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Abstract

The existing researches have shown that internal degradation processes and external shocks may simultane-
ously interfere with the reliability of dynamic systems in uncertain random environments. Assume that failure
processes are dependent, that is, shocks may accelerate degradation processes by additional degradations. Wear
and additional degradations are uncertain, while shocks are considered to be random. As a natural consideration,
it is necessary to maximize the reliability of multi-stage uncertain random systems. In this paper, a maximizing
reliability problem is presented, and recurrence equations are provided by Bellman’s principle. These are suc-
cessfully applied to maximize reliability index in two special cases with linear and quadratic state equations. In
addition, two effective algorithms are developed to achieve optimal solutions. Finally, a numerical example of
a metallized film pulse capacitor is proposed which aims to indicate that optimization method is beneficial to
maximize the reliability of multi-stage systems.
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1 Introduction
The capability of a system to perform its required functions is one of its essential characteristics, which represents
the reliability of a system. Degradation processes and shocks may affect a system’s reliability due to internal factors
(wear, corrosion, fatigue, etc.) as well as external abrupt factors (impact, stress, etc.). In the 1990s, degradation
process modeling was found to be an effective method for analyzing the reliability and statistical characteristics of
a system [1–3]. When external factors are taken into consideration, a great deal of researches [4–6] have also been
done on modeling shocks for a system. In early reliability evaluation, experts believed that degradation processes
and shocks on a system are independent of each other. However, most systems exposed to complex situations
may be subject to degradation processes and shocks simultaneously. A system suffered from competing failures of
extreme shock and degradations was presented by Ye et al. in [7]. Wang et al. [8] addressed that the degradation
rate is accelerated by shocks. Jiang et al. [9] proposed a multiple s-dependent competing failure model with a
shifting failure threshold. A new dependent competing failure process reliability model was developed by Fan et
al. [10] where random shocks are accelerated by degradation processes.

The reliability evaluation method based on probability theory holds that the reliability of a system can be
measured only when sufficient failure data are obtained. However, it is difficult to acquire a large number of failure
data within a short time. Liu [11] made a pioneering work on the booming field of uncertain reliability analysis
of a dynamic system with few failure data. Uncertainty theory based on the expert’s belief degrees was developed
by Liu [16], and refined by Liu [17] when there is no enough data to get a frequency distribution. The method of
uncertainty theory to solve practical problems has been constantly penetrated into many application fields, such as
manpower planning [12], risk analysis [13], reliability analysis [14], uncertain fractional differential equation [15]
etc. On the basis of uncertainty theory, researchers from Zeng et al. [18] developed a set of uncertain reliability
indexes for evaluating the reliability of a product. Zeng et al. [19] also carried out a numerical evaluation method
based on minimal cut sets in order to compute the reliability index by uncertain measure. With the advent of
uncertainty and randomness in complicated systems, Liu [20] introduced a new field on chance theory. Liu [21]
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also pointed out that an uncertain random optimization problem can be converted into its deterministic form when
it is not easy to be solved. After that, chance distribution was presented by [22] to measure the system reliability.
Zhang et al. [23] defined belief reliability index as reliability distribution, mean time to failure, and belief reliable
life, respectively.

Optimal control problem is the process of finding a solution that is optimal from among all possible solutions,
which is an essential pattern of modern control theory. Bellman [24] proposed a dynamic programming method
for solving optimal control problems and created the theory of dynamic programming. The operation of a system
is susceptible to disturbances of indeterministic factors, which affect the states of a system. There are currently
two types of optimal control theories: stochastic optimal control theory based on probability theory, and uncertain
optimal control theory based on uncertainty theory. The study of stochastic optimal control problems started in the
1950s, Bellman [25] applied dynamic programming methods to stochastic optimal control problems in 1958. With
the deepening of uncertainty theory and applications, there have been some progress in applying uncertain optimal
control theory. In 2011, Zhu [26] applied Bellman’s optimality principle in dynamic programming to make the
researches on the optimal control problem of multi-stage fuzzy systems, and obtained a set of recursive formulas.
Kang and Zhu [27] also provided the optimal bang-bang control problem of multi-stage uncertain systems to make
the objective function reach the maximum value. Subsequently, scholars have conducted some research on the
topics of discrete uncertain optimal control [28–30].

The difference equation (recursive relation) is an effective mathematical model that is usually applied to de-
scribe practical issues, including queuing problems, economic issues, biological genetics, and some other applica-
tion fields. Traditional reliability theory holds that soft failures caused by internal degradations are random based
on probability theory. However, the lack of degradation data is common and the data may not be accurate even
though they are sufficient. Due to the complexity within a system, it may be easy to make errors in reliability
assessments by existing data. In order to describe wear degradation accurately, experienced experts in reliability
fields are invited to modify observation data by means of their own experience and knowledge, that is, an uncertain
difference equation may be employed in this paper to describe degradation failure processes of a complex system
at each stage. In general, it is accepted that shock processes that a system suffers are considered to random when
there are sufficient shock data. It is external shocks that not only contribute to hard failures, but also accelerate
wear degradations and result in further uncertain additional degradations. The system is thus distinguished from a
random system, but a complex uncertain random system. Currently, the study of maximizing reliability index for
multi-stage uncertain uncertain systems is considered to be of great relevance. Thus, this paper proposes a optimal
control method by applying Bellman’s principle of optimality to maximize system reliability.

The paper is structured as follows. Section 2 reviews some concepts involved in uncertainty theory and chance
theory. Firstly, section 3 defines belief reliability index of a multi-stage uncertain random model. Subsequently,
two types of uncertain random reliability optimal control models are established in section 4 where the state
equations are linear and quadratic, respectively. The corresponding optimal controls and values at each stage are
obtained by recursive equations. Section 5 provides a numerical example to demonstrate the model. This paper is
summarized in a brief conclusion in section 6.

2 Preliminary
Let Γ be a nonempty set, L be a σ -algebra over Γ, (Γ,L) be a measurable space and each element Λ in L be a
measurable set. A set functionM defined on the σ -algebra L is called an uncertain measure to indicate the belief
degree with which we believe the event Λ will happen. The uncertain measureM satisfies the following axioms:

(Normality Axiom)M{Γ}= 1 for the universal set Γ.
(Duality Axiom)M{Γ}+M{Γc}= 1 for any event Λ.
(Subadditivity Axiom) For every countable sequence of events Λ1,Λ2, · · · , we have

M

{
∞⋃

i=1

Λi

}
≤

∞∑
i=1

M{Λi}.

(Product Axiom) Let (Γk,Lk,M) be uncertainty spaces for k = 1,2, · · · The product uncertain measureM is
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an uncertain measure satisfying

M

{
∞∏

k=1

Λk

}
=

∞∧
k=1

Mk{Λk}

where Λk are arbitrarily chosen events from Lk for k = 1,2, · · · , respectively. An uncertain variable is a function ξ

from an uncertainty space (Γ,L,M) to the set of real numbers such that the set {ξ ∈ B} = {γ ∈ Γ | ξ (γ) ∈ B} is
an event for any Borel set of real numbers.

Definition 1 (Liu [16]) The uncertainty distribution Φ(x) : R→ [0,1] of an uncertain variable ξ is defined as
Φ(x) =M{ξ ≤ x} for any x ∈ R.

