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Abstract—Several new expressions for the anytime capacity of
Sahai and Mitter are presented for a time-varying rate-limited
channel with noiseless output feedback. These follow from a
parametric characterization obtained in the case of Markov
channels, and include an explicit formula for the r-bit Markov
erasure channel, as well as formulas for memoryless rate pro-
cesses including Binomial, Poisson, and Geometric distributions.
Beside the memoryless erasure channel and the additive white
Gaussian noise channel with input power constraint, these are
the only cases where explicit anytime capacity formulas are
obtained. At the basis of these results is the study of the threshold
function for mth moment stabilization of a scalar linear system
controlled over a Markov time-varying digital feedback channel
that depends on m and on the channel’s parameters. This
threshold is shown to be a continuous and strictly decreasing
function of m and to have as extreme values the Shannon capacity
and the zero-error capacity as m tends to zero and infinity,

respectively. Its operational interpretation is that of achievable
communication rate, subject to a reliability constraint.

I. INTRODUCTION

We consider the problem of moment stabilization of a

dynamical system where the estimated state is transmitted for

control over a time-varying communication channel. A tutorial

review of the problem with extensive references appears in [1].

The notion of Shannon capacity is in general not sufficient

to characterize the trade-off between the entropy rate produc-

tion of the plant, expressed by the growth of the state space

spanned in open loop, and the communication rate required for

its stabilization. A large Shannon capacity is useless for stabi-

lization if it cannot be used in time for control. For the control

signal to be effective, it must be appropriate to the current state

of the system. Since decoding the wrong codeword implies

applying a wrong signal and driving the system away from

stability, applying an effective control signal depends on the

history of whether previous codewords were decoded correctly

or not. In essence, the stabilization problem is an example

of interactive communication, where two-way communication

occurs through the feedback loop between the plant and the

controller. Alternative capacity notions with stronger reliability

constraints than having a vanishing probability of error, have

been proposed in the context of control, including the zero-

error capacity [2], originally introduced by Shannon [3], and

the anytime capacity proposed by Sahai and Mitter [4], [5]–

[8].

Within this general framework, we focus on the mth

moment stabilization of an unstable scalar system whose

state is communicated over a rate-limited channel capable of

supporting Rk bits at each time step and evolving randomly

in a Markovian fashion, see Fig. 1. The rate process is known

casually to both encoder and decoder. Many variations of this

“bit-pipe” model have been studied in the literature [9]–[29],

including the case of fixed rate channel; the erasure channel

where the rate process can assume value zero; and the packet

loss channel, where the rate process can oscillate randomly

between zero and infinity, allowing a real number of infinite

precision to be transported across the channel in one time

step. Connections between the rate limited and the packet loss

channel have been pointed out in [22], [23], showing that

results for the latter model can be recovered by appropriate

limiting arguments.

The major contribution of this paper is the introduction

of a stability threshold function of the channel’s parameters

and of the moment stability number m that converges to the

Shannon capacity for m → 0, to the zero-error capacity for

m → ∞, and it provides a parametric characterization of the

anytime capacity for the remaining values of m. This function

yields a novel anytime capacity formula in the special case

of the r-bit Markov erasure channel, as well as formulas for

memoryless rate processes including Binomial, Poisson, and

Geometric distributions.

Throughout the paper, the following notation is used. Log-

arithms are assumed to be in base two; random variables

are denoted with uppercase letters, while their realizations

with lowercase letters; matrices are also denoted in uppercase

letters, using the special typeset A.

II. MOMENT STABILIZATION OVER MARKOV CHANNELS

We consider the stability of linear dynamical systems when

the estimated state is sent to the controller over a digital

communication link whose state is described by a Markov

process, as depicted in Fig. 1.

A. System model

Consider the scalar dynamical system

xk+1 = λxk + uk + vk,

yk = xk + wk, (1)

where k ∈ N, and |λ| ≥ 1. The variable xk represents the

state of the system, uk the control input, vk is an additive

stochastic disturbance, yk is the sensor measurement, and wk
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Fig. 1. Feedback loop model. The estimated state is quantized, encoded
and sent to a decoder over a digital channel of state Rk that evolves in time
according to a Markov process.

is the measurement noise. Both disturbance and noise are

independent of each other and of the initial condition x0. They

are also independent of the channel state, as defined below.

B. Channel Model

The state observer is connected to the actuator through

a noiseless digital communication link that at each time k
allows transmission without errors of Rk bits. The rate process

{Rk}k≥0 is modeled as a homogeneous positive-recurrent

Markov process defined on the finite set

R = {r̄1, . . . , r̄n}, (2)

for some integer numbers 0 ≤ r̄1 < · · · < r̄n, and with one-

step transition probability matrix P having entries

pij = P{Rk = r̄j |Rk−1 = r̄i} (3)

for every i, j ∈ {1, . . . , n}. In the sequel, we define R ∈ Z
n×n
+

as the diagonal matrix with diagonal entries r̄1, . . . , r̄n, i.e.,

R = diag(r̄1, . . . , r̄n). (4)

Encoder and decoder are supposed to have causal knowledge

of the rate process.

