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Abstract

	A machine-learning-based prognostic strategy is developed in this paper for predicting the remaining useful life (RUL) of high-pressure packing in plunger-type hyper compressors. The proposed strategy applies principal component analysis (PCA) to identify three most important sensors out of 33 that seem relevant to the high-pressure packing. Singular value decomposition (SVD) is then performed with respect to chronological Hankel matrices reconstructed from one of these three sensor data, leakage flow. Normalized correlation coefficient between SVD eigenvalue vectors of chronological data is defined to come up with a health state assessment measurement. In order to enhance the prediction accuracy of RUL of the high-pressure packing, a linear-regression and two-term power series regression algorithms are both integrated into the NN (Neural Network) model. 
	The effectiveness of the method is examined using the averaged difference (over thirteen data set) between the predicting and real failure events. The results showed that a maximum prediction RUL error of the model is less than 15 days and an averaged prediction RUL error is 7.23 days for 13 run-to-failure events. Furthermore, a more recent test was performed using the on-line data to examine the health states of four identical packing. 
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1. Introduction
Machine condition monitoring is important in manufacturing factories, especially those involved chemical reaction processes. To prevent important equipment from failing unexpectedly, engineering prognostics has drawn increasing attention in practice. Although traditional equipment prognostics is based on the experience of personnel familiar with the equipment, its feasibility has been diminishing due to improved asset reliability and equipment complexity. On the other hand, the implementation of machine monitoring takes the analysis of the relevant information acquired from various sensors to determine the health condition of the system or in some circumstances one of the important components. Benefiting from the progress of computational ability, prognostics as an advanced maintenance technique has been a popular topic of research. Nevertheless, reliable prognostics remains as the state-or-art technology in most of the cases due to many difficulties involved in attacking the real problems. One of the primary difficulties in implementing effective machine health prognostics lies in the fact that the nature of defect growth is highly stochastic. Therefore, it is challenging to come up with an effective health indicator for online quantification of machine health degradation. Recently, some methods were recommended for machine health assessment and prediction to prevent unexpected machine downtime [1-3]. Jianbo suggested that the hybrid feature selection strategy can chose the representation feature for machine health assessment without human intervention[4]. Atamuradov et al. construct the framework of machine health predictor for failure diagnostics and prognostics [5]. 
The predicted approaches are generally categorized into three types including model-based, data-driven and hybrid methods. Since most engineering system are complicated, it is difficult to establish accurate model of the system or component degradation process. In contrast, data-driven approaches model the degradation characteristics of the system based on historical run-to-failure sensor data. They can infer correlations and causalities hidden in data while learning underlying trends. Most current sensor-based, data-driven methods for remaining useful life (RUL) prediction are statistics-based and fall into two categories, namely, stochastic process techniques [6, 7] and artificial intelligence tools such as neural network [8], recurrent neural network [9] and long short-term memory (LSTM) network [10]. The former relies on the statistical models to determine the RUL in a probabilistic way, whereas the latter rely on machine learning tools and are of non-probabilistic nature. A data-driven and stochastic-based prognostic strategy was developed to predict the RUL of milling machine cutting tools [6]. In this study, autoregressive integrated moving average (ARIMA) method was applied. The RUL prediction indicated that an approximately 25% extra tool usage can be achieved. On the other hand, Li et al. [7] developed a systematic methodology focusing on ball screw failure. The approach consisted of fault diagnosis, early diagnosis, health assessment and RUL prediction. Gaussian process regression was adopted to predict the trend of degradation behavior while principal component analysis was utilized to determine the optimal feature sets of ball screw failures in [5]. The results indicated that the built-in sensor data were valuable in implementing fault diagnosis, whereas additional sensor data seemed to be needed to address the RUL prediction problems for the complex behavior involved in ball screw failures. Zhang et al. proposed a multi-objective deep belief networks ensemble (MODBNE) method [8]. The method employed a multi-objective evolutionary algorithm integrated with traditional DBN training techniques. The resultant DBNs were combined to come up with an ensemble model used for RUL estimation. The combination weights in the ensemble model were optimized via a single-objective differential evolution algorithm using a task-oriented objective function. Yu et al. [9] proposed a sensor-based data-driven algorithm integrated with a deep learning tool and the similarity-oriented matching technique to estimate the RUL of a system. The approach can be divided into two step. The first step applied a bidirectional recurrent neural network-based auto-encoder to convert the multi-sensor readings collected from historical run-to-failure instances to low-dimensional embedding, whereas the latter were used to construct the one-dimensional health index (HI) values to reflect different health degradation patterns of the run-to-failure instances. In the second step, the on-line HI curve obtained from sensor readings in real-time data was compared with the degradation patterns built in the offline phase. Similarity-based curve matching technique was adopted in this stage, from which the real-time RUL of the test unit can be obtained. Galli et al. [10] proposed a LSTM-based model combining Self-Monitoring analysis and Reporting Technology (SMART) attributes and temporal analysis for estimating a hard disk drive (HDD) health status according to its time to failure. The methodology was grounded in three main steps: health degree definition, sequences extraction and health status assessment through LSTM. LSTM was interesting in the context of HDD failure prediction, as they take advantage of the highly sequential nature of the information available to the model. The experimental results showed that the proposed method can predict hard drive health status up to 45 days before failure. Roughly speaking, in numerous data-driven RUL prediction studies, either statistical approaches [11-14] or artificial intelligence methods[15, 16] were applied.
Although various prognostics approaches have been proposed for different applications, no existing scheme provide promising performance across these applications. To this end, this study integrates principal component analysis (PCA)-based order reduction, singular value decomposition (SVD)-based health state assessment, neural-network (NN)-based prediction model and regression algorithms to predict the remaining useful life (RUL) of high-pressure packing in hyper compressors. Due to the importance of the equipment, more than 190 sensors, including those for pressure, temperature, vibration, leakage flow are used to monitor the operation conditions of the plunger-type high-pressure compressor. To simplify the problem, domain expertise knowledge was firstly applied to reduce the number of relevant sensors to 33. Then, PCA method, a common method used by researchers for order reduction [17-20], was adopted to further reduce the number of relevant sensors to three. The analysis conducted using PCA indicates that leakage flow rate through high-pressure packing set, X- and Y-directional vibrations measured on the plunger are these three most critical data related to the failure events observed in the high-pressure packing. Then, raw signals obtained from the leakage flow were used to conduct phase-space reconstruction and obtain the so-called Hankel matrix [15, 16]. SVD-based analysis was conducted with respect to the chorological Hankel matrices, from which the SVD normalized correlation coefficients were determined [13]. Thirty-seven features, including eleven associated with each of the three relevant sensor and four other features obtained from the actual health degradation curve, are chosen as the inputs to a feedforward neural-network scheme to develop packing health state assessment model. Features associated with leakage flow and vibration data include mean, skewness, standard deviation, RMS, etc. The health degradation curve of packing is defined by using the SVD normalized correlation coefficients obtained from leakage data. The resultant neural-network model consisting of two hidden layers with 10 and 5 hidden nodes while a linear and a two-term power series algorithms are both applied to regress the degradation trends was verified by using 13 run-to-failure data sets to show its effectiveness in predicting the RUL of high-pressure packing.
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Figure 1  The flowchart of proposed method


