References
Ackerly, D. D., & Reich, P. B. (1999). Convergence and correlations
among leaf size and function in seed plants: a comparative test using
independent contrasts. American Journal of Botany , 86(9),
1272–1281. https://doi.org/10.2307/ 2656775
Adler, P. B., Fajardo, A., Kleinhesselink, A. R., & Kraft, N. J.
(2013). Trait‐based tests of coexistence mechanisms. Ecology
letters , 16(10), 1294–1306. https:// doi.org/10.1111/ele.12157
Amaral, E. J., Franco, A. C., Rivera, V. L., & Munhoz, C. B. R. (2021).
Environment, phylogeny, and photosynthetic pathway as determinants of
leaf traits in savanna and forest graminoid species in central Brazil.Oecologia , 197(1), 1–11. https://doi.org/
10.1007/s00442–021–04923–w
Baraloto, C., Hardy, O. J., Paine, C. E. T., Dexter, K. G., & Chave, J.
(2012). Using functional traits and phylogenetic trees to examine the
assembly of tropical tree communities. Journal of Ecology ,
100(3), 690–701. https://doi.org/10. 2307/ 41496117
Blomberg, S. P., Garland, T., & Ives, A. R. (2003). Testing for
phylogenetic signal in comparative data: behavioral traits are more
labile. Evolution , 57, 717–745. https://doi.org /10.1111/
j.0014–3820.2003.tb00285.x
Borcard, D., & Legendre, P. (2002). All–scale spatial analysis of
ecological data by means of principal coordinates of neighbour matrices.Ecological Modelling , 153, 51–68.
https://doi.org/10.1016/S0304–3800(01)00501–4
Bruelheide, H., Dengler, J., Purschke, O., Lenoir, J., & Jandt, U.
(2018). Global trait– environment relationships of plant communities.Nature Ecology & Evolution , 2, 1906–1917.
https://doi.org/10.1038/s41559–018–0699–8
Cadotte, M. W., Carboni, M., Si, X., & Tatsumi, S. (2019). Do traits
and phylogeny support congruent community diversity patterns and
assembly inferences?. Journal of Ecology , 107(5), 2065–2077.
https://doi.org/10.1111/1365–2745. 13247
Cao, K., Rao M., Yu J., Liu X., Mi X., & Chen J. (2013). The
phylogenetic signal of functional traits and their effects on community
structure in an evergreen broad–leaved forest. Biodiversity
Science , 21(5), 564–571. https://doi.org/10.3724/ SP.J.1003.2013.08068
Cavender–Bares, J., Kozak, K. H., Fine, P. V. A., & Kembel S. W.
(2009) The merging of community ecology and phylogenetic biology.Ecology Letters , 12, 693–715. https://doi.
org/10.1111/j.1461–0248.2009.01314.x
Chang, L. W., Zelený, D., Li, C. F., Chiu, S. T., & Hsieh, C. F.
(2013). Better environmental data may reverse conclusions about niche–
and dispersal–based processes in community assembly. Ecology ,
94(10), 2145–2151. https://doi. org/ 10. 1890/12–2053.1
Chase, J. M. (2014). Spatial scale resolves the niche versus neutral
theory debate. Journal Vegetation Science , 25(2), 319–322.
https://doi.org/10.1111/jvs.12159
Chase, J. M., & Myers, J. A. (2011). Disentangling the importance of
ecological niches from stochastic processes across scales.Philosophical Transactions of the Royal Society of London
B , 366(1576), 2351–2363. https://doi.org/10.1098/rstb. 2011. 0063.
Chen, W., Wang, J., Ma, R., Qi, W., Liu, K., Zhang, L., & Chen, X.
(2016). Variance in leaf functional traits of 89 species from the
eastern Guangdong of China. Chinese Journal of Ecology , 35(08),
2101–2109. https://doi.org/10.13292/j. 1000– 4890. 201608. 033
Cheng, Y., Zhang, H., Wang, X., Long, W., Li, C., Fang, Y., Fu, M., &
Zhu, K. (2019). Effects of functional diversity and phylogenetic
diversity on the tropical cloud forest community assembly. Chinese
Journal of Plant Ecolog y, 43(3), 217–226. https://doi.