This noiseless digital link corresponds to a discrete-

memoryless channel with Markov state available causally at

both the encoder and the decoder. A channel with state is

defined by a triple (X ×S, p(y|x, s),Y) consisting of an input

set X , a state set S, an output set Y , and a transition probability

matrix p(y|x) for every x ∈ X , s ∈ S, and y ∈ Y . This

channel is memoryless if the output yk at time k is condi-

tionally independent of everything else given (xk, sk). The

state sequence is Markov if S0, S1, . . . forms a Markov chain.

According to these definitions, our channel model is a discrete-

memoryless channel with Markov state (X × S, p(y|x, s),Y)
with X = Y = {1, . . . , r̄n}, S = {r̄1, · · · , r̄n},

p(y|x, s) =

{

1 x = y and x ≤ s

0. otherwise
(5)

and state transition probabilities

p(sk+1 = r̄j |sk = r̄i) = pij . (6)

The Shannon capacity of this channel is [30]

C =

n
∑

i=1

πir̄i, (7)

where (π1, . . . , πn) denotes the unique stationary distribution

of P.

The zero-error capacity of this channel is [3]

C0 = r̄1. (8)

The capacities in (7) and (8) are the limiting values of

a stability threshold function indicating the channel’s rate-

reliability constraint required to achieve a given level of

stabilization. As m → ∞ and the system is highly stable, then

the stability threshold function tends to the zero-error capacity

that has a hard reliability constraint of providing no decoding

error. Conversely, as m → 0 and the system’s stability level

decreases, then the stability threshold function tends to the

Shannon capacity that has a weak reliability constraint of

vanishing probability of error.

C. Stability threshold function

The system (1) is mth moment stable if

sup
k

E[|Xk|
m] < ∞, (9)

where the expectation is taken with respect to the random

initial condition x0, the additive disturbance vk, and the rate

process Rk.

The following Theorem establishes the stability threshold

for the m-th moment stability of (1) in terms of the unstable

mode |λ| and the spectral radius ρ(·) of PT2−mR, where 2−mR

denotes the base-2 matrix exponential of mR, i.e.,

2−mR = diag(2−mr̄1 , · · · , 2−mr̄n). (10)

Theorem 1. There exists a control scheme that stabilizes the

scalar system (1) in mth momemt sense if and only if

log |λ| . −
1

m
log ρ(PT2−mR) , R(m). (11)

The usage of the symbol “.” indicates that while the

necessary condition holds with a weak inequality, the sufficient

condition requires a strong inequality.

We now mention several properties of the threshold function

R(m).

Proposition 2. The following facts hold:

1) Monotonicity: R(m) is continuous and strictly decreas-

ing for m > 0.

2) Convergence to the Shannon capacity:

lim
m→0

R(m) =

n
∑

i=1

πir̄i = C. (12)

3) Convergence to the Zero Error capacity:

R(m) ∼ r̄1 −
1

m
log p11, as m → ∞, (13)

and hence

lim
m→∞

R(m) = r̄1 = C0. (14)



4) Sensitivity with respect to self-loop probabilities:

dR(m)

dpii
= −

2−mr̄ii

mρ(PT2−mR)

|D(1)|
∑n

i=1 |D(i)|
< 0, (15)

where D := ρ(PT2−mR)I−PT2−mR, I denotes the n×
n identity matrix, and |D(i)| is the determinant of the

matrix obtained by eliminating the ith row and the ith
column from D. We also have the asymptotic behavior

dR(m)

dp11
∼ −

1

mp11 ln(2)
as m → ∞. (16)

5) The function mR(m) is nonnegative, strictly increasing,

and strictly concave. If r̄1 6= 0, then mR(m) grows

unbounded as m → ∞. If instead r̄1 = 0, then

lim
m→∞

mR(m) = − log p11. (17)

III. ANYTIME CAPACITY OF MARKOV CHANNELS

We relate the stability threshold function R(m) to the

anytime capacity. For the given Markov channel, it provides a

parametric representation of the anytime capacity in terms of

system’s stability level m.

The anytime capacity is defined in the following context [6].

Consider a system for information transmission that allows the

decoding time to be infinite, and improves the reliability of the

estimated message as time progresses. More precisely, at each

step k in the evolution of the plant a new message mk of r
bits is generated that must be sent over the channel. The coder

sends a bit over the channel at each k and the decoder upon

reception of the new bit updates the estimates for all messages

up to time k. It follows that at time k messages

m0,m1, . . . ,mk

are considered for estimation, while estimates

m̂0|k, m̂1|k, . . . , m̂k|k

are constructed, given all the bits received up to time k.