An uncertain variable ξ is called normal if it has a normal uncertainty distribution

Φ(x) = (1+ exp(
π(e− x)√

3σ
))−1, x ∈ R, (1)

denoted byNu(e,σ) where e and σ are real numbers with σ > 0. Nr(e,σ) means normal distribution of a random
variable η with probability density function

φ(x) =
1√

2πσ
exp
(
− (x− e)2

2 ·σ2

)
, x ∈ R.

Theorem 1 (Liu [16]) Let ξ1 and ξ2 be independent normal uncertain variables Nu(e1,σ1) and Nu(e2,σ2), re-
spectively. Then the sum ξ1 +ξ2 is also a normal uncertain variable Nu(e1 + e2,σ1 +σ2), i.e.,

Nu(e1,σ1)+Nu(e2,σ2) =Nu(e1 + e2,σ1 +σ2).

The product of a normal uncertain variableNu(e,σ) and a scalar number k > 0 is also a normal uncertain variable
Nu(ke,kσ), i.e.,

k ·Nu(e,σ) =Nu(ke,kσ).

Theorem 2 (Liu [16]) Let ξ1,ξ2, · · · ,ξn be independent uncertain variables with regular uncertainty distributions
Φ1,Φ2, · · · , Φn, respectively. If f is a strictly decreasing function, then

ξ = f (ξ1,ξ2, · · · ,ξn)

has an inverse uncertainty distribution

Ψ
−1(α) = f (Φ−1

1 (1−α),Φ−1
2 (1−α), · · · ,Φ−1

n (1−α)).

Theorem 3 (Liu [16]) Assume ξ1,ξ2, · · · ,ξn are independent uncertain variables with regular uncertainty distri-
butions Φ1, Φ2, · · · ,Φn, respectively. If f is a strictly increasing function with respect to ξ1,ξ2, · · · ,ξm and strictly
decreasing with respect to ξm+1,ξm+2, · · · ,ξn, then

ξ = f (ξ1,ξ2, · · · ,ξn)

has an expected value

E[ξ ] =
∫ 1

0
f (Φ1(α),Φ2(α), · · · ,Φm(α),Φm+1(1−α), · · · ,Φn(1−α))dα.

Let (Γ,L,M) be an uncertainty space and (Ω,A,Pr) be a probability space. Then the product (Γ,L,M)×
(Ω,A,Pr) is called a chance space. An uncertain random variable is a function ξ from a chance space (Γ,L,M)×
(Ω,A,Pr) to the set of real numbers such that {ξ ∈ B} is an event for any Borel set B of real numbers. The chance
measure of the uncertain random event {ξ ∈ B} is

Ch{ξ ∈ B}=
∫ 1

0
Pr
{

ω ∈Ω
∣∣M{γ ∈ Γ |ξ (γ,ω) ∈ B} ≥ r

}
dr.

Theorem 4 (Liu [20]) Let (Γ,L,M)× (Ω,A,Pr) be a chance space. Then

Ch{Λ×A}=M{Λ}×Pr{A}

for any Λ ∈ L and any A ∈ A.
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3 System Reliability
It is considered that a system suffers from dual failure processes of degradation processes and shocks under uncer-
tain random situations. In this section, we are to focus on how to describe competing failure processes and define
reliability index of a system based on chance theory.

Extreme shock model

Shock model is an essential pattern of reliability statistical analysis which can be divided into extreme shock
model, accumulative shock model, run shock model and δ shock model, etc. Suppose that a system considered in
this paper is subjected to extreme random shocks, each of which would lead to damage to a certain extent. z( j)
represents the shock damage at stage j, N represents the total number of stages. Referring to the properties and
characteristics of random shocks, z( j), j = 0,1, · · · ,N, are considered as independent random variables. If the
damage value of a shock exceeds failure threshold D, a system will fail immediately.

Definition 2 The probability function of extreme shock model at a multi-stage system can be defined as follows,

Pr


N⋂

j=0

{z( j)< D}

 . (2)

Degradation process model

In practical applications, a system will be accompanied by degradation phenomena. Stochastic differential equa-
tion has often been applied in reliability modelling to propel a degradation process. It is worth considering that
a discrete model can describe actual degradation states of a system more accurately where there is a certain re-
lationship between each degradation states. We all know that the premise of stochastic equation is that we have
sufficient data to obtain probability distribution. However, it is usually normal for a system to have less and in-
sufficient internal observation data in reliability engineering. Therefore, we need to investigate another a suitable
mathematical tool–uncertainty theory to simulate internal degradation of a system. We present a multi-stage degra-
dation model with uncertain disturbances to drive wear degradation process. To improve the system reliability, a
multi-stage maintenance strategy with optimal controls u( j) ∈U j is presented to maximize system reliability. A
wear degradation process of a multi-stage system is founded as

x( j+1) = φ1(x( j),u j, j)+ϕ1(x( j),u j, j)ξ j+1, j = 0,1, · · · ,N−1, (3)

where x( j) is wear degradation state variable at stage j, ξ j is an uncertain variable to indicate the degree of
fluctuation of wear degradations, u j is the control variable at stage j and φ1,ϕ1 are real functions.

Although we may have sufficient data sometimes, it may not be accurate enough to measure additional degrada-
tions caused by shocks on internal degradation due to the complexity of external environment and internal system.
The uncertainty reliability theory suggests that when faced with inaccurate data, experts in the field of reliability
can revise degradation data based on their own expertise and knowledge. The additional degradation can be driven
by uncertain difference equation

y( j+1) = φ2(y( j),u j, j)+ϕ2(y( j),u j, j)η j+1, j = 0,1, · · · ,N−1, (4)

where y( j) is additional degradation state variable at stage j, η j is an uncertain variable to indicate the degree of
fluctuation of additional degradations, u j is the control variable at stage j and φ2,ϕ2 are real functions.

Definition 3 It is believed that x( j) is independent of y( j) due to different degradation causes. Soft failure occurs
when the sum of wear degradations and additional degradations exceed threshold value H. The reliability function
of a system without soft failure is

M

x(N)+

N∑
j=0

y( j)< H

 . (5)
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An evaluation of reliability requires the definition of a reliability index that measures reliability of an uncertain
random system under degradation and shock processes simultaneously. The reliability index may be interpreted
as chance measure when considering two dependent failures. It is hoped that total uncertain degradations do
not exceed the threshold H and that random shocks do not cause system failures. Only when neither of failure
processes occurs can a system operate normally.

Definition 4 Assume that a system suffers from both dependent degradation processes and shocks. Chance mea-
sure of an extreme shock model

Ch

x(N)+

N∑
j=0

y( j)< H,

N⋂
j=0

{z( j)< D}

 (6)

is defined as belief reliability index R with N stages.

Theorem 5 The belief reliability index R of an extreme shock model with N stages which suffers from dependent
failure processes is equal to

M

x(N)+

N∑
j=0

y( j)< H

 ·Pr


N⋂

j=0

{z( j)< D}

 . (7)

Proof: Obviously, x(N)+
N∑

j=0
y( j)< H is an uncertain event and

N⋂
j=0
{z( j)< D} is an random event. According to

Theorem 4 that the chance measure is the product of uncertain measure and probability measure. We have

Ch

x(N)+

N∑
j=0

y( j)< H,

N⋂
j=0

{z( j)< D}

=M

x(N)+

N∑
j=0

y( j)< H

 ·Pr


N⋂

j=0

{z( j)< D}

 .

The theorem is thus verified.