2. Methodology and Implementations
This study integrates principal component analysis (PCA), singular value decomposition (SVD), neural-network (NN) and regression algorithm to develop health prognostic method for predicting the remaining useful life (RUL) of high-pressure packing in a plunger-type hyper compressor. The flowchart of the proposed method is shown in Fig.1. Detail regarding different algorithms involved in Fig. 1 is elaborated in the following subsections.
2.1 Selecting relevant sensors using principal component analysis (PCA)
It’s challenging to predict the remaining useful life (RUL) of high-pressure packing using 33 sensors due to the prediction model might be easily disrupted by irrelevant sensors. The most popular technique for dimensionality reduction in machine is PCA [17-20]. PCA is an unsupervised linear transformation method with the aim to find the directions of maximum variance in high-dimensional data and project it onto a new subspace with fewer dimensions. Theoretically, PCA can identify (from a black box containing many uncorrelated measured variables) the related sensors that have high correlation with normal and abnormal operation conditions in a complicated system such as the high-pressure packing. 
In implementation, recorded signals collected from 33 sensors under normal and abnormal operation conditions of packing were included in two datasets which were then merged into one. With PCA, the raw data of 33 sensors can be reduced to three important principal components (PC). These can be used to approximately describe the normal and abnormal operation conditions of packing. Detail regarding the processing of PCA is elaborated as the following procedures: 
A. Normalization of the raw data: Suppose we have a raw data matrix comprising a set of n observations of  variables. A standard deviation normalization process can be applied to the raw data matrix to acquire a resultant data matrix,  that possesses unit variance and zero mean [21]. 
B. Obtain the  empirical co-variance matrix  from the normalized matrix  obtained in step A as the following: 
    			          (1)
where n is the number of observations.
C. Find eigenvectors and eigenvalues of the co-variance matrix: The matrix V of eigenvectors can be used to diagonalize covariance matrix, namely 
                                (2)
where D is the diagonal matrix of eigenvalues of C. Matrix D take the form of an  diagonal matrix: 
                           (3)
where  is the j-th eigenvalue of the covariance matrix. Matrix , also of dimension , contains  column vectors. These are the eigenvectors of the covariance matrix .
In this study, the eigenvector and eigenvalue are determined by the Matlab function “pca” (Matlab Statistics and Machine Learning Toolbox). By default, “pca” command centers the data and uses the singular value decomposition (SVD) algorithm to deal with the eigenvalue analysis. SVD is a more general solution to PCA [22, 23].
2.2 Health state assessment using singular value decomposition (SVD)
To predict the remaining life of high-pressure packing accurately, a SVD-based health state assessment criterion [10,12,13] is applied in this study. The method firstly divides the packing’s life into several sub-sequences. For each of these sub-sequences a phase-reconstruction process is taken to construct the so-called Hankel matrix which in most of the cases is a real symmetric matrix. Then, SVD analysis is performed with respect to these sequential Hankel matrices to come up with health state of the packing. Due to the robustness associated with the SVD vectors when the data contains small perturbation it is believed that the normalized correlation coefficient of SVD vector between normal conditions is higher than the one between normal and fault conditions. Based upon the criterion described above when the packing is in good conditions the changes of signal are small, the changes of singular value will also be small.  Along the course of packing operation, greater variance appeared between signals related to packing conditions, the singular value and the value of SVD correlation coefficient will scale up accordingly. With this definition of SVD normalized correlation coefficient, the negative effect of local noise and small perturbation on health state assessment can be avoided. 
The procedures taken to calculate the SVD normalizes correlation coefficient, R, for health state assessment are as follows:
A. Normalization of the selected imported raw data: The selected imported raw data is normalized by min-max normalization with a range of [-1,1].
B. Calculate the singular value matrix of each sub-sequence by SVD: In this study, the window size of each sub-sequence is 1024 points, which is equivalent to one-day operation. In other words, the 1024-point normalized data, , corresponding to one-day operation was adopted to do phase-space reconstruction so as to obtain the so-called Hankel matrix as the following:
                      (4)
where  in this study. 
By using SVD,  was obtained where  and  are both orthogonal matrices while  and . In this study, the value of q is 720.  are non-zero singular values of H. Then, the singular-value matrix  of each sub-sequence is defined as follow:
                       (5)
where d is the total number of sub-sequence and q is the number of non-zero singular values in Hankel matrix of each sub-sequence. 
C. Calculation of the correlation coefficient from the singular-value matrix M: The correlation coefficient with the singular value associated with each sub-sequence was calculated using Pearson's linear correlation-coefficient formula: 
                    (6)