Hence, the processing operation for any message mi continues

indefinitely for all k ≥ i. A reliability level α is achieved in

the given transmission system if for all k the probability that

there exists at least a message in the past whose estimate is

incorrect decreases α-exponentially with the number of bits

received, namely for all d ≤ k

P{(M̂0|k, . . . , M̂d|k) 6= (M0, . . . ,Md)} = O(2−αd). (18)

The described communication system is characterized by a

rate-reliability pair (r, α). The work in [6] has shown that for

scalar systems the ability to achieve stability depends on the

ability to construct such a communication system, in terms of

achievable coding and decoding schemes, with a given rate-

reliability constraints.

To state this result in the context of our Markov channel,

let the α-anytime capacity CA(α) be the supremum of the

rate r that can be achieved with reliability α. The problems

of α-reliable communication and mth moment stabilization of

a scalar system over a Markov channel are then equivalent in

the sense of the following theorem.

Theorem 3 (Sahai, Mitter [6]). The necessary and sufficient

condition for mth moment stabilization of a scalar system with

bounded disturbances and in the presence of channel output

feedback over a Markov channel is

log |λ| . CA(m log |λ|). (19)

The anytime capacity is an intermediate notion between the

zero-error capacity and the Shannon capacity. The zero-error

capacity requires transmission without error. The Shannon ca-

pacity requires the decoding error to tend to zero by increasing

the length of the code. In the presence of disturbances, only

a critical value of the zero-error capacity can guarantee the

almost sure stability of the system [2]. On the other hand, for

scalar systems in presence of bounded disturbances, a critical

value of the anytime capacity can guarantee the ability to

stabilize the system in the weaker mth moment sense.

By combining Theorem 1 and Theorem 3, we obtain the

following result.

Theorem 4. The following holds:

1) Parametric characterization of the anytime capacity: For

every m > 0, the anytime capacity CA satisfies

CA

(

mR(m)
)

= R(m), (20)

i.e., for every α ≥ 0, there exists a unique m(α) such

that

m(α)R
(

m(α)
)

= α (21)

and

CA(α) = R
(

m(α)
)

=
α

m(α)
. (22)

2) CA(α) is a strictly decreasing function function of α >
0.

3) Convergence to the Shannon capacity:

lim
α→0

CA(α) =

n
∑

i=1

πiri = C, (23)

4) Convergence to the Zero Error capacity: If r̄1 = 0, then

for every α ≥ log(1/p11)

CA(α) = 0 = C0. (24)

Conversely, if r̄1 6= 0, then CA(α) has unbounded

support and

CA(α) ∼ r̄1
α

α− log(1/p11)
, as α → ∞, (25)

hence

lim
α→∞

CA(α) = r̄1 = C0. (26)



IV. THE MARKOV ERASURE CHANNEL

We use the stability threshold function R(m) to compute the

anytime capacity of the Markov erasure channel. The Markov

erasure channel corresponds to a two-state Markov process

where n = 2 R = {0, r̄}, p12 = q, and p21 = p, where

0 < p, q < 1. In this case,

PT2−mR =

(

(1− q) 1
2mr̄ p

q 1
2mr̄ (1− p)

)

, (27)

and we have the following result.

Theorem 5. The anytime capacity of the Markov Erasure

Channel is

CA(α) =
αr̄

α+ log2

(

1−p−2α(1−p−q)
1−(1−q)2α

) , (28)

if 0 ≤ α < − log2(1 − q), and 0 otherwise.

A. Special cases

Several special cases recover previous results in the lit-

erature. By (28) it follows that the anytime capacity of the

binary erasure channel (BEC) with Markov erasures and with

noiseless channel output feedback is

CA(α) =
α

α+ log2

(

1−p−2α(1−p−q)
1−(1−q)2α

) . (29)

By letting q = 1 − p, the erasure process becomes i.i.d.

and we recover the anytime capacity of the memoryless BEC

with erasure probability p derived by Sahai [4, page 129]

(in parametric form) and by Xu [8, Theorem 1.3] (in non-

parametric form)

CA(α) =
α

α+ log2

(

1−p
1−p2α

) . (30)

By (28), letting α → 0, we have that

lim
α→0

CA(α) =
q

p+ q
r̄ = C, (31)

where the expectation is taken with respect to the stationary

distribution of P. This recovers the Shannon capacity of an r̄-

bit erasure channel with Markov erasures and with noiseless

channel output feedback.

In the case n = 2, r̄1 = 0, r̄2 = r, and an i.i.d. rate process

with P{Rk = 0} = p1 and P{Rk = r} = p2 for all k’s, then

the stability condition becomes

|λ|m
(

p1 + p22
−mr

)

< 1,

which provides a converse to the achievable scheme of Yüksel

and Meyn [31, Theorem 3.3].