org/10.17521/cjpe.2019.0003
Csecserits, A., Halassy, M., Lhotsky, B., Rédei, T., Somay, L. & Zoltán
Botta–Dukát, Z. (2021). Changing assembly rules during secondary
succession: evidence for non–random patterns. Basic and Applied
Ecology , 52 (1), 46–56. https://doi. org/10.1016/j.baae.2021.02.009
Debastiani, V. J. & Duarte, L. D. S. (2014). PCPS –an R–package for
exploring phylogenetic eigenvectors across metacommunities.Frontiers of Biogeography , 6(3), 144–148.
https://doi.org/10.21425/F5FBG22943
Dray, S., Pélissier, R., Couteron, P., Fortin, M. J., Legendre, P.,
Peres–Neto, P. R., Bellier, E., Bivand, R., Blanchet, F. G., Cáceres,
M. De, Dufour, A. B., Heegaard, E., Jombart, T., Munoz, F., Oksanen, J.,
Thioulouse, J., & Wagner, H. H. (2012). Community ecology in the age of
multivariate multiscale spatial analysis. Ecological Monographs ,
82, 257–275. https://doi.org/10. 1890/11–1183.1
Duarte, L. D., Debastiani, V. J., Freitas, A. V., & Pillar, V. D.
(2016). Dissecting phylogenetic fuzzy weighting: theory and application
in metacommunity phylogenetics. Methods in Ecology and Evolution ,
7(8), 937–946. https://doi. org/10.1111/2041–210X. 12547
Funk, J. L., & Wolf, A. A. (2016). Testing the trait–based community
framework: do functional traits predict competitive outcomes?Ecology , 97, 2206–2217. https:// doi.org/10.1002/ecy.1484
Gianuca, A. T., Declerck, S. A., Cadotte, M. W., Souffreau, C., De Bie,
T., & De Meester, L. (2017). Integrating trait and phylogenetic
distances to assess scale‐dependent community assembly processes.Ecography , 40(6), 742–752. https://doi.org/ 10.1111/ ecog.02263
Guerfel, M., Baccouri, O., Boujnah, D., Chaïbi, W. & Zarrouk, M.
(2009). Impacts of water stress on gas exchange, water relations,
chlorophyll content and leaf structure in the two main Tunisian olive
(Olea europaea L.). Scientia Horticulturae , 119, 257–263.
https://doi.org/10.1016/j.scienta.2008.08.006
He, B., Li, Q., Feng, T., Xue, X., Li, W., & Liu, Y. (2020). Variation
in leaf functional traits of different–aged Pinus massonianacommunities and relationships with soil nutrients. Journal of
Nanjing Forestry University Natural Sciences Edition , 44(2), 181–190.
https://doi.org/10.3969/j.issn.1000–2006.201904038
Hubbell, S. P. (2005). Neutral theory in community ecology and the
hypothesis of functional equivalence. Functional ecology , 19(1),
166–172. https://www.jstor. org/stable/3599285
Jiang, F., Xun, Y., Cai, H., Jin, G. (2018). Functional traits can
improve our understanding of niche– and dispersal–based processes.Oecologia , 186(3), 783–792.
https://doi.org/10.1007/s00442–018–4060–3
Kang, Y., Xiong, M., Huang, J., Long, W., Yang, X., Zang, R., Wang, X.,
Lin, D. (2017). Variation in woody plant functional traits of the
tropical cloud forests in Bawangling, Hainan Island. Acta
Ecologica Sinica , 37(5), 1572–1582. https: //doi.org/
10.5846/stxb201510082023
Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H.,
& Ack, D. D. (2010). Picante: R tools for integrating phylogenies and
ecology. Bioinformatic s, 26, 1463–1464. https://doi.org/
10.1093/bioinformatics/btq166
Kraft, N. J. B., Valencia, R., & Ackerly, D. D. (2008). Functional
traits and niche– based tree community assembly in an amazonian forest.Science , 332, 580– 582. https://doi.org/10.1126/axuwbxw,1160662
Kraft, N. J., & Ackerly, D. D. (2010). Functional trait and
phylogenetic tests of community assembly across spatial scales in an
Amazonian forest. Ecological monographs , 80(3), 401–422.
https://doi.org/10.1890/09–1672.1
Lai J., Zou Y., Zhang J., & Peres–Neto P. (2022). Generalizing
hierarchical and variation partitioning in multiple regression and
canonical analyses using the rdacca.hp R package. Methods in
Ecology and Evolution , 13(4), 782–788.
https://doi.org/10.1111/2041–210X.13800
Legendre, P., Mi, X., Ren, H., Ma, K., Yu, M., Sun, I. F., & He, F.