where x and  are the singular value vectors corresponding to different operating days. Among these two, x represents the starting part of raw signal, especially those few days right after new packing component was installed in the machinery. Therefore, x can be considered as the base value (or normal state) of intrinsic system characteristics. On the other hand, represents the day-count index. In that regard  denotes the non-zero singular-value vector corresponding to operating days other than the reference period. Each  implies a new 1024-point raw-data set is included in the computation process involving Equations (4)-(6). Wear takes place along the course of operation, one can therefore observe that  values of high-pressure packing decreases in a long-time base. Thus, a vector R consisting of can be obtained to represent the health state over the operation time of high-pressure packing.
2.3 A novel energy-based health index (HI)
Due to the uncertainty of the operation process the actual health degradation curve of the packing will never resemble a monotonically decreasing function. To that end, a novel criterion is proposed here to assess the health index of the packing using the SVD correlation coefficient defined in Eq.(6). The steps involved in calculating this new criterion can be referred to Fig. 2 and shown as the followings:
1. According to the procedures taken to perform SVD and compute Pearson's linear correlation-coefficient, the correlation-coefficient vector R can be obtained from the chronological Hankel matrix.
2. Calculate the sum energy as following:
                      (7)
where  is the last day. Referring to the red area indicated in Fig. 2 “sum energy” represents the squared area between the R curve and constant 1. Here, the sum energy is more like the total degradation of the high-pressure packing in a run-to-failure event.  
3. Accumulate the energy of each day (please refer to Fig. 2): 
                      (8)
For any specific day count, this term denotes the accumulated degradation or partial sum of energy.
4. Calculate the health index using sum energy and accumulated energy as the followings (refer to Fig. 2):
*100             (9)
		where  is the day count. 
[image: ]
Figure 2 Steps and illustrating figures related to the assessing of health index.
2.4 HI-based RUL prediction of high-pressure packing
In deriving the data-driven RUL predicting techniques, approaches can be divided into two strategies depending on whether a HI is used: 1) direct RUL predictions that model the relationship between input signals and RUL; and 2) HI-based RUL predictions that build the model of input signals against HI then map the estimated HI to RUL [24]. The relationship between HI and RUL is that the RUL is equal to 0 when HI is 0. In this study, the “HI-based prognostics” method was adopted to predict the RUL. In the step 4 shown in Fig.2, the characteristic of HI depends on the degradation features of mechanical wearing process and seems non-linear and involved. Thus, it is difficult to estimate the last day where HI=0 using a universal nonlinear function to approximate. To that end, this study adopts a linear-regression and two-term power series algorithm to fit the HI then map the HI to RUL easily, as shown in Fig.3. 
 