If we further let r → ∞, then the stability condition

p1 > 1/|λ|m depends only on the erasure rate of the channel.

In this case, our condition generalizes the packet loss model

result in [24].

V. MEMORYLESS CHANNELS

Consider the special case of an i.i.d. rate process Rk where

Rk ∼ R has probability mass function pi = P{R = r̄i},

r̄i ∈ R. For t real, Let MR(t) = E(etR) denote the moment

generating function of R and let M−1
R (y) denotes the inverse

of the MR(t), if it exists, i.e., M−1
R (y) = t if and only if

MR(t) = y.

We have the following result.

Theorem 6. The anytime capacity of a memoryless channel

with rate distribution R is

CA(α) =
ln 2−α

M−1
R (2−α)

(32)

for α < − log p11 if r̄0 = 0, or for any α > 0 if r̄0 6= 0.

Theorem 6 shows that in the case where the channel

is memoryless, the anytime capacity can be evaluated by

computing the inverse of the moment generating function of

R, as illustrated in the next three examples.

Example V.1. Suppose that R is a binomial random variable

with parameters k and 1− p. Then,

MR(t) = (p+ (1− p)et)k (33)

and

M−1
R (y) = ln

y1/k − p

1− p
, y < pk, (34)

and thus by (32)

CA(α) =
α

α/k + log2

(

1−p
1−p2α/k

) (35)

for α < −k log p. Notice that (35) recovers (30) in the special

case k = 1 in which R is Bernoulli with parameter 1− p.

Example V.2. Suppose that R is a Poisson random variable

with parameter λ. Then,

MR(t) = eλ(e
t−1) (36)

and

M−1
R (y) = ln(1 + 1/λ ln y), y > 0, (37)

and thus by (32)

CA(α) = −
α

log(1− α/λ ln 2)
(38)

for α < −λ/ ln 2.

Notice in both examples r̄1 = 0, so the anytime capacity

has bounded support. In the next example r̄1 = 1 and thus the

anytime capacity is defined for all α > 0.

Example V.3. Suppose that R is a geometric random variable

with parameter p. Then,

MR(t) =
pet

1− (1− p)et
(39)



0 1 2 3 4 5
0

0.5

1

1.5

2

α

C
A

(α
)

 

 
Binominal(4,1/2)
Poisson(2)
Geometric(1/2)
Uniform([0,4])

Fig. 2. Comparison of the anytime capacity for different memoryless
channels. For the uniform distribution the plot is obtained numerically.

for t < − ln(1− t) and

M−1
R (y) = ln

y

p+ y(1− p)
, y > 0, (40)

for y > 0, and thus

CA(α) =
α

log
(

(1− p) + p2α
) , α > 0. (41)
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[15] O. C. Imer, S. Yüksel, and T. Başar, “Optimal control of LTI systems
over unreliable communication links,” Automatica, vol. 42, no. 9, pp.
1429–1439, 2006.

[16] S. Tatikonda and S. K. Mitter, “Control under communication con-
straints,” IEEE Transactions on Automatic Control, vol. 49, no. 7, pp.
1056–1068, July 2004.

[17] ——, “Control over noisy channels,” IEEE Transactions on Automatic

Control, vol. 49, no. 7, pp. 1196–1201, July 2004.

[18] V. Gupta and N. Martins, “On stability in the presence of analog erasure
channel between the controller and the actuator,” IEEE Transactions on

Automatic Control, vol. 55, no. 1, pp. 175–179, Jan. 2010.
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APPENDIX A

STABILITY THRESHOLD FUNCTION EXAMPLES

Example A.1. Let n = 4,R = {1, 3, 4, 5} and P be is a 4×4
circulant matrix with first row equal to 1

16 (1, 13, 1, 1), namely

P =
1

16











1 13 1 1

13 1 1 1

1 1 1 13

1 1 13 1











. (42)

In this case it is easy to compute C = 1
4 (1 + 3+ 4+ 5) = 13

4
and C0 = 1. Figure 3 plots the stability threshold function

R(m) (together with its asymptotic approximation) and the

anytime capacity CA(α). Both curves have the same shape

and they are in fact related by an affine transformation as

m grows. Furthermore, both curves have unbounded support

and tend to one at infinity. There is a change of convexity for

small values of m and α, as indication that R(m) and CA(α)
are generally not convex functions. In contrast, the function

φ(m) = mR(m), reported in red in the top plot of Figure 3,

is strictly convex and increasing.

0 5 10 15 20
0

1

2

3

R
(m

)

m
0 5 10 15 20

0

2

4

m
R
(m

)

− log p11

−

1

m
log p11

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

C
A

(α
)

α

− log p11

Fig. 4. Stability threshold function and anytime capacity for Example A.2.

