References
Biggs, J., Ewald, N., Valentini, A., Gaboriaud, C., Dejean, T., Griffiths, R. A., Foster, J., Wilkinson, J. W., Arnell, A., Brotherton, P., Williams, P. & Dunn, F. (2015). Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus ). Biological Conservation, 183, 19-28.
Bruce, K., Blackman, R.C., Bourlat., Hellstrom, M., Bakker, J., …..Deiner, K. (2021). A Practical guide to DNA-based methods for biodiversity assessment. Pensoft, Sofia, Bulgaria.
Clusa, L., Ardura, A., Gower, F., Miralles, L., Tsartsianidou, V., Zaiko, A., et al. 2016. An Easy Phylogenetically Informative Method to Trace the Globally Invasive Potamopyrgus Mud Snail from River’s eDNA. PLoS ONE 11(10): e0162899. doi:10.1371/journal.pone.0162899.
Darling, J.A. (2019). How to learn to stop worrying and love environmental DNA monitoring. Aquatic Ecosystem Health & Management 22: 440–451, https://doi.org/10.1080/14634988.2019.1682912
Drake, C.M., Lott, D.A., Alexander, K.N.A., Webb, J. 2007. Surveying terrestrial and freshwater invertebrates for conservation evaluation, Natural England Research Report NERR005.
Geller, J., Meyer, C., Parker, M., Hawk, H. (2013). Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys.Molecular Ecology Resources , 13, 851-861. DOI: 10.1111/1755-0998.12138
Goldberg, C.S., Sepulveda, A., Ray, A., Baumgardt, J., Waits, L.P. (2013). Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum ). Freshwater Science, 32: 792-800. DOI: 10.1899/13-046.1
Hobbs, C.S., Vega, R., Rahman, F., Horsburgh, G.J., Dawson, D.A., Harvey, C.D. (2021). Population genetics and geometric morphometrics of the freshwater snail Segmentina nitida  reveal cryptic sympatric species of conservation value in Europe. Conservation Genetics , 22, 855–871 (2021). DOI: 10.1007/s10592-021-01369-8
Jane, S.F., Wilcox, T.M., McKelvey, K.S., Young, M.K., Schwartz, M.K., Lowe, W.H., Letcher, B.H., Whiteley, A.R. (2015). Distance, flow and PCR inhibition: eDNA dynamics in two headwater streams. Molecular Ecology Resources 15: 216–227. DOI: 10.1111/1755-0998.12285
Kerney, M. (1999). Atlas of the land and freshwater molluscs of Britain and Ireland. Harley Books, Clochester, UK. 246 pp.
Książkiewicz, Z. and Gołdyn, B. (2008). Life cycle of Segmentina nitida (Gastropoda: Pulmonata:Planorbidae) in a small, impermanent kettle hole pond. The Functioning and Protection of Water Ecosytems , pp. 51–57.
Leray, M., Yang, J.Y., Meyer, C.P., Mills, S.C., Agudelo, N., Ranwez, V., Boehm, J.T., Machida, R.J. (2013). A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Frontiers in Zoology , 10, 34 DOI: 10.1186/1742-9994-10-34
Mächler, E., Deiner, K., Spahn, F., Altermatt, F. (2016) Fishing in the Water: Effect of Sampled Water Volume on Environmental DNA-Based Detection of Macroinvertebrates. Environmental Science & Technology 50: 305–312. DOI: 10.1021/acs.est.5b04188
McKee, A.M., Spear, S.F., Pierson, T.W. (2015). The effect of dilution and the use of a post-extraction nucleic acid purification column on the accuracy, precision, and inhibition of environmental DNA samples.Biological Conservation 183: 70–76. DOI: 10.1016/j.biocon.2014.11.031
Muha, T.P., Robinson, C.V., de Leaniz, C.G., Consuegra, S. (2019). An optimised eDNA protocol for detecting fish in lentic and lotic freshwaters using a small water volume. PloS One 14: e0219218. DOI: 10.1371/journal.pone.0219218
Pilliod, D.S., Goldberg, C.S., Arkle, R.S., Waits, L.P. (2013). Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. CanadianJournal of Fisheries and Aquatic Sciences 70: 11231130, https://doi.org/10.1139/cjfas-2013-0047
Rees, H. C., Maddison, B. C., Middleditch, D. J., Patmore, J. R. M. & Gough, K.C. (2014). The detection of aquatic animal species using environmental DNA – a review of eDNA as a survey tool in ecology.Journal of Applied Ecology, 51 :1450-1459 DOI: 10.1111/1365-2664.12306
Rowson, B., Powell, H., Willing, M., Dobson., M., Shaw, H., 2021. Freshwater Snails of Britain and Ireland. Telford: FSC Publications.
Seymour, M., Durance, I., Cosby, B.J., Ransom-Jones, E., Deiner, K., Ormerod, S.J., Colbourne, J.K., Wilgar, G., Carvalho, G.R., de Bruyn, M., Edwards, F., Emmett, B.A., Bik, H.M., Creer, S. (2018). Acidity promotes degradation of multi-species environmental DNA in lotic mesocosms. Communications Biology 1: 4. https://doi.org/10.1038/s42003-017-0005-3
Shogren, A.J., Tank, J.L., Andruszkiewicz, E., Olds, B., Mahon, A.R., Jerde, C.L., Bolster, D. (2017). Controls on eDNA movement in streams: Transport, Retention, and Resuspension. Scientific Reports7: 5065, https://doi.org/10.1038/s41598-017-05223-1
Schmidt, B.R., Kery, M., Ursenbacher, S., Hyman, O.J., Collins, J.P. (2013). Site occupancy models in the analysis of environmental DNA presence/absence surveys: a case study of an emerging amphibian pathogen. Methods in Ecology and Evolution , 4: 646-653. DOI: 10.1111/2041-210X.12052
Strickler, K.M., Fremier, A.K., Goldberg, C.S. (2015). Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biological Conservation 183: 85–92. https://doi.org/10.1016/j. biocon.2014.11.038
Watson, A.M., & Ormerod, S.J. (2003). The distribution of three uncommon freshwater gastropods in the drainage ditches of British grazing marshes. Biological Conservation , 118: 455-466 DOI: 10.1016/j.biocon.2003.09.021
Wilcox, T.M., Carim, K.J., McKelvy, K.S., Young, M.K., Schwartz, M.K. (2015). The dual challenges of generality and specificity with developing environmental DNA markers for species and subspecies of Oncorhynchus. PLoS ONE. DOI :10.1371/journal.pone.0142008
Zulkefli, N.S., Kim, K-H., Hwang, S-J. (2019). Effects of Microbial Activity and Environmental Parameters on the Degradation of Extracellular Environmental DNA from a Eutrophic Lake.International journal of Environmental Research and Public Health16. https://doi.org/10.3390/ijerph16183339
Table 1. Summary of S. nitida survey and PCR status of the 32 ponds studies