Time(day)
HI(%)

Figure 3 Fitting features appeared in linear and two-term power series regression algorithm.
In Fig. 3, the linear regression adopts a straight line to approximate n data points while makes the sum of squared residuals of the model minimal [25]. The simple linear regression model can be described by the following polynomial equation:  
                           (10)
In contrast, the two-term power series algorithm approximate the relationship among a variety of data using the following analytical expression:
                         (11)
Based on Fig.3, and  refer to the health index and elapsed operation time, respectively. To that end,  denote data points involved in the calculations of equations (10) and (11). Meanwhile, the regression coefficients  and  are determined by the Matlab function “regress” (Matlab statistics Toolbox) and in the two-term power series algorithm  and  are determined by the Matlab function “fit with option power1” (Matlab curve fitting toolbox), which minimizes the sum of squared residuals of the model. 
In this study, the fitting target, HI curves, can be the predicted or responding output of neural-network (NN) model. The latter is used to mimic the global behavior between elapsed operation time and the health index of the high-pressure packing. The “global” means that many run-to-failure data obtained from different (but identical) plunger-type compressors were used to train the NN model. The resultant NN model can be applied to input new raw data and obtain a predicted HI value. The predicted HI values obtained from NN model are short-term prediction, namely the predicted HI is close to current time instant in this case. In order to forecast the HI and RUL values in a longer future time, we introduce the predicted HI into Equations (10) and (11) to obtain related parameters (,  and , ). Then one can forecast the future HI values by using the analytical expressions shown in Equations (10) and (11). From which RUL can be obtained accordingly.
2.5 Feature extraction and selection of Neural Network
In order to construct effective NN model, relevant feature of health state is required. Many previous studies suggested that deep learning techniques could be good candidates in extracting discriminative features directly from raw data [26, 27]. In this study, since only 13 data sets of packing with the abnormal operation were observed while the sampling rate involved in the relevant sensors were way to low, the deep learning may be ineffective in finding, selecting or extracting relevant features related to health state of the packing [28]. It is known that feature representation or engineering can be used to transform raw data into features that better represent the underlying problem of the predictive models. It could also result in improved model accuracy on unseen data. However, selecting appropriate features is mainly problem-oriented. As the time resolution of data is one minute in this study, the sample rate is very low, therefore extraction of frequency features is unavailable. Considering the feasibility and computational burden, traditional statistical features in time domain such as mean, peak-to-peak, and root mean square are adopted in this study [16]. However, not all-time features are responsive to HI. Thus, this study ranks the importance of predictors for HI using relief algorithm [29]. Relief algorithm is one of a unique family of filter-style feature selection algorithms that have gained preference by striking an effective balance between these objectives (ambiguous) while flexibly adapting to various data characteristics. Relief algorithm can find the weights of predictors in the case where output is a multiclass categorical variable. The weights of predictors are determined by the Maltab function “relieff” (Matlab Statistics and Machine Learning Toolbox). 
2.6 HI prediction by Neural-network
This paper proposes a feedforward neural network (FNN) to build HI-predicted model which describes the relationship between HI or fitted HI curve using linear regression model and two-term power series algorithm and the temporal information hidden in selected feature after relief algorithm [30]. FNN consists of input layer, one or several hidden layers and output layer, as shown in Fig. 4. FNN model uses the selected feature of packing after relief algorithm as input. Meanwhile, among HI and two fitted HI curves, one of them will be selected as the output of FNN. This study design one or two hidden layers with different nodes to evaluated which structure is suitable to develop HI predicted model. Furthermore, this study adopts Levenberg-Marquardt training method for FNN. This study construct FNN by the Maltab function “train” with “feedforwardnet” (Deep Learning Toolbox). 
A leave-one-out cross-validation scheme (LOOCV) was applied to examine the effectiveness of the HI prediction model. LOOCV was used to make predictions on data not used to train the model, which utilizes each individual dataset as “test” set. After satisfactory results were achieved, linear-regression algorithm and two-term power series algorithm were integrated into the FNN model for predicting the RUL of the high-pressure packing.
Input layer
hidden layer
Output layer