Example A.2. Let R = {0, 3, 4, 5} and P is as in (42). The

only difference with the previous example is that r̄1 is now 0

instead than 1. In this case it is easy to compute C = 1
4 (0+3+

4 + 5) = 3 and C0 = 0. Figure 4 plots the stability threshold

function R(m) (together with its asymptotic approximation)

and the anytime capacity CA(α). In this case, while R(m) has

unbounded support, CA(α) is zero for all α ≥ − log p11 =
log 16 = 4. This occurs because the function φ(m) = mR(m)
saturates as m → ∞, tending to the limiting value − log p11 =
4.

When viewed together, the two examples above show that

for some channels a communication system with an arbitrary

rate-reliability pair (r, α) cannot be constructed, because the

anytime capacity may have bounded support and tend abruptly

to zero. However, in order to achieve mth moment stabilization

it is sufficient to consider the simpler function R(m) =
CA(mR(m)), and construct a communication system whose

reliability level depends on the desired stabilization level. It

follows that we do not need to compute the whole anytime

capacity if we are interested only in moment stabilization, and

we may be content with determining the threshold function

R(m) corresponding to its parametric representation. The



extremal properties of R(m) determine the support of the

anytime capacity corresponding to the achievable reliability

level α. If R(m) = O(1/m) then the anytime capacity has

support bounded by the pre-constant of the asymptotic order.

On the other hand, if R(m) decreases at most sub-linearly

to zero, or it tends to a constant zero-error capacity, then the

anytime capacity has unbounded support and any reliability

level α is achieved.

APPENDIX B

AUXILIARY RESULTS

We first state without proof a series of auxiliary results that

are needed in the rest of the paper. We begin with a maximum

entropy result which generalizes the well-know result that the

second moment of a continuous random variable X is lower

bounded by its entropy power e2h(X) to the case of the Lm-

norm of a continuous random vector.

Lemma 1. Let X be a continuous n-dimensional vector-

valued random variable with E[||X ||mm] < ∞, where m is

a positive real number. Let ‖X‖m = (
∑

i |Xi|m)1/m denotes

the Lm-norm of X . Then,

E[||X ||mm] ≥
n

cm
e

m
n h(X) (43)

where cm = 2mm1−me
(

Γ( 1
m )
)m

and Γ(x) =
∫∞

0 e−ttx−1dt.
Equality holds if and only if X1, · · · , Xn are i.i.d ∼ X , where

fX(x) =
exp

(

− |x|m

mµm

)

2m(1−m)/mµΓ
(

1
m

) , x ∈ R. (44)

It should be remarked that inequality (43) with n = 1 is a

special case of a result proved in [32] relating the mth moment

and the Renyi entropy of a random variable.

Next, we state a known result on the log-convexity of the

spectral radius of a nonnegative matrix which is needed to

prove some of the properties of R(m).

Lemma 2 (Friedland Theorem 4.2 [33]). Let Dn be the set of

n× n real-valued diagonal matrices. Let A be a fixed n× n
non-negative matrix having a positive spectral radius. Define

φ : Dn → R by φ(D) := log ρ(eDA). Then φ(D) is a convex

functional on Dn. Specifically: for every D1,D2 ∈ Dn and

α ∈ (0, 1),

φ(αD1 + (1− α)D2) ≤ αφ(D1) + (1 − α)φ(D2). (45)

Moreover, if A is irreducible and the diagonal entries of A
are positive (or A is fully indecomposable) then equality holds

in (45) if and only if

D1 − D2 = cI (46)

for some c ∈ R, where I is the identity matrix.

Next, we state a result on the derivative of the spectral radius

as a function of non-negative matrix elements.

Lemma 3 (Cohen Theorem 1 [34]). Let A be a fixed n × n
non-negative matrix having a positive spectral radius. Define

D := ρ(A)I − A, where I denotes the n × n identity matrix.

Then,

0 <
dρ(A)

da11
=

|D(1)|
∑n

i=1 |D(i)|
< 1 (47)

where D := ρ(A)I−A, I denotes the n×n identity matrix, and

|D(i)| is the determinant of the matrix obtained by eliminating

the ith row and the ith column from D.

Finally, we state a result on the asymptotic behavior of

PT2−mR as m → ∞.

Lemma 4. The following equality holds

lim
m→0

(PT2−mR)
1
m = lim

m→0
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APPENDIX C

MARKOV JUMP LINEAR SYSTEMS.

Consider the scalar non-homogeneous MJLS [35] with

dynamics

zk+1 = akzk + wk, (48)

where zk denotes the state, wk is an additive disturbance, and

{Ak}k≥0 is a Markov rate process defined on a finite set

A = {ā1, . . . , ān} ⊆ R
n, (49)

and with one-step transition probability matrix P having

entries

pij = P{Ak = āj |Ak−1 = r̄i} (50)

for every i, j ∈ {1, . . . , n}.