4 Uncertain Random Reliability Optimal Control Model With Dependent
Failure

4.1 Optimal belief reliability index model for uncertain random systems
The reliability of a system subjected to a competitive failure process gradually decreases with time due to the
combined effect of degradation and shock processes. In view of applications, a decision maker desires to maintain
the reliability of a system at a high level by taking some maintenance methods. It is generally believed that
maintenance funds are used to mitigate the effects of system degradations and to maximize system reliability.
Assume that u j is the maintenance fund at stage j. We are to present a maximizing reliability problem extreme
shock satisfying a set of constraint,

R(x0,y0,0) = max
u j∈U j

0≤ j≤N−1

Ch

{
x(N)+

N∑
j=0

y( j)< H,
N⋂

j=0
{z( j)< D}

}
subject to

x( j+1) = φ1(x( j),u j, j)+ϕ1(x( j),u j, j)ξ j+1,

y( j+1) = φ2(y( j),u j, j)+ϕ2(y( j),u j, j)η j+1,

j = 0, · · · ,N−1 and x(0) = x0,y(0) = y0,

(8)
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where x( j) and y( j) are state variables of degradation processes, z( j), j = 0,1, · · · ,N, are independent state vari-
ables of shock processes, φ1,ϕ1,φ2,ϕ2 are real functions, a j,σ j+1,c j,χ j+1 are real numbers, ξ j and η j are inde-
pendent uncertain variables. We define the new state variables by

x( j+1) = f j(x( j),u j,ξ j+1),

= φ1(x( j),u j, j)+ϕ1(x( j),u j, j)ξ j+1, j = 0, · · · ,N−1,
y( j+1) = g j(y( j),u j,η j+1),

= φ2(y( j),u j, j)+ϕ2(y( j),u j, j)η j+1, j = 0, · · · ,N−1,
ŷ( j+1) = ρ j(ŷ( j),y( j),u j),

= ŷ( j)+ y( j), j = 0, · · · ,N−2,
ŷ(N) = ρN−1(ŷ(N−1),y(N−1),uN−1),

= ŷ(N−1)+ y(N−1)+ x(N)+ y(N),

x(0) = x0,y(0) = y0, ŷ(0) = 0.

Then, problem (8) can be transformed into its equivalent form

R(x0,y0, ŷ0,0) = max
u j∈U j

0≤ j≤N−1

Ch

{
ŷ(N)< H,

N⋂
j=0
{z( j)< D}

}
subject to

x( j+1) = φ1(x( j),u j, j)+ϕ1(x( j),u j, j)ξ j+1, j = 0, · · · ,N−1,
y( j+1) = φ2(y( j),u j, j)+ϕ2(y( j),u j, j)η j+1, j = 0, · · · ,N−1,
ŷ( j+1) = ρ j(ŷ( j),y( j),u j), j = 0, · · · ,N−2,
x(0) = x0, y(0) = y0, ŷ(0) = 0.

(9)

To solve problem (9), we propose a subproblem as follows,

J(x0,y0, ŷ0,0) = max
u j∈U j

0≤ j≤N−1

E[I(ŷ(N)< H)]

subject to
x( j+1) = f j(x( j),u j,ξ j+1), j = 0, · · · ,N−1,
y( j+1) = g j(y( j),u j,η j+1), j = 0, · · · ,N−1,
ŷ( j+1) = ρ j(ŷ( j),y( j),u j), j = 0, · · · ,N−2,
x(0) = x0, y(0) = y0, ŷ(0) = 0,

(10)

where I is an indicator function of ŷ(N).

Theorem 6 Let u′j, j = 0,1, · · · ,N−1, and R(x0,y0, ŷ0,0) are optimal controls and optimal values of problem (9),
and u∗j , j = 0,1, · · · ,N−1 and J(x0,y0, ŷ0,0) are optimal controls and optimal values of problem (10). Then, we
have

u′j = u∗j , j = 0,1, · · · ,N−1,

R(x0,y0, ŷ0,0) = J(x0,y0, ŷ0,0) ·
N∏

j=0

Pr{z( j)< D}.
(11)

Proof. It follows from Theorem 5 that

Ch

ŷ(N)< H,

N⋂
j=0

{z( j)< D}

=M{ŷ(N)< H} ·Pr


N⋂

j=0

{z( j)< D}


=M{ŷ(N)< H} ·

N∏
j=0

Pr{z( j)< D}.
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Then, we would prefer to convert the uncertainty measure into an expectation over the indicator function I(·).
Here, I(ŷ < H) = 1 if ŷ < H, and I(ŷ < H) = 0 if ŷ≥ H. We have

M{ŷ(N)< H}= E[I(ŷ(N)< H)], (12)

and

Ch

ŷ(N)< H,

N⋂
j=0

(z( j)< D)

= E[I(ŷ(N)< H)] ·
N∏

j=0

Pr{z( j)< D}.

There are no controls for external shocks z( j), and problem (9) has a different term
N⋂

j=0
{z( j)< D} in the objective

function from problem (10). Thus, it is easy to derive u′j = u∗j , and

R(x0,y0, ŷ0,0) = J(x0,y0, ŷ0,0) ·
N∏

j=0

Pr{z( j)< D}.

The theorem is proved.
For 0≤ k < N, let J(xk,yk, ŷk,k) be the optimal value in [k,N] with the condition that at stage k, we are in state

x(k) = xk, y(k) = yk and ŷ(k) = 0. That is, we have

J(xk,yk, ŷk,k) = max
u j∈U j

k≤ j≤N

E[I(ŷ(N)< H)]

subject to
x( j+1) = f j(x( j),u j,ξ j+1),

y( j+1) = g j(y( j),u j,η j+1),

ŷ( j+1) = ρ j(ŷ( j),y( j),u j),

j = k,k+1, · · · ,N−1 and x(k) = xk, y(k) = yk, ŷ(k) = 0.

(13)

Notice that problem (10) is called Mayer form, and conforms to a class of expected value models of uncertain
optimal control problems which was studied by Kang and Zhu [27]. Applying Bellman’ s principle of optimality,
through a similar proof to [27], we can solve this specific problem (10) with the following recursion equations.

Theorem 7 For problem (10), we have the following recurrence equations,

J(xN ,yN , ŷN ,N) = I(ŷN < H),

J(xk,yk, ŷk,k) = max
uk∈Uk

E[J(x(k+1),y(k+1), ŷ(k+1),k+1)]

for k = N−1,N−2, · · · ,1,0.

(14)

Proof. Referring to recurrence equation of optimal control problem of multi-stage systems by Bellman’s principle
of optimality in [27], we have

J(xN ,yN , ŷN ,N) = I(ŷ(N)< H),

and for any k = N−1,N−2, · · · ,0, we have

J(xk,yk, ŷk,k) = max
uk∈Uk

E[J(x(k+1),y(k+1), ŷ(k+1),k+1)].