Figure 4 Structure of the FNN model
3. Case Study and Results
3.1 Plunger-type hyper compressor	
Plunger-type hyper compressor is an important equipment and is adopted in chemical process involving ethylene gas used in continuous flow process. Because the plunger-type high-pressure compressor (Red square in Fig. 5) is considered as a critical equipment in the reaction process of a local chemical factory, totally 192 sensors were set up to record and monitor the real-time operation conditions. However, the sample rate of these sensors are once per minute which are way too low if frequency features of the data are considered to be used in machining-learning approaches. When compressor is subject to abnormal signal or operation conditions, a shutdown is needed. According to the maintenance reports high-pressure packing is the components which is responsible in most of the abnormal shutdown events. The packing cost is high enough to motivate the factory to fund this investigation. The aim of the study is to come up with a machine-learning-based prognostic strategy.  
By ruling out sensors which do not correlate to packing or are outliners considered by domain expert, the number of sensors considered in deriving the machine-learning-based prognostic approach was reduced from 192 to 33. The latter includes leakage flow rate through high-pressure packing set, X- and Y-directional vibrations measured on the plunger, the difference in temperature between gas inlet and outlet, etc.

Figure 5 High-pressure packing in plunger-type hyper compressor
In addition, a total of 13 abnormal operation data sets of high-pressure packing in plunger-type hyper compressors were observed and collected by the local chemical factory. These are run-to-failure data which will be applied to train and verify the NN model.
3.1 Selecting import sensors using PCA	
[bookmark: _Ref73029527]Table 1 Eigenvalue, explained variance, cumulative variance of three important PCs
	Number of components
	Eigenvalue
	Explained variance %
	Cumulative variance%