We assume that the initial condition Z0 and the disturbance

process {Wk}k are mutually independent random variables

with finite mth moment. The system (48) is said to be weakly

mth moment stable if

sup
k

E(|Z|m) < ∞. (51)

Let A ∈ Z
n×n
+ be a diagonal matrix with diagonal entries

ā1, . . . , ān, i.e.,

A = diag(|ā1|
m, . . . , |ān|

m). (52)

The following theorem states the necessary and sufficient

condition for m-th moment stability of the system (48).

Theorem 7. For any m ∈ R
+, the MJLS (48) is weakly mth

moment stable iff

ρ(PTA) . 1. (53)

Proof: The sufficient condition is obtained by subsam-

pling the original MJLS at a sampling rate of τ samples and

then showing the weak stability of the subsampled system

Yk = Zkτ , k = 0, 1, · · · . The weak stability of {Yk}k is

sufficient to ensure that (51) holds, because the mth moment

of the system in fact cannot grow unbounded in any finite time



horizon due the assumptions that |ā1|, . . . , |ān| are finite and

that supk E(|Wk|m) ≤ ∞.

By iterating (48) τ times, it can be seen that the subsampled

process is a non-homogeneous MJLS with dynamics

yk+1 = bkyk + ck, (54)

where for every k ≥ 0 we define Bk =
∏(k+1)τ−1

j=kτ Ak as the

random expansion of the open-loop system during the k-th

sampling interval and Ck =
∑τ−1

j=0

(
∏τ−1

i=j Akτ+i

)

Wkτ+j as

the total disturbance entering the system in the k-th sampling

interval. Notice that supk E(|Ck|m) < ∞, since by assumption

the disturbance process {Wk}k has bounded mth moment.

By taking the mth power in both sides of (54) and by

applying the inequality (x + y)m ≤ 2m(xm + ym), which

holds for any m > 0, it follows that

E(|Y |m) ≤ 2mE(|Bk|
m|Yk|

m) + const, (55)

where const represents a uniform bound on the mth moment

of {Ck}k. Let vk,i = E(|Yk+1|m1{Ak=āi
}), i = 1, . . . , n.

By repeatedly applying the law of total probability on both

sides of (55), it can be easily seen that the vector vk =
(vk,1, . . . , vk,n)

T satisfies the following component-wise vec-

tor inequality

vk+1 ≤ 2m
(

PTA
)τ
vk + c, (56)

where c is again a constant that only depends on the

statistics of the disturbance process. If (??) holds we can

choose the subsampling rate τ large enough to ensure that

ρ(2m
(

PTA
)τ
) < 1 and thus that the above recursion re-

mains bounded. Since E(|Yk|
m) =

∑n
i=1 vk,i it follows that

ρ(PTA) < 1 is sufficient to ensure that supk E(|Yk|m) < ∞
as desired.

The proof of the necessary condition relies on the fact

that the non-homogeneous MJLS {Zk}k is weakly stable

only if the homogeneous MJLS obtained by setting wk = 0
in (48) is weakly stable. Therefore, we focus on the homo-

geneous setting wherein wk = 0 for all k and let vk,i =
E(|Zk+1|m1{Ak=āi

}) for i = 1, . . . , n. By (48) and the law

of total probability, the vector vk = (vk,1, . . . , vk,n)
T evolves

over time according to the linear system

vk+1 = PTAvk. (57)

Since E(|Zk|m) =
∑n

i=1 vk,i, we conclude that (51) can hold

only if the above linear system is stable and therefore only if

ρ(PTA) ≤ 1, as claimed.

Theorem 7 extends the well known conditions for second

moment stability given in [35] to m-th moment stability. A

similar result appears in [36, Theorem 3.2] in the special case

of a homogeneous MJLS driven by an i.i.d. rate process.

APPENDIX D

PROOFS

A. Theorem 1

Necessity. To establish the necessary condition, we prove

that for every k = 0, 1, . . .,

cm E[|Xk|
m] ≥ E[|Zk|], (58)

where cm is a constant defined in Lemma 1 and {zk} is a

homogeneous MJLS with dynamics

zk+1 =
|λ|m

2mrk
zk (59)

and z0 = e2h(X0).

