposed method.
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Fig. 2: The streamline of velocity of the 2D lid-driven cavity flow at Re = 1000, 3200, 5000 and

7500.
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Fig. 3: A comparison of the u1-velocity along vertical centerline for Re = 1000, 3200, 5000 and

7500.
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Fig. 4: A comparison of the u2-velocity along horizontal centerline for Re = 1000, 3200, 5000 and

7500.
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Table 2: Numerical results by using two-grid penalty FEM.

1/h 1/H ∥u−uh∥1
∥u∥1 uH1-Rate

∥p−ph∥
∥p∥ pL2-Rate it CPU(s)

4 2 0.16477 0.0159383 2 0.047

16 4 0.0113195 1.93178 0.000976975 2.01402 2 0.417

36 6 0.00225311 1.99058 0.000192908 2.00048 2 1.819

64 8 0.00071404 1.99722 6.10356e-005 2.00005 2 5.664

100 10 0.000292658 1.99857 2.50001e-005 2.00001 2 13.914

144 12 0.000141193 1.99887 1.20563e-005 2.00000 2 29.896

Table 3: Nonlinear iterations number and CPU time (s) of the 2D lid-driven cavity flow by using

two-grid penalty FEM.

δ 4h h 0.1h 0.1h2

Re = 1000 34(71.435) 30(65.03) 30(74.56) 30(72.095)

Re = 3200 37(77.4) 59(138.331) 264(595.596) 281(625.383)

Re = 5000 55(111.57) 126(284.613) diverges diverges

Re = 7500 165(311.477) 521(1024.09) diverges diverges

4.3 The 3D lid-driven cavity flow

Our final numerical example is the 3D lid-driven cavity flow problem, which is tested in [47].

The domain of this problem is the unit cube [0, 1]3, equipped with horizontal velocity as boundary

conditions for the top face (z = 1) and homogeneous Dirichlet boundary conditions on the other

faces. We implement the present two-grid penalty FEM with the mesh width h = 1/10, H = 1/5

and choose δ = h.

In Fig. 5, we draw the centerline x-velocity at Re = 100, 400 and 1000, respectively, which

shows that our results are comparable to the reference values given by Wone and Baker [47].

Figs. 6-8 plot the mid-plane velocity streamline pictures for Re = 100, 400 and 1000, respectively,

which illustrate the effectiveness of our proposed method. All those numerical results are in good

agreement with the reference solution in [47].
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Fig. 5: The centerline x-velocities of the 3D lid-driven cavity flow at Re = 100, 400 and 1000.
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Fig. 6: The xz-plane velocity streamline pictures of the 3D lid-driven cavity flow at y = 0.5:

Re = 100, 400 and 1000 (from left to right).
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Fig. 7: The xy-plane velocity streamline pictures of the 3D lid-driven cavity flow at z = 0.5:

Re = 100, 400 and 1000 (from left to right).
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Fig. 8: The yz-plane velocity streamline pictures of the 3D lid-driven cavity flow at x = 0.5:

Re = 100, 400 and 1000 (from left to right).
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5 Conclusions

In the paper, a two-grid penalty FEM has been developed and investigated for the Smagorin-

sky model. This method consist of solving a nonlinear Smagorinsky model by the one-grid penalty

FEM with the proposed linearized iteration scheme on a coarse mesh, and then solving a linearized

Smagorinsky model based on the Newton iteration on a fine mesh. Stability and error estimates of

numerical solutions for two-grid penalty FEM are presented. Some numerical tests are provided

to confirm the theoretical analysis and the effectiveness of the developed methods.
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