The theorem is thus proved.
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4.2 Two special cases
Generally speaking, the approach to solve problems usually starts with some special cases and then expands to
general cases, or from simple to complex problems. We might as well give the following examples to further
investigate maximizing reliability problems of uncertain random systems via the method of recursion equations. A
linear degradation model is quite common in reliability engineering, we desire to maximize belief reliability index
of an uncertain random linear system

R(x0,y0,0) = max
u j∈[M1,M2]
0≤ j≤N−1

Ch

{
x(N)+

N∑
j=0

y( j)< H,
N⋂

j=0
{z( j)< D}

}
subject to

x( j+1) = a jx( j)−b ju j +σ j+1ξ j+1,

y( j+1) = c jy( j)−d ju j +χ j+1η j+1,

j = 0, · · · ,N−1 and x(0) = x0,y(0) = y0,

(15)

where the coefficients a j,b j,c j,d j,σ j+1,χ j+1 are real numbers and a j,c j,σ j+1,χ j+1 > 0, and z( j), j = 0,1, · · · ,N
are independent random variables with probability function Fj. It follows from Theorem 6 that a subproblem of
problem (15) with same control variables is presented,

J(x0,y0, ŷ0,0) = max
u j∈[M1,M2]
0≤ j≤N−1

E[I(ŷ(N)< H)]

subject to
x( j+1) = a jx( j)−b ju j +σ j+1ξ j+1, j = 0, · · · ,N−1,
y( j+1) = c jy( j)−d ju j +χ j+1η j+1, j = 0, · · · ,N−1,
ŷ( j+1) = ŷ( j)+ y( j), j = 0, · · · ,N−2,
ŷ(N) = ŷ(N−1)+ y(N−1)+ x(N)+ y(N),

x(0) = x0, y(0) = y0, ŷ(0) = 0,

(16)

where the optimal controls u j, j = 0, · · · ,N−1, are equivalent to optimal controls of problem (15), and the optimal
values of two problems have the relation

R(x0,y0,0) = J(x0,y0, ŷ0,0) ·
N∏

j=0

Fj(D). (17)

Theorem 8 Assume that ξ j, j = 1,2, · · · ,N, are independent normal uncertain variables with uncertainty dis-
tribution ξ j ∼ Nu(e j,v j) and η j, j = 1,2, · · · ,N, are independent normal uncertain variables with uncertainty
distribution η j ∼Nu(e

′
j,v
′
j). The optimal controls of problem (16) are

u∗k =

 M2, Hk > 0,
M1, Hk < 0,
undetermined, Hk = 0

(18)
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for k = 0,1, · · · ,N−1 and the optimal values are

J(xN ,yN , ŷN ,N) = I(ŷN < H),

J(xN−1,yN−1, ŷN−1,N−1)

=

(
1+ exp

(
π√

3(σNvN +χNv′N)
(σNeN +χNe

′
N− (H− ŷN−1−PN−1xN−1−QN−1yN−1 +HN−1u∗N−1))

))−1

,

J(xk,yk, ŷk,k)

=

∫ 1

0
· · ·
∫ 1

0

(
1+ exp

(
π√

3(σNvN +χNv′N)

(
σNeN +χNe

′
N−

(
H− ŷk−Pkxk−Qkyk +

N−1∑
i=k

Hiu∗i

−Φ
−1
k+1(1−αk+1)−·· ·−Φ

−1
N−1(1−αN−1)

))))−1

dαk+1 · · ·dαN−1, k = N−2, · · · ,1,0,

(19)
where

Pk = Pk+1ak, Qk = 1+Qk+1ck, Hk = Pk+1bk +Qk+1dk, Lk = Pkσk, Sk = Qkχk,

Φ
−1
k (1−αk) = Lkek +Ske

′
k +

(Lkvk +Skv
′
k)
√

3
π

ln
1−αk

αk

(20)

for k = N−1, · · · ,1,0 and PN = 1,QN = 1.

Proof. Assume that optimal controls are u∗0,u
∗
1, · · · ,u∗N−1, and applying the recursion equation (14). For k = N, we

have
J(xN ,yN , ŷN ,N) = I(ŷN < H).

For k = N−1, using the recursion equation (14), we have the following:

J(xN−1,yN−1, ŷN−1,N−1) = max
uN−1∈[M1,M2]

E[J(x(N),y(N), ŷ(N),N]

= max
uN−1∈[M1,M2]

E[I(ŷ(N)< H)].

According to the transformation (12), we have

E[I(ŷ(N)< H)] =M{ŷN−1 +aN−1xN−1 +(1+ cN−1)yN−1− (bN−1 +dN−1)uN−1 +σNξN +χNηN < H}.

Since ξN and ηN are independent normal uncertain variables Nu(eN ,vN) and Nu(e
′
N ,v

′
N), respectively. It follows

from Theorem 1 that the sum σNξN + χNηN is also a normal uncertain variable Nu(σNeN + χNe
′
N ,σNvN + χNv

′
N),

i.e.,
σNNu(eN ,vN)+χNNu(e

′
N ,v

′
N) =Nu(σNeN +χNe

′
N ,σNvN +χNv

′
N)

Set PN−1 = aN−1, QN−1 = 1+ cN−1, HN−1 = bN−1 +dN−1 and PN = QN = 1. It is easy to obtain

E[I(ŷ(N)< H)]

=

(
1+ exp

(
π√

3(σNvN +χNv′N)
(σNeN +χNe

′
N− (H− ŷN−1−PN−1xN−1−QN−1yN−1 +HN−1uN−1))

))−1

9



and

J(xN−1,yN−1, ŷN−1,N−1)

= max
u(N−1)∈[M1,M2]

(
1+ exp

(
π√

3(σNvN +χNv′N)
(σNeN +χNe

′
N− (H− ŷN−1−PN−1xN−1−QN−1yN−1

+HN−1uN−1))

))−1

=

(
1+ exp

(
π√

3(σNvN +χNv′N)
(σNeN +χNe

′
N− (H− ŷN−1−PN−1xN−1−QN−1yN−1

+ max
u(N−1)∈[M1,M2]

HN−1uN−1))

))−1

.

Let u∗N−1 be the optimal solution, we have the following equation:

max
uN−1∈[M1,M2]

HN−1uN−1 = HN−1u∗N−1.

We can get the optimal control

u∗N−1 =

 M2, HN−1 > 0,
M1, HN−1 < 0,
undetermined, HN−1 = 0,

and optimal value

J(xN−1,yN−1, ŷN−1,N−1)

=

(
1+ exp

(
π√

3(σNvN +χNv′N)
(σNeN +χNe

′
N− (H− ŷN−1−PN−1xN−1−QN−1yN−1 +HN−1u∗N−1))

))−1

.

For k = N−2, applying the recursion equation (14), we have

J(xN−2,yN−2, ŷN−2,N−2)
= max

uN−2∈[M1,M2]
E[J(x(N−1),y(N−1), ŷ(N−1),N−1)],

where

J(x(N−1),y(N−1), ŷ(N−1),N−1)

=

(
1+ exp

(
π√

3(σNvN +χNv′N)
(σNeN +χNe

′
N− (H− ŷN−2−PN−1aN−2xN−1− (1+QN−1cN−2)yN−1

+(PN−1bN−2 +QN−1dN−2)uN−2 +HN−1u∗N−1−PN−1σN−1ξN−1−QN−1χN−1ηN−1))

))−1

.