Let Sk = {S0, . . . , Sk} denote the symbols transmitted over

the digital link up to time k. By the law of total expectation

and Lemma 1 ,

E(|Xk+1|
m) ≥

1

cm
ESk

(

emh(Xk+1|S
k=ak)

)

. (60)

It follows that the m-th moment of the state is lower bounded

by the average entropy power of Xk conditional on Sk. From

the translation invariance property of the differential entropy,

the conditional version of entropy power inequality [37], and

Assumption A2, it follows that

ESk

(

emh(Xk+1|S
k=sk)

)

= ESk

(

emh(λXk+x̂(sk)+Vk|S
k=sk)

)

≥ ESk

(

(

e2h(λXk|S
k=sk) + e2h(Vk)

)
m
2

)

≥ ESk

(

emh(λXk|S
k=sk)

)

= |λ|m ESk

(

emh(Xk|S
k=sk)

)

(61)

We can further lower bound (61) as in Lemma 1 in [22], and

obtain that for every k ≥ 0

ESk|Sk−1,Rk

(

emh(Xk|S
k=sk)

)

≥
1

2mRk
emh(Xk|S

k−1=sk−1),

(62)

with S−1 = ∅. By the tower rule of conditional expectation,

it then follows that

ESk

(

emh(Xk|S
k=sk)

)

≥

ESk−1,Rk

(

1

2mRk
emh(Xk|S

k−1=sk−1)

)

. (63)

Combining (63) and (61) gives

ESk

(

emh(Xk+1|S
k=sk)

)

≥ ERk

(

|λ|m

2mRk
ESk−1|Rk

(

emh(Xk|S
k−1=sk−1)

)

)

. (64)

Following similar steps and using the Markov chain Sk−1 →
(Sk−2, Rk−1) → Rk, we obtain

ESk−1|Rk

(

emh(Xk|S
k−1=sk−1)

)

≥ |λ|m ESk−1|Rk

(

emh(Xk−1|S
k−1=sk−1)

)

≥ ESk−2,Rk−1|Rk

(

|λ|m

2mRk−1
emh(Xk−1|S

k−2=sk−2)

)

= ERk−1|Rk

(

|λ|m

22Rk−1
ESk−2|Rk−1,Rk

[

e2h(Xk−1|S
k−2=sk−2)

]

)

.

(65)

Substituting (65) into (64) and re-iterating k times, it follows

that ESk

(

emh(Xk+1|S
k=sk)

)

is lower bounded by

ERk−1,Rk

( |λ|2m

2m(Rk−1+Rk)



× ESk−2|Rk−1,Rk

(

emh(Xk−1|S
k−2=sk−2)

))

≥ ER1,...,Rk

(

|λ|mk

2m(R1+···+Rk)
ES1|R1,...,Rk

(

emh(X1|S0=s0)
)

)

(66)

= E

(

|λ|m(k+1)

2m(R1+···+Rk)

)

emh(X0), (67)

where (66) uses the fact that the initial condition of the state

x0 is independent of the rate process Rk. Let {Zk} be a non-

homogeneous MJLS with dynamics

Zk+1 = |λ|m/2mRkZk, (68)

with z0 = emh(X0). By taking the expectation on both sides

of (68) and iterating k times, it is easy to see that the right hand

side of (67) is equal to the first moment of Zk+1. Hence, com-

bining (60)–(67) we conclude that E(|Xk|m) > 1
cm

E(|Zk|),
which is the claim.

Sufficiency. Let ω denote a uniform bound on the measure

of the support of the initial condition, the noise, and the

disturbance. Then, we claim that the plant dynamics can be

bounded as follows

|xk| ≤ zk, k = 0, 1, . . . , (69)

where Zk is a homogeneous MJLS with dynamics

zk+1 =
|λ|

2Rk
zk + ω, k = 0, 1, . . .

and z0 = ω. To see this, consider the following inductive

proof. By assumption, |x0| ≤ ω = z0. Assume that the claim

holds for all times up to k, so |xk| ≤ zk. Suppose that at

time k the uncertainty set [−zk, zk] is quantized using a rk-bit

uniform quantizer, and that the encoder communicates to the

decoder the interval containing the state. Then, the decoder

approximates the state by the centroid x̂k of this interval

and sends to the plant the control input uk = −λx̂k. By

construction |xk − x̂k| ≤ zk/2
rk , thus

|xk+1| = |λ(xk − x̂k) + vk|

≤ |λ||xk − x̂k|+ ω

≤
|λ|

2rk
zk + ω

= zk+1 (70)

i.e., the claim holds at time k+1 as well. It follows that xk is

mth moment stable if the homogeneous MJLS zk is weakly

mth moment stable, i.e., if and only if (11) holds.

B. Proposition 2

The monotonicity property is an immediate consequence

of the log-convexity of the spectral radius of a nonnegative

matrix, see, e.g. 2. Let D1 = −mR ln 2, D2 = 0n×n and

α = n
m . Notice that 2−mR = eD1 , log ρ(PTeD2) = 0, and

PT2−mR = PTeαD1 . Then, for every n < m, by Lemma 2

−nR(m) =
n

m
log ρ(PT2−mR)

= α log ρ(PTeD1) + (1− α) log ρ(PTeD2)

> log ρ(PTeαD1+(1−α)D2)

= log ρ(PT2−nR)

= −nR(n). (71)

By dividing both sides by −n, it then follows that R(n) >
R(m), establishing that R(m) is a strictly decreasing function

of m.