	PC1
	206.5608
	98.7937
	98.7937

	PC2
	1.911
	0.95228
	99.746

	PC3
	0.2311
	0.11053
	99.8566


[image: ]
Figure 6 Three PC results after PCA and developmental sequences in PCA changes in response to operating time
Even though domain expert knowledge is applied to reduce sensor number from 192 to 33, the remaining sensor number is still too large to cope with. To that regard, PCA method is applied here to further reduce the order of the problem. To do so, the recorded signals from the 33 sensors under normal and abnormal operation conditions in packing were merged. By using PCA, the raw data of 33 sensors is reduced to three important principal components (PC) as shown in Table 1. These components, originating from important sensors, can be used to approximately describe the normal and abnormal operation conditions of packing. Features of these operation conditions are shown as in Fig.6. Fig. 6 shows that the normal and failure operation data sets can be well discriminated in three principal components. The developmental sequences of PCA changes in response to operating time. Meanwhile, Table 1 shows that PC1 can largely explain the total variability because it has high explained variance ratio. The variance ratio represents the percentage of variance that is attributed by each of the selected components. It can be observed from Table 1 that with three PCs, the cumulative variance can reach 99.85%. In addition, according to the value of eigenvector of PC1, it can be observed that leakage flow rate and the X/Y vibrations, which relates to the plunger motion, have higher value than other 30 sensors. It turns out that the eigenvalue of leakage flow is greater than 75% of the total value. Thus, leakage flow is the most important one among 33 sensors when the abnormal operation of high-pressure packing is considered. Figure 7 shows time-domain features in the raw data of leakage flow rate and the X/Y vibrations under abnormal operation. 


[bookmark: _Ref73263934]Figure 7 Raw data of leakage flow rate and the X/Y vibrations under abnormal operation
3.2 Health index (HI) assessment using SVD correlation coefficient estimates, linear-regression algorithm and two-term power series algorithm
Thirteen abnormal operation data sets were obtained from eight identical plunger-type hyper compressors installed in a local chemical factory. The results of PCA showed that leakage flow is the most important sensor. Thus, leakage flow data is suitable to be used for assessing the HI of high-pressure packing in plunger-type hyper compressors. In order to obtain the run-to-failure data of leakage flow, failure criteria were defined first which were: if three conditions shown in Table 2 happened simultaneously, the packing failure will be declared and a termination of operation would be needed. Figure 8 shows four sets run-to-failure raw data of leakage flow. As mentioned in the previous sections, this study adopted leakage flow to assess HI using SVD correlation coefficient estimates, and obtained fitted HI curve using linear-regression algorithm and two-term power series algorithm as shown in Fig.9. Among HI and two fitted HI curves, one of them will be adopted as the output of NN and then evaluate which one is suitable as the output 

[bookmark: _Ref73264018]Figure 8 Four sets of run-to-failure data of leakage flow. Different color lines mean leakage flow in different days.

[bookmark: _Ref73264025]Figure 9 Real HI using SVD correlation coefficient estimates and fitted HI curve using linear-regression algorithm and two-term power series algorithm.
[bookmark: _Ref73029790]Table 2 Three conditions for failure criterions
	Conditions
	Value of leakage flow 
	Occupation ratio within 7 days

	1
	>300
	>40%

	2
	>400
	>30%

	3
	>500
	>20%



3.3 Feature extraction and selection using relief algorithm
[bookmark: _Ref73029591]Table 3 Time domain features applied in this study
	Feature
	Formula

	Mean value
	

	Standard deviation (SDT)
	

	Skewness
	

	Kurtosis
	

	Peak-to-peak
	

	Root mean square (rms)
	

	Crest factor (peak-to-average ratio)
	

	Shape factor
	

	Impulse factor
	

	Margin factor
	

	Sum energy
	

	 (SVD Correlation coefficient estimates)
	Calculate from Equation (6)

	Sum energy of 
	Calculate from Equation (8)