Set PN−2 = PN−1aN−2, QN−2 = 1+QN−1cN−2, HN−2 = PN−1bN−2 +QN−1dN−2, LN−1 = PN−1σN−1 and SN−1 =
QN−1χN−1. Just as we assume that aN−2,cN−2 > 0 and σN−2,χN−2 > 0, we have PN−2,QN−2 >,LN−1 and SN−1 >
0. By using the independence of ξN−1 and ηN−1, LN−1ξN−1 +SN−1ηN−1 is also a normal uncertain variable, i.e.,

LN−1Nu(eN−1,vN−1)+SN−1Nu(e
′
N−1,v

′
N−1) =Nu(LN−1eN−1 +SN−1e

′
N−1,LN−1vN−1 +SN−1v

′
N−1),

We observe that J(x(N−1),y(N−1), ŷ(N−1),N−1) is a strictly decreasing function with LN−1ξN−1+SN−1ηN−1.
It follows from Theorem 2 that the inverse uncertainty distribution of J(x(N−1),y(N−1), ŷ(N−1),N−1) is

Ψ
−1
N−1(αN−1) =

(
1+ exp

(
π√

3(σNvN +χNv′N)
(σNeN +χNe

′
N− (H− ŷN−2−PN−2xN−1−QN−2yN−1

+HN−2uN−2 +HN−1u∗N−1−Φ
−1
N−1(1−αN−1)))

))−1

,

10



where

Φ
−1
N−1(1−αN−1) = LN−1eN−1 +SN−1e

′
N−1 +

(LN−1vN−1 +SN−1v
′
N−1)
√

3
π

ln
1−αN−1

αN−1
, 0 < αN−1 < 1.

By using Theorem 3, we have

J(xN−2,yN−2,N−2)

= max
uN−2∈[M1,M2]

∫ 1

0

(
1+ exp

(
π√

3(σNvN +χNv′N)
(σNeN +χNe

′
N− (H− ŷN−2

−PN−2xN−1−QN−2yN−1 +HN−2uN−2 +HN−1u∗N−1−Φ
−1
N−1(1−αN−1)))

))−1

dαN−1

=

∫ 1

0

(
1+ exp

(
π√

3(σNvN +χNv′N)
(σNeN +χNe

′
N− (H− ŷN−2

−PN−2xN−1−QN−2yN−1 + max
uN−2∈[M1,M2]

HN−2uN−2 +HN−1u∗N−1−Φ
−1
N−1(1−αN−1)))

))−1

dαN−1.

Similarly, referring to the calculation of j = N−1 that max
uN−2∈[M1,M2]

HN−2uN−2 = HN−2u∗N−2, we derive the optimal

controls

u∗N−2 =


M2, if HN−2 > 0
M1, if HN−2 < 0
undetermined, if HN−2 = 0,

and optimal value

J(xN−2,yN−2,N−2) =
∫ 1

0

(
1+ exp

(
π√

3(σNvN +χNv′N)
(σNeN +χNe

′
N− (H− ŷN−2

−PN−2xN−2−QN−2yN−2 +HN−2u∗N−2 +HN−1u∗N−1−Φ
−1
N−1(1−αN−1)))

))−1

dαN−1.

By induction, we can obtain the optimal controls (18) and optimal values (19). The theorem is thus verified.
It follows form Theorem 8 that an uncertain random reliability optimal control model whose objective function

and state transition equations are linear at each stage with exact solutions. If the objective function is linear and
the state transition equations are quadratic, we consider the following problem,

R(x0,y0,0) = max
u j∈[M1,M2]
0≤ j≤N−1

Ch

{
x(N)+

N∑
j=0

y( j)< H,
N⋂

j=0
{z( j)< D}

}
subject to

x( j+1) = a jx( j)−b ju j− l ju2
j +σ j+1ξ j+1,

y( j+1) = c jy( j)−d ju j−q ju2
j +χ j+1η j+1,

j = 0, · · · ,N−1 and x(0) = x0,y(0) = y0,

(21)

where the coefficients a j,b j,c j,d j, l j,q j,σ j+1,χ j+1 are real numbers with a j,c j,σ j+1,χ j+1 > 0, and z( j), j =
0,1, · · · ,N are independent random variables with probability function Fj. It follows from Theorem 6 that a sub-
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problem of problem (21) with same control variables is defined as

J(x0,y0, ŷ0,0) = max
u j∈[M1,M2]
0≤ j≤N−1

E[I(ŷ(N)< H)]

subject to
x( j+1) = a jx( j)−b ju j− l ju2

j +σ j+1ξ j+1, j = 0, · · · ,N−1,
y( j+1) = c jy( j)−d ju j−q ju2

j +χ j+1η j+1, j = 0, · · · ,N−1,
ŷ( j+1) = ŷ( j)+ y( j), j = 0, · · · ,N−2,
ŷ(N) = ŷ(N−1)+ y(N−1)+ x(N)+ y(N),

x(0) = x0, y(0) = y0, ŷ(0) = 0,

(22)

where the optimal controls u∗j , j = 0, · · · ,N−1, are equivalent to optimal controls of problem (21), and the optimal
value of two problems have the relation

R(x0,y0,0) = J(x0,y0, ŷ0,0) ·
N∏

j=0

Fj(D). (23)

Theorem 9 Assume that ξ j, j = 1,2, · · · ,N, are independent normal uncertain variables with uncertainty dis-
tribution ξ j ∼ Nu(e j,v j) and η j, j = 1,2, · · · ,N, are independent normal uncertain variables with uncertainty
distribution η j ∼Nu(e

′
j,v
′
j). The optimal controls of problem (22) are

u∗k =



M1, Fk = 0 and Hk < 0, or Fk < 0 and −Hk
2Fk

< M1,
or Fk > 0 and |M1 +

−Hk
2Fk
| ≥ |M2 +

−Hk
2Fk
|,

−Hk
2Fk

, Fk < 0 and M1 ≤ −Hk
2Fk
≤M2,

M2, Fk = 0 and Hk > 0, or Fk < 0 and −Hk
2Fk

> M2,
or Fk > 0 and |M1 +

Hk
2Fk
|< |M2 +

Hk
2Fk
|,

undetermined, Fk = 0 and Hk = 0

(24)

for k = 0,1, · · · ,N−1 and the optimal values are

J(xN ,yN , ŷN ,N) = I(ŷN < H),

J(xN−1,yN−1, ŷN−1,N−1)

=

(
1+ exp

(
π√

3(σNvN +χNv′N)
(σNeN +χNe

′
N− (H− ŷN−1−PN−1xN−1−QN−1yN−1 +GN−1))

))−1

,

J(xk,yk, ŷk,k),

=

∫ 1

0
· · ·
∫ 1

0

(
1+ exp

(
π√

3(σNvN +χNv′N)

(
σNeN +χNe

′
N−

(
H− ŷk−Pkxk−Qkyk +

N−1∑
i=k

Gi

−Φ
−1
k+1(1−αk+1)−·· ·−Φ

−1
N−1(1−αN−1)

))))−1

dαk+1 · · ·dαN−1, k = N−2, · · · ,1,0,

(25)

where

Pk = Pk+1ak, Qk = 1+Qk+1ck, Hk = Pk+1bk +Qk+1dk, Fk = Pk+1lk +Qk+1qk, Lk = Pkσk, Sk = Qkχk,

Φ
−1
k (1−αk) = Lkek +Ske

′
k +

(Lkvk +Skv
′
k)
√

3
π

ln
1−αk

αk
,

(26)
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and

Gk =



M1Hk +M2
1 Fk, Fk = 0 and Hk < 0, or Fk < 0 and −Hk

2Fk
< M1,

or Fk > 0 and |M1 +
Hk
2Fk
| ≥ |M2 +

Hk
2Fk
|,

−H2
k

4Fk
, Fk < 0 and M1 ≤ −Hk

2Fk
≤M2,

M2Hk +M2
2 Fk, Fk = 0 and Hk > 0, or Fk < 0 and −Hk

2Fk
> M2,

or Fk > 0 and |M1 +
−Hk
2Fk
|< |M2 +

−Hk
2Fk
|,

0, Fk = 0 and Hk = 0

(27)

for k = N−1, · · · ,1,0 and PN = 1,QN = 1.