To establish the convergence of R(m) to the Shannon

capacity as m → 0, observe that

lim
m→0

R(m)

= lim
m→0

log ρ
(

(PT2−mR)
1
m

)

= log ρ
(

lim
m→0

(PT2−mR)
1
m

)

(a)
= log ρ









lim
m→0
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mr̄n
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πn2
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mr̄n













1
m









= lim
m→0

1

m
log ρ













π12
mr̄1 · · · π12

mr̄n

...
...

...

πn2
mr̄1 · · · πn2

mr̄n













= lim
m→0

1

m
log

(

∑

i

πi2
mr̄i

)

(b)
= lim

m→0

∑

i πiri2
mr̄i

∑

i πi2mr̄i

=
∑

i

πi2
mr̄i

where (a) follows from Lemma 4 and (b) follows from

l’Hôpital’s rule.

The convergence of R(m) to the zero-error capacity as m →
∞ can be proved using the fact that, as m → ∞

R(m) = −
1

m
log ρ(PT2−mR)

= − log ρ
(

(PT2−mR)1/m
)

= r̄1 − log ρ















p11 · · · pn12
−m(r̄n−r̄1)

...
...

...

p1n · · · pnn2
−m(r̄n−r̄1)







1/m








∼ r̄1 −
1

m
log p11,

where the last equation follows from the fact that for any

column vector v = (v1, . . . , vn)
T, ρ(

[

v 0n×(n−1)

]

) = v1.

From the above asymptotic approximation it immediately

follows that if r̄1 = 0, then

lim
m→∞

mR(m) = − log p11. (72)

Next, the property on the sensitivity with respect to self-

loop probabilities is a direct application of a result in [34],

which is re-stated here as Lemma 3, on the derivative of the

spectral radius as a function of non-negative matrix elements.



Next, the monotonicity property of −mR(m) =
log ρ(PT2−mR) follows from the fact that all the entries of the

matrix PT2−mR are monotonically decreasing in m. Finally,

the strict concavity of mR(m) is again a direct consequence

of the log-convexity of the spectral radius of a nonnegative

matrix stated in Lemma 2.

C. Theorem 4

Proof: By Theorem 1 and Theorem 3, at the boundaries

of the stability region we must have that

log |λ| = R(m). (73)

and

log |λ| = C(m log |λ|). (74)

Therefore, (20) follows by combining (73) and (74). Next,

by Proposition 2, the function φ(m) = mR(m) is increasing

and strictly concave, thus invertible. It follows that for every

α ≥ 0, there exists a unique m := m(α) such that

mR(m) = α. (75)

Substituting this equality into (20), it follows that CA(α) =
R
(

m(α)
)

. as claimed. The remaining properties are immediate

consequences of Proposition 2. By definition, CA(α) is non

increasing in α. Since both mR(m) and R(m) are both

monotonic function of m, however, it follows that CA(α) must

be strictly decreasing in α, thus establishing 2). Property 3)

follows from (20) combined with the fact that mR(m) → 0
and R(m) → C as m → 0. Similarly, property 4) follow

directly by combining (20) with properties 3) and 5) in

Proposition 2.

D. Theorem 5

Proof: By (21) and the definition of R(m), for every α
there exists an m(α) such that

ρ(PT2−m(α)R) = 2−α (76)

In the case of a Markov erasure channel, a simple calculation

shows that

ρ(PT2−mR) =
tr

2
+

1

2

√

tr2 − 4det, (77)

where tr and det denote the trace and determinant of (27),

respectively. By combining (76) and (77) and squaring both

sides of the resulting equation, it follows that m(α) must

satisfy

2−αtr − 4det = 2−α+1, (78)

where tr = (1− q) + 2−m(α)r̄(1− p) and det = 2−m(α)r̄(1−
p− q). Solving (78) yields

m(α) =
1

r̄

(

α+ log2

(

1− p− 2α(1− p− q)

1− (1− q)2α

))

(79)

for 0 ≤ α < − log2(1− q). Finally, substituting (79) into (22)

yields (28).

E. Theorem 6

Proof: In the special case of an i.i.d. rate process,

PT2−mR =
(

p1, . . . , pn
)T(

2−mr̄1 , . . . , 2−mr̄n
)

is a rank-one matrix whose only nonzero eigenvalue is
∑n

i=1 pi2
−mr̄i = E(2−mR). Therefore, in this case

R(m) = −
1

m
logE(2−mR)

= −
1

m
logMR(−m ln 2). (80)

By combining (21) and (80), we find that α =
− logMR(−m(α) ln 2) and so

m(α) = −
1

ln 2
M−1

R (2−α), (81)

where M−1
R (y) exists in light of property 5) in Proposition 2.

Thus, by (22), (32) follows.
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