(2009). Partitioning beta diversity in a subtropical broad–leaved
forest of China. Ecology , 90, 663–674.
https://doi.org/10.1890/07–1880.1
Leibold, M. A. (1998). Similarity and local co–existence of species in
regional biotas. Evolutionary
Ecology ,12(1),95–110.https://doi.org/10.1023/A:10065 11124428
Levine, J., Bascompte, J., Adler, P., & Allesina, S. (2017). Beyond
pairwise mechanisms of species coexistence in complex communities.Nature , 546, 56–64. https://doi.org/10.1038/nature22898
Li, J., Xu, W., Xiong, G., Wang, Y., Zhao, C., Lu, Z., Li, Y., & Xie,
Z. (2017). Leaf nitrogen and phosphorus concentration and the empirical
regulations in dominant woody plants of shrublands across southern
China. Chinese Journal of Plant Ecology , 41(1), 31–42.
https://doi.org/10.17521/cjpe.2016.0251
Liu, W., Zheng, L., & Qi, D. (2020). Variation in leaf traits at
different altitudes reflects the adaptive strategy of plants to
environmental changes. Ecology and Evolution , 10(15), 8166-8175.
https://doi.org/10.1002/ece3.651
Li, Y., Bin, Y., Xu, H., Ni, Y., Zhang, R., Ye, W., & Lian, J. (2019).
Understanding community assembly based on functional traits, ontogenetic
stages, habitat types and spatial scales in a subtropical forest.Forests , 10 (12), 1055–1070. https://doi. org/10.3390/f10121055
Liu, X., Chen, H., Sun, T., Li, D., Wang, X., Mo, W., Wang, R., &
Zhang, S. (2021). Variation in woody leaf anatomical traits along the
altitudinal gradient in Taibai Mountain, China. Global Ecology and
Conservation , 26, e01523. https://doi. org/10.1016/j.gecco.2021.e01523
Liu, X., Swenson, N. G., Zhang, J., & Ma, K. (2013). The environment
and space, not phylogeny, determine trait dispersion in a subtropical
forest. Functional Ecology , 27(1), 264–272.
https://doi.org/10.1111/1365–2435.12018
Liu, Y., Li, G., Wu, X., Niklas, K. J., Yang, Z., & Sun, S. (2021).
Linkage between species traits and plant phenology in an alpine
meadow. Oecologia , 195(2), 409–419.
https://doi.org/10.1007/s00442–020–04846–y
Losos, J. B. (2008). Phylogenetic niche conservatism, phylogenetic
signal and the relationship between phylogenetic relatedness and
ecological similarity among species. Ecology Letters , 11,
995–1003. https://doi.org/10.1111/j.1461–0248. 2008. 01229.x
McGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006).
Rebuilding community ecology from functional traits. Trends in
Ecology & Evolution , 21, 178–185.
https://doi.org/10.1016/j.tree.2006.02.002
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R.,
O’hara, R. B., Simpson, G. L., Solymos, P., Stevens M. H. H., Szoecs,
E., & Wagner, H. (2013). Community ecology package. R package
version 2.0 , 1–295. https://github. com/vegandevs/vegan
Ouyang, S., Xiang, W., Wang, X., Zeng, Y., Lei, P., Deng, X., & Peng,
C. (2016). Significant effects of biodiversity on forest biomass during
the succession of subtropical forest in south China. Forest
Ecology & Management , 372: 291–302.
https://doi.org/10.1016/j.foreco.2016.04.020
Paine, C., Baraloto, C., Chave, J., & B Hérault. (2011). Functional
traits of individual trees reveal ecological constraints on community
assembly in tropical rain
forests.Oikos ,120(5),720–727.https://doi.org/10.1111/j.1600–0706.2010.
19110. x
Pérez–Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter,
H., Jaureguiberry, P., Bretharte, M. S., Cornwell, W.K., Graine, J. M.,
& Gurvich, D. E. (2013). New handbook for standardised measurement of
plant functional traits worldwide. Australian Journal of Botany ,
61:167–234. https://doi.org/10.1071/ BT12225.
Purschke, O., Michalski, S. G., Bruelheide, H., & Durka, W. (2017).