Proof. Denote that optimal control variables are u∗0,u
∗
1, · · · ,u∗N−1. For k = N, we applying the recursion equation

(14), we have
J(xN ,yN , ŷN ,N) = I(ŷN < H).

For k = N−1, using the recursion equation (14), we have the following:

J(xN−1,yN−1, ŷN−1,N−1) = max
uN−1∈[M1,M2]

E[J(x(N),y(N), ŷ(N),N]

= max
uN−1∈[M1,M2]

E[I(ŷ(N)< H)].

According to the transformation (12), we have

E[I(ŷ(N)< H)]

=M{ŷN−1 +aN−1xN−1 +(1+ cN−1)yN−1− (bN−1 +dN−1)uN−1− (lN−1−qN−1)u2
N−1 +σNξN +χNηN < H},

where the parameters σN ,χN > 0. As the proof in Theorem 8, σNξN + χNηN is a normal uncertain variable
Nu(σNeN + χNe

′
N ,σNvN + χNv

′
N). Set PN−1 = aN−1, QN−1 = 1+ cN−1, HN−1 = bN−1 +dN−1 and FN−1 = lN−1 +

qN−1. Using the recursion equation (14), we can derive

E[I(ŷ(N)< H)]

=

(
1+ exp

(
π√

3(σNvN +χNv′N)
(σNeN +χNe

′
N− (H− ŷN−1−PN−1xN−1−QN−1yN−1 +HN−1uN−1

+FN−1u2
N−1))

))−1

and

J(xN−1,yN−1, ŷN−1,N−1)

= max
u(N−1)∈[M1,M2]

(
1+ exp

(
π√

3(σNvN +χNv′N)
(σNeN +χNe

′
N− (H− ŷN−1−PN−1xN−1−QN−1yN−1

+HN−1uN−1 +FN−1u2
N−1))

))−1

=

(
1+ exp

(
π√

3(σNvN +χNv′N)
(σNeN +χNe

′
N− (H− ŷN−1−PN−1xN−1−QN−1yN−1

+ max
u(N−1)∈[M1,M2]

HN−1uN−1 +FN−1u2
N−1))

))−1

.

Denote the following equation:

max
uN−1∈[M1,M2]

HN−1uN−1 +FN−1u2
N−1 = HN−1u∗N−1 +FN−1(u∗N−1)

2 = GN−1,

13



Case 1: If FN−1 = 0 and HN−1 = 0, then for any u∗N−1 ∈ [M1,M2] as the maximum point, GN−1 = 0.
Case 2: If FN−1 = 0 and HN−1 < 0, then u∗N−1 = M1, GN−1 = M1HN−1 +M2

1 FN−1.
Case 3: If FN−1 = 0 and HN−1 > 0, then u∗N−1 = M2, GN−1 = M2HN−1 +M2

2 FN−1.

Case 4: If FN−1 < 0 and M1 ≤ −HN−1
2FN−1

≤M2, then u∗N−1 =
−HN−1
2FN−1

,GN−1 =
−H2

N−1
4FN−1

.

Case 5: If FN−1 < 0 and −HN−1
2FN−1

< M1, then u∗N−1 = M1,GN−1 = M2HN−1 +M2
2 FN−1.

Case 6: If FN−1 < 0 and −HN−1
2FN−1

> M2, then u∗N−1 = M2,GN−1 = M1HN−1 +M2
1 FN−1.

Case 7: If FN−1 > 0 and |M1 +
HN−1
2FN−1

| ≥ |M2 +
HN−1
2FN−1

|, then u∗N−1 = M1,GN−1 = M1HN−1 +M2
1 FN−1.

Case 8: If FN−1 > 0 and |M1 +
HN−1
2FN−1

|< |M2 +
HN−1
2FN−1

|, then u∗N−1 = M2,GN−1 = M2HN−1 +M2
2 FN−1.

Thus, we can obtain the optimal control as follows:

u∗N−1 =



M1, FN−1 = 0 and HN−1 < 0, or FN−1 < 0 and −HN−1
2FN−1

< M1,

or FN−1 > 0 and |M1 +
HN−1
2FN−1

| ≥ |M2 +
HN−1
2FN−1

|,
−HN−1
2FN−1

, FN−1 < 0 and M1 ≤ −HN−1
2FN−1

≤M2,

M2, FN−1 = 0 and HN−1 > 0, or FN−1 < 0 and −HN−1
2FN−1

> M2,

or FN−1 > 0 and |M1 +
−HN−1
2FN−1

|< |M2 +
−HN−1
2FN−1

|,
undetermined, FN−1 = 0 and HN−1 = 0,

and optimal value

J(xN−1,yN−1, ŷN−1,N−1)

=

(
1+ exp

(
π√

3(σNvN +χNv′N)
(σNeN +χNe

′
N− (H− ŷN−1−PN−1xN−1−QN−1yN−1 +GN−1))

))−1

,

where

GN−1 =



M1HN−1 +M2
1 FN−1, FN−1 = 0 and HN−1 < 0, or FN−1 < 0 and −HN−1

2FN−1
< M1,

or FN−1 > 0 and |M1 +
HN−1
2FN−1

| ≥ |M2 +
HN−1
2FN−1

|,
−H2

N−1
4FN−1

, FN−1 < 0 and M1 ≤ −HN−1
2FN−1

≤M2,

M2HN−1 +M2
2 FN−1, FN−1 = 0 and HN−1 > 0, or FN−1 < 0 and −HN−1

2FN−1
> M2,

or FN−1 > 0 and |M1 +
HN−1
2FN−1

|< |M2 +
HN−1
2FN−1

|,
0, FN−1 = 0 and HN−1 = 0.

For k = N−2, by using the recursion equation (14), we derive

J(xN−2,yN−2, ŷN−2,N−2) = max
uN−2∈[M1,M2]

E[J(x(N−1),y(N−1), ŷ(N−1),N−1)],

where

J(x(N−1),y(N−1), ŷ(N−1),N−1)

=

(
1+ exp

(
π√

3(σNvN +χNv′N)
(σNeN +χNe

′
N− (H− ŷN−2−PN−1aN−2xN−1− (1+QN−1cN−2)yN−1

+(PN−1bN−2 +QN−1dN−2)uN−2 +(PN−1lN−2 +QN−1qN−2)u2
N−2 +GN−1−PN−1σN−1ξN−1

−QN−1χN−1ηN−1))

))−1

·

Set PN−2 = PN−1aN−2, QN−2 = 1+QN−1cN−2, HN−2 = PN−1bN−2 +QN−1dN−2, FN−2 = PN−1lN−2 +QN−1qN−2,
LN−1 = PN−1σN−1 and SN−1 = QN−1χN−1. The proof of Theorem 8 shows that LN−1ξN−1 + SN−1ηN−1 is also a
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normal uncertain variableNu(LN−1eN−1 +SN−1e
′
N−1,LN−1vN−1 +SN−1v

′
N−1). We observe that J(x(N−1),y(N−

1), ŷ(N−1),N−1) is a strictly decreasing function with LN−1ξN−1 +SN−1ηN−1. It follows from Theorem 2 that
the inverse uncertainty distribution of J(x(N−1),y(N−1), ŷ(N−1),N−1) is

Ψ
−1
N−1(αN−1) =

(
1+ exp

(
π√

3(σNvN +χNv′N)
(σNeN +N e

′
N− (H− ŷN−2−PN−2xN−1−QN−2yN−1

+HN−2uN−2 +FN−2u2
N−2 +GN−1−Φ

−1
N−1(1−αN−1)))

))−1

,

where

Φ
−1
N−1(1−αN−1) = LN−1eN−1 +SN−1e

′
N−1 +

(LN−1vN−1 +SN−1v
′
N−1)
√

3
π

ln
1−αN−1

αN−1
, 0 < αN−1 < 1.