The results of PCA showed that leakage flow rate and the X/Y vibrations are sensors that possess high values in eigenvectors. Thus, this study picks time-domain statistics such as mean, peak-to-peak, root mean square of those three sensors as problem features.  There are totally 13 time-domain features were picked in this study which were listed in Table 3. In Table 3,  can be referred as the readings of leakage flow rate and the X/Y vibrations. Thirty-seven features were defined. That include eleven features associated with each of the three relevant sensors, three SVD correlation coefficient estimates () and sum energy of . The result of relief algorithm analysis showed the sum energy of all leakage flow rate, the X/Y vibrations and  were all related to HI. Thus, those four features are the inputs of NN. This study defined one hidden layer with 10 hidden nodes and two different layers with 10 and 5 hidden nodes to evaluate which structure being suitable for predicting HI. Finally, we introduce predicted HI into Equations (10) and (11) to obtain related parameters (,  and , ) so that long-term forecasting is possible. The latter can be done by introducing future day (i) to Equations (10) and (11) to obtain the future HI and to forecast the time when HI=0, from which RUL is obtained. Supplement Table 1-3 show the performances of RUL among the different outputs of NN, different structures of hidden layers and number of nodes and different prediction methods for the RUL of high-pressure packing. In Supplement Table1 and Table2, for fitting HI which fitted by using Equation (10) or (11) as NN output (yellow line and red line in Fig. 9), the adopted method is the same as the one for predicting the relationship between predicted HI and RUL. In Supplement Table 3, NN output is real HI which didn’t fit by using Equation (10) or (11) (blue line in Fig. 9). The results showed the performance of testing results while other 12 datasets are serving as the training data
By comparing the results in Supplement Tables 1-3, it was found that better performance is shown in Supplement Table 2. Of note, many data sets provide accurate prediction of RUL. RUL can be estimated the time of HI=0 using Equation (11) while value of HI is still 60. Thus, this study suggested that FNN had “two” hidden layer and number of hidden nodes were10 and 5, respectively. Then, fitting HI was used as the NN output to predict RUL by also using Equation (11). This structure will be suitable for predicting RUL of high-pressure packing in plunger-type hyper compressors.
(A)
(B)
(C)
(D)

[bookmark: _Ref73264047]Figure 10 The predicted HI by different methods, actual HI and predicted RUL using Equation (11)
In order prove the validity of the proposed method in this study, we compared the proposed method with long short-term memory (LSTM)[31, 32], linear regression[33], robust linear regression[34], line support vector machine (SVM) and quadratic SVM [35, 36]as shown in Fig.10. The results showed that the proposed method can best predict HI and RUL than other methods because the predicted results of proposed method are similar to the actual HI.
4. The proposed model for predicting RUL in the real case

Figure 11 Four sets of run-to-failure data of leakage flow in real case. Different color lines mean leakage flow in different days.

Figure 12 Predicted HI (blue line) and predicted RUL (red line) of four packing
The proposed model was further tested using on-line data to examine the health states of four identical packing (2A1, 2A2, 2B1 and 2B2). Since these on-line data were never appeared in the training or verification processes of the proposed scheme, the results will roughly indicate the effectiveness and reliability of the method. Figure 11 shows that these four sets on-line leakage-flow data. In this figure the number of days represents the elapsed operation time of high-pressure packing while the ordinate value dictates the leakage flow rate. After the proposed scheme is applied to Fig. 11, the predicting results of HI and RUL are shown in Fig. 12. It can be found in Fig.12 that the packing in 2A1 can operate for 29 more days, while the corresponding packing components in 2B1 and 2B2 can run for 87 and 18 more days, respectively. In contrast with these three cases, the results obtained in 2A2 machine indicated that the predicted RUL reached 0 at 285 operation days. Thus, a suspected failure was predicted. This prediction of failure was later confirmed by factory maintenance team when the equipment was disassembled as shown in Fig. 13. 

Figure 13 The failure in packing of 2A2
5. Conclusion 
Some popular machine and deep learning architectures (linear and Robust linear regression, line and quadratic SVM and LSTM) are presented in this study. As the amount of data goes beyond a certain size, deep learning accuracy increase incrementally with respect to the amount of data. However, only thirteen run-to-failure data sets obtained from eight identical hyper compressors installed in a local chemical factory, with an average run-to-failure life is 233 days, were available. This study proposed a machine learning-based prognostic strategy for predicting the remaining useful life (RUL) of high-pressure packing in plunger-type hyper compressors when the amount of dataset is small. According to the results, the best performance can be achieved when NN has two hidden layers and the number of hidden nodes are 10 and 5, respectively. The proposed NN scheme is integrated with a two-term power series algorithm to regress the degradation trends. The maximum prediction RUL error is less than 15 days and the average prediction RUL error is less than 7.23 days by using the proposed scheme. Based on the results, the proposed approach can provide sufficient information to the manufacturer to plan maintenance in advance. Finally, the proposed model was used to predict HI and RUL in real case where the on-line data never involved in the training and verification process. The predicted RUL of one high-pressure packing was 0. After disassembling equipment, the failure of packing was found and confirmed. This real-test result further proves the effectiveness of the proposed method. 
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