Phylogenetic turnover during subtropical forest succession across
environmental and phylogenetic scales. Ecology and Evolution , 7,
11079–11091. https://doi.org/ 10.1002/ece3.3564
Qiao, X., Li, Q., Jiang, Q., Lu, J., Franklin, S., Tang, Z., Wang, Q.,
Zhang, J., Lu, Z., Bao, D., Guo, Y., Liu, H., Xu, Y., & Jiang, M.
(2015). Beta diversity determinants in Badagongshan, a subtropical
forest in central China. Scientific Reports , 5, 17043.
https://doi.org/10.1038/ srep17043
R Core Team. (2016). R: a language and environment for statistical
computing . R Foundation for Statistical Computing, Vienna, Austria.
https://www.R–project. org/
Saura–Mas, S., Shipley, B., & Llore, F. (2009). Relationship between
post–fire regeneration and leaf economics spectrum in Mediterranean
woody species. Functional Ecology, 23, 103–110.
https://doi.org/10.1111/j.1365–2435.2008. 01474.x
Schulze, E. D., Kelliher, F. M., Körner, C., Lloyd, J., & Leuning R.
(1994). Relationships among maximum stomatal conductance, ecosystem
surface conductance, carbon assimilation rate, and plant nitrogen
nutrition: a global ecology scaling exercise. Annual Review of
Ecology & Systematics , 25(1): 629–662.
https://doi.org/10.1146/annurev.es.25.110194.003213
Surya, M. I., Ismaini, L., Normasiwi, S., Putri, D. M., & Kurniawan, V.
(2020). Plant growth regulators affecting leaf traits of Loquat
seedling. Annual Research & Review in Biology , 35(11), 73–85.
https://doi.org/10.9734/ARRB/2020/ V35I1130301
Swenson, N. G. (2013). The assembly of tropical tree communities – the
advances and shortcomings of phylogenetic and functional trait analyses.Ecography , 36 (3): 264–276.
https://doi.org/10.1111/j.1600–0587.2012.00121.x
Tian, M., Yu, G., He, N., & Hou, J. (2016). Leaf morphological and
anatomical traits from tropical to temperate coniferous forests:
Mechanisms and influencing factors. Scientific Report s, 6, 19703.
https://doi.org/10.1038/srep19703
Uriarte, M., Condit, R., & Hubbell, C. (2004). A spatially explicit
model of sapling growth in a tropical forest: does the identity of
neighbours matter? Journal of Ecology , 92(2):348–360.
https://doi.org/10.1111/j.0022–0477.2004.00867.x
Wang, R., Chen, H., Liu, X., Wang, Z., Wen, J., & Zhang, S. (2020).
Plant phylogeny and growth form as drivers of the altitudinal variation
in woody leaf vein traits. Frontiers in plant science , 10, 1735.
https://doi.org/10.3389/fpls.2019. 01735
Wang, X., Song, N. P., Yang, X. G., Chen, L., Qu, W. J., & Wang, L.
(2021). Inferring community assembly mechanisms from functional and
phylogenetic diversity: the relative contribution of environmental
filtering decreases along a sand desertification gradient in a desert
steppe community. Land Degradation & Development , 32(7),
2360–2370. https://doi.org/10.1002/ldr.3906
Webb, C. O., Ackerly, D. D., McPeek, M. A., & Donoghue, M. J. (2002).
Phylogenies and community ecology. Annual Review of Ecology and
Systematics , 33: 475–505.
https://doi.org/10.1146/annurev.ecolsys.33.010802.150448
Webb, C. O., Ackerly, D. D., & Kembel, S. W. (2008). Phylocom: Software
for the analysis of phylogenetic community structure and trait
evolution. Bioinformatics , 24(18), 2098–2100.
https://doi.org/10.1016/j.ejcts.2008.03. 025
Werden, L. K., Waring, B. G., Smith–Martin, C. M., & Powers, J. S.
(2017). Tropical dry forest trees and lianas differ in leaf economic
spectrum traits but have overlapping Water–use strategies. Tree
Physiology , 38, 517–530. https://doi. org/10.1093/treephys/tpx135
Westerband, A. C., Funk, J. L., & Barton, K. E. (2021). Intraspecific
trait variation in plants: a renewed focus on its role in ecological
processes. Annals of Botany , 127(4), 397–410.
https://doi.org/10.1093/aob/mcab011
Westoby, M., & Wright, I. J. (2006). Land–plant ecology on the basis
of functional traits. Trends in Ecology & Evolution ,
21(5):261–268. https://doi.org/10.1016/j.tree. 2006.02.004
Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z.,
Bongers, F., Cavender–Bares, J., Chapin, T., Cornelissen, J. H. C.,
Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka,
K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., Midgley, J. J., Navas, M.
L., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior,
L., Pyankov, V. I., Roumet, C., Thomas, S. C., Tjoelker, M. G.,
Veneklaas, E. J., & Villar, R. (2004). The worldwide leaf economics
spectrum. Nature , 428(6985), 821–827. https://doi.org/10.1038/
nature02403
Wu, H., Xiang, W., Ouyang, S., Forrester, D. I., Zhou, B., Chen, L.,
Zeng, Y., Song, X., Peñuelas, J., & Peng, C. (2019). Linkage between
tree species richness and soil microbial diversity improves phosphorus
bioavailability. Functional Ecology , 33(8), 1549–1560.
https://doi.org /10.1111/1365–2435.13355
Wyka, T. P., Oleksyn, J., Ytkowiak, R., Karolewski, P., Jagodziński, A.
M., & Reich, P. B. (2012). Responses of leaf structure and
photosynthetic properties to intra–canopy light gradients: a common
garden test with four broadleaf deciduous angiosperm and seven evergreen
conifer tree species. Oecologia , 170(1): 11–24. https://doi.org
10.1007/s00442–012–2279–y
Xiao, Q., Ye, W., Zhu, Z., Chen, Y., & Zheng, H. (2005). A simple
non–destructive method to measure leaf area using digital camera and
Photoshop software. Chinese Journal of Ecology , 24(6): 711–714.
Xu, Y., Shen, Z., Ying, L., Wang, Z., Huang, J., Zang, R., & Jiang, Y.
(2017). Hotspot analyses indicate significant conservation gaps for
evergreen broadleaved woody plants in China. Scientific reports ,
7(1), 1–10. https://doi.org/10. 1038/ s41598–017–02098–0
Xun, Y., Di, X., & Jin, G. (2020). Vertical variation and economic
strategy of leaf trait of major tree species in a typical mixed
broadleaved–Korean pine forest. Chinese Journal of Plant
Ecology , 44(07), 730–741. https://doi.org/10. 17521/ cjpe.2019.0307
Yang, Y., Xiao, C., Wu, X., Long, W., Feng, G., & Liu, G. (2021).
Differing Trade–Off Patterns of Tree Vegetative Organs in a Tropical
Cloud Forest. Frontiers in Plant Science , 12:680379.
https://doi.org/10.3389/fpls.2021. 680379
Zhang, C., Cadotte, M. W., Chiarucci, A., Loreau, M., Willis, C. G., Si,
X., Li, L., & Cianciaruso, M. V. (2021). Scale–dependent shifts in
functional and phylogenetic structure of Mediterranean island plant
communities over two centuries. Journal of Ecology , 109(10),
3513–3523. https://doi.org/10.1111/ 1365– 2745.13733.
Zhang, J., Swenson, N. G., Liu, J., Liu, M., Qiao, X., & Jiang, M.
(2020). A phylogenetic and trait‐based analysis of community assembly in
a subtropical forest in central China. Ecology and Evolution ,
10(15), 8091–8104. https:// doi.org/10.1002/ece3.6465
Zhao, G., Liu, M., Shi, P., Zong, N., Zhang, X., & Zhang, X. (2020).
Variation of leaf and root traits and ecological adaptive strategies
along a precipitation gradient on Changtang Plateau. Acta
Ecologica Sinica , 40(01), 295–309. https://doi. org/ 10. 5846/
stxb201811262562
Zhao, L., Xiang, W., Li, J., Lei, P., Deng, X., Fang, X., & Peng, C.
(2015). Effects of topographic and soil factors on woody species
assembly in a Chinese subtropical evergreen broadleaved forest.Forests , 6(3):650–669. https://doi. org/10.3390/ f6030650
Zhou, S. R., & Zhang, D. Y. (2008). A nearly neutral model of
biodiversity. Ecology , 89(1), 248–258.
https://doi.org/10.1890/06–1817.1
Zhou, W., Zhang, Y., Zhang, S., Yakimov, B. N., & Ma, K. (2021).
Phylogenetic and Functional Traits Verify the Combined Effect of
Deterministic and Stochastic Processes in the Community Assembly of
Temperate Forests along an Elevational Gradient. Forests , 12(5),
591. https://doi.org/10.3390/f12050591