Thus, we have

J(xN−2,yN−2,N−2)

= max
uN−2∈[M1,M2]

∫ 1

0

(
1+ exp

(
π√

3(σNvN +χNv′N)
(σNeN +χNe

′
N− (H− ŷN−2

−PN−2xN−1−QN−2yN−1 +HN−2uN−2 +FN−2u2
N−2 +GN−1−Φ

−1
N−1(1−αN−1)))

))−1

dαN−1

=

∫ 1

0

(
1+ exp

(
π√

3(σNvN +χNv′N)
(σNeN +χNe

′
N− (H− ŷN−2

−PN−2xN−1−QN−2yN−1 + max
uN−2∈[M1,M2]

HN−2uN−2 +FN−2u2
N−2 +GN−1−Φ

−1
N−1(1−αN−1)))

))−1

dαN−1

The optimal solution u∗N−2 can be derived similarly to that in the case when k = N−1. Denoting that

max
u(N−1)∈[M1,M2]

HN−2uN−2 +FN−2u2
N−2 = HN−2u∗N−2 +FN−2(u∗N−2)

2 = GN−2,

we can obtain the optimal controls

u∗N−2 =



M1, FN−2 = 0 and HN−2 < 0, or FN−2 < 0 and −HN−2
2FN−2

< M1,

or FN−2 > 0 and |M1 +
HN−2
2FN−2

| ≥ |M2 +
HN−2
2FN−2

|,
−HN−2
FN−2

, FN−2 < 0 and M1 ≤ −HN−2
2FN−2

≤M2,

M2, FN−2 = 0 and HN−2 > 0, or FN−2 < 0 and −HN−2
2FN−2

> M2,

or FN−2 > 0 and |M1 +
−HN−2
2FN−2

|< |M2 +
−HN−2
2FN−2

|,
undetermined, FN−2 = 0 and HN−2 = 0,

and optimal value

J(xN−2,yN−2,N−2) =
∫ 1

0

(
1+ exp

(
π√

3(σNvN +χNv′N)
(σNeN +χNe

′
N− (H− ŷN−2

−PN−2xN−2−QN−2yN−2 +GN−2 +GN−1−Φ
−1
N−1(1−αN−1)))

))−1

dαN−1,
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where

GN−2 =



M1HN−2 +M2
1 FN−2, FN−2 = 0 and HN−2 < 0, or FN−2 < 0 and −HN−2

2FN−2
< M1,

or FN−2 > 0 and |M1 +
HN−2
2FN−2

| ≥ |M2 +
HN−2
2FN−2

|,
−H2

N−2
4FN−2

, FN−2 < 0 and M1 ≤ −HN−2
2FN−2

≤M2,

M2HN−2 +M2
2 FN−2, FN−2 = 0 and HN−2 > 0, or FN−2 < 0 and −HN−2

2FN−2
> M2,

or FN−2 > 0 and |M1 +
HN−2
2FN−2

|< |M2 +
HN−2
2FN−2

|,
0, FN−2 = 0 and HN−2 = 0.

By induction, we can get exact expressions of u∗k and J(xk,yk, ŷk,k). The theorem is thus verified.
In Theorems 8 and 9, the multi-stage reliability optimal control problems with linear objective function and

quadratic state transition equation are proposed, respectively. We can obtain the exact expression of optimal
solutions at each stage by recursion equation. For all j = 0,1,2, · · · ,N, the following two algorithms can be
applied to calculate the specific optimal controls and optimal values of uncertain random optimal control problems
(15) and (21), respectively.

Algorithm 1 For problem (15) with linear controls

Step 1. Transform (15) to its subproblem (16) with same control variables.
Step 2. Calculate related parameters Pk,Qk,Hk,Lk,Sk for k =N−1, · · · ,1,0 using (20) with PN = 1,QN = 1.
Step 3. Calculate optimal controls using (18).
Step 4. For the initial states x0,y0, obtain all states through the following state equations:

x( j+1) = a jx( j)−b ju∗j +σ j+1ξ̃ j+1,

y( j+1) = c jy( j)−d ju∗j +χ j+1η̃ j+1,

where ξ̃ j+1, η̃ j+1 are real numbers such that ξ j ∼Nu(e j,v j),η j ∼Nu(e
′
j,v
′
j).

Step 5. Calculate the optimal values of subproblem (16) by (19).
Step 6. Calculate the optimal values of problem (15) by (17)

Algorithm 2 For problem (21) with quadratic controls)

Step 1. Transform (21) to its subproblem (22) with same control variables.
Step 2. Calculate related parameters Pk,Qk,Hk,Fk,Lk,Sk and Gk for k = N − 1, · · · ,1,0 using (26) with

PN = 1,QN = 1.
Step 3. Calculate optimal controls using (24).
Step 4. For the initial states x0,y0, obtain all states through the following state equations:

x( j+1) = a jx( j)−b ju∗j − l j(u∗j)
2 +σ j+1ξ̃ j+1,

y( j+1) = c jy( j)−d ju∗j −q j(u∗j)
2 +χ j+1η̃ j+1,

where ξ̃ j+1, η̃ j+1 are real numbers such that ξ j ∼Nu(e j,v j),η j ∼Nu(e
′
j,v
′
j).

Step 5. Calculate the optimal values of subproblem (22) by (25).
Step 6. Calculate the optimal values of problem (21) by (23).

Remark 1 It can be seen from algorithms 1 and 2 that we calculate the optimal controls of each stage in reverse
order from the last stage to the initial stage. When the initial state is given, the optimal values of all stages can be
calculated from the initial stage to the last stage.
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The algorithms 1 and 2 allow us to solve specific optimal control problems (15) and (21), respectively. and
obtain the optimal controls of maintenance fund and optimal belief reliability index. As a result of derived result-
s, decisions are made by a decision maker to allocate maintenance funds for maximizing a system’s reliability.
The analytic solutions of two special examples are derived by recursive equations, which may not exist when
generalized to other forms. It is therefore possible for future studies to find another effective numerical solutions.

5 Numerical Experiment
Compared with ordinary foil capacitor, a metallized film pulse capacitor processes the characteristics of high
reliability, long life and soft failure. The decrease of capacitance value of a metallized film capacitor is caused by
natural dielectric loss and sudden dielectric loss. The natural loss occurs randomly at any time, and the range of
variation is relatively minor. The sudden loss can be explained as loosening or falling off of the gold spray layer
connection at the end of the capacitor element, or the large area self-healing due to the breakdown of an organic
film.

This paper selects a metallized film pulse capacitor as the research object, and briefly proposes competing
failure model based on uncertain random degradations and shocks. Suppose that z( j) are i.i.d random sudden
shocks at stage j, j = 0,1, · · · ,N, in terms of the arriving moment of shocks whose probability distribution is shown
in Table 1. To optimize belief reliability index of a multi-stage system, it is necessary to allocate maintenance fund
u j ∈ [0,1], that is, one million dollars maintenance fund is available for allocation at each stage,

h1(u j) = b ju j + l ju2
j , j = 0,1, · · · ,N−1,

h2(u j) = d ju j +q ju2
j , j = 0,1, · · · ,N−1,

which reflects the reduction of wear degradations and additional degradations after investing the maintenance
control fund u j (one million dollars). The effectiveness of preventative maintenance depends on technology and
how much investment is made in maintenance control. The coefficients b j, l j,d j and q j are varied which are
assumed and shown in Tables 2. We define a wear process x( j) and additional degradation process y( j) as follows,

x( j+1) = x( j)−b ju j− l ju2
j +σ j+1ξ j+1, j = 0,1, · · · ,N−1,

y( j+1) = y( j)−d ju j−q ju2
j +χ j+1η j+1, j = 0,1, · · · ,N−1,

(28)

where the coefficients σ j,χ j are shown in Table 2, ξ j and η j are uncertain disturbances whose uncertainty distri-
butions are shown in Table 1 in order to indicate how much the wear and additional degradations have fluctuated,
respectively. By controlling the maintenance funds, we expect to maximize belief reliability index of a capacitor
under the condition that both degradations and sudden shocks do not exceed their respective thresholds. Based on
system (28), a maximizing system reliability problem with N stages is established as follows:

R(x0,y0,0) = max
u j∈[0,1]

0≤ j≤N−1

Ch

{
x(N)+

N∑
j=0

y( j)< H,
N⋂

j=0
z( j)< D

}
subject to

x( j+1) = x( j)−b ju j− l ju2
j +σ j+1ξ j+1,

y( j+1) = y( j)−d ju j−q ju2
j +χ j+1η j+1,

j = 0,1, · · · ,N−1 and x(0) = x0,y(0) = y0,

(29)

where H,D,N and other relevant parameters are shown in Table 1. Algorithm 2 show the method that problem
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(29) can be transformed into an subproblem with same optimal controls,

J(x0,y0, ŷ0,0) = max
u j∈[0,1]

0≤ j≤N−1

E[I(ŷ(N)< H)]

subject to
x( j+1) = a jx( j)−b ju j− l ju2

j +σ j+1ξ j+1, j = 0, · · · ,N−1,
y( j+1) = c jy( j)−d ju j−q ju2

j +χ j+1η j+1, j = 0, · · · ,N−1,
ŷ( j+1) = ŷ( j)+ y( j), j = 0, · · · ,N−2,
ŷ(N) = ŷ(N−1)+ y(N−1)+ x(N)+ y(N),

x(0) = x0, y(0) = y0, ŷ(0) = 0.

(30)

Table 1: Parameter values.

Parameters Values Sources
H 2.8µF [31]
D 2µF [31]
N 10 Assumption
x0 0.1µF Assumption
y0 0.08µF Assumption
ξ j Nu(0.25,1.5) Assumption
η j Nu(0.2,2.5) Assumption

z( j) Nr(0.5,0.1) [31]

Table 2: Parameter values.

Stage j b j d j l j q j σ j χ j
0 0.01 0.04 −0.11 −0.08 - -
1 0.02 0.05 −0.10 −0.08 0.11 0.12
2 0.03 0.06 −0.09 −0.07 0.12 0.13
3 0.04 0.07 −0.08 −0.07 0.13 0.13
4 0.05 0.08 −0.07 −0.07 0.13 0.14
5 0.06 0.09 −0.06 −0.06 0.14 0.15
6 0.07 0.10 −0.05 −0.06 0.14 0.16
7 0.08 0.11 −0.04 −0.06 0.15 0.17
8 0.09 0.12 −0.03 −0.06 0.16 0.18
9 0.10 0.13 −0.02 −0.06 0.17 0.19

10 − − − − 0.17 0.20

As shown in Table 3, J and R represent the optimal value of subproblem (30) and optimal reliability index of
problem (29) with optimal controls u∗j , respectively. J′ and R′ represent the original value and original reliability
index without controls u j, i.e. u j = 0, respectively. Theorem 9 provides recursive equations for calculating the
optimal reliability index. We may determine that optimal reliability index of a capacitor is 0.4104 and original
reliability index is 0.2317 within N = 9 stages. It can be concluded that optimal reliability index R is greater
than its original reliability index R′, which confirms that our optimization method can maximize the reliability of a
capacitor. Figure 1 illustrates that the fluctuation of u∗j which may guide us to choose the optimal maintenance fund
at each stage for system optimization. As the capacitor continues to work, we believe that improving maintenance
funds can better maximize system reliability. If u∗j = 1, it implies that all of maintenance funds should be put into
usage to ensure the reliability of a capacitor. Figure 2 shows that wear degradation x( j) with optimal controls is
less than its original wear degradation without controls when j = 5,6, · · · ,10. Figure 3 also indicates that addition
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degradations y( j) with optimal controls are always less than its original addition degradations without controls.
Numerical results also demonstrate that optimal control methods can effectively maximize the system reliability
index.

The reliability index is maximized by decreasing degradation processes through maintenance funds in this
paper. Besides, it is clear from Definition 4 that reliability index R is highly correlated with failure threshold values
H and D, Accordingly, the sensitivity analysis of optimal reliability index on failure thresholds is worth studying,
respectively. Figure 4 shows the sensitivity analysis of optimal reliability index R on soft failure threshold H, and
we may observe that reliability index R is positively correlated with H. Figure 5 shows the sensitivity analysis of
optimal reliability index R on hard failure threshold D, and it is observed that reliability index R is also positively
correlated with D. It is recommended that attention be paid to increasing failure thresholds H,W of a system
thereby improving system reliability. Materials that maintain high temperature and pressure resistance or corrosion
resistance may be applied to raise the threshold values of a system.

Table 3: Controls and reliability index.

Stage j Optimal control u∗j J R Control u j J′ R′

0 0.2253 0.8832 0.4104 0 0.6328 0.2317
1 0.2866 0
2 0.3923 0
3 0.4649 0
4 0.5408 0
5 0.7083 0
6 0.8103 0
7 0.9318 0
8 1 0
9 1 0
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Figure 1: The optimal maintenance fund strategy.
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Figure 2: The optimal wear degradation data and original wear degradation data.
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Figure 3: The optimal additional degradation data and original additional degradation data.
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Figure 4: Sensitivity analysis of optimal reliability index R on H.
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Figure 5: Sensitivity analysis of optimal reliability index R on D.
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6 Conclusion
In this paper, we presented two types of maximizing reliability problems for multi-stage uncertain random systems
when each stage is driven by competitive failure processes. The degradation processes were driven by uncertain
difference equations, and shock processes were represented by random variables. Based on recursion equations,
the exact solutions of maximizing reliability problems were presented in two special cases involving uncertain
linear and quadratic systems. Finally, we gave an example of a metallized film pulse capacitor for the purpose of
illustrating proposed methods. Analyzing the numerical results revealed that the optimal maintenance fund strategy
is capable of maximizing system reliability. The sensitivity analysis of system reliability index with respect to H
and H was conducted, and it was concluded that increasing failure thresholds may maximize the system reliability.
Combining reliability problems with optimal control problems, we are able to come up with analytical solutions for
linear and quadratic special systems. Taking advantage of the fact that there are analytical solutions for these two
types of examples, we may illustrate the method of applying recursive equations to obtain the optimal reliability
index. The analytical solution may not exist if it is generalized to other forms. Thus, it is possible to extend this
work to other forms and investigate suitable numerical algorithms to obtain numerical solutions in the future.
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