References
1. Mattson, C.L., Tanz, L.J., Quinn, K., Kariisa, M., Patel, P. &
Davis, N.L. Trends and geographic patterns in drug and synthetic opioid
overdose deaths - United States, 2013-2019. MMWR Morb. Mortal.
Wkly. Rep. 70 , 202-207 (2021).
2. Martin, W.R., Eades, C.G., Thompson, J.A., Huppler, R.E. & Gilbert,
P.E. The effects of morphine- and nalorphine- like drugs in the
nondependent and morphine-dependent chronic spinal dog. J.
Pharmacol. Exp. Ther. 197 , 517-532 (1976).
3. Negus, S.S., Bidlack, J.M., Mello, N.K., Furness, M.S., Rice, K.C. &
Brandt, M.R. Delta opioid antagonist effects of buprenorphine in rhesus
monkeys. Behav. Pharmacol. 13 , 557-570 (2002).
4. Leander, J.D. Buprenorphine is a potent kappa-opioid receptor
antagonist in pigeons and mice. Eur. J. Pharmacol. 151 ,
457-461 (1988).
5. Wnendt, S., Krüger, T., Janocha, E., Hildebrandt, D. & Englberger,
W. Agonistic effect of buprenorphine in a nociceptin/OFQ
receptor-triggered reporter gene assay. Mol. Pharmacol.56 , 334-338 (1999).
6. Pergolizzi, J. et al. Current knowledge of buprenorphine and
its unique pharmacological profile. Pain Pract. 10 ,
428-450 (2010).
7. Donohue, J.M. et al. Use of medications for treatment of
opioid use disorder among US Medicaid enrollees in 11 states, 2014-2018.JAMA 326 , 154-164 (2021).
8. Ko, J.Y. et al. Vital signs: prescription opioid pain reliever
use during pregnancy — 34 U.S. jurisdictions, 2019. MMWR Morb.
Mortal. Wkly. Rep. 69 , 897–903 (2020).
9. Hudak, M.L. & Tan, R.C. Neonatal drug withdrawal. Pediatrics129 , e540-560 (2012).
10. Wachman, E.M., Schiff, D.M. & Silverstein, M. Neonatal abstinence
syndrome: advances in diagnosis and treatment. JAMA 319 ,
1362-1374 (2018).
11. Simon, A.E., Freund, M.P., Archer, S.W. & Bremer, A.A. Toward the
use of buprenorphine in infants for neonatal opioid withdrawal syndrome:
summary of an NIH workshop. J. Perinatol. 1-3 (2021).
12. Ng, C.M. et al. Population pharmacokinetic model of
sublingual buprenorphine in neonatal abstinence syndrome.Pharmacotherapy 35 , 670-680 (2015).
13. Mizuno, T. et al. Physiologic indirect response modeling to
describe buprenorphine pharmacodynamics in newborns treated for neonatal
opioid withdrawal syndrome. Clin. Pharmacokinet. 60 ,
249-259 (2021).
14. van Hoogdalem, M.W. et al. Pharmacotherapy of neonatal opioid
withdrawal syndrome: a review of pharmacokinetics and pharmacodynamics.Expert Opin. Drug Metab. Toxicol. 17 , 87-103 (2021).
15. van Hoogdalem, M.W. et al. Physiologically-based
pharmacokinetic modeling to investigate the effect of maturation on
buprenorphine pharmacokinetics in newborns with neonatal opioid
withdrawal syndrome. Clin. Pharmacol. Ther. 111 , 496-508
(2022).
16. Liu, A.J., Jones, M.P., Murray, H., Cook, C.M. & Nanan, R.
Perinatal risk factors for the neonatal abstinence syndrome in infants
born to women on methadone maintenance therapy. Aust. N. Z. J.
Obstet. Gynaecol. 50 , 253-258 (2010).
17. Bakstad, B., Sarfi, M., Welle-Strand, G.K. & Ravndal, E. Opioid
maintenance treatment during pregnancy: occurrence and severity of
neonatal abstinence syndrome. A national prospective study. Eur.
Addict. Res. 15 , 128-134 (2009).
18. Choo, R.E., Huestis, M.A., Schroeder, J.R., Shin, A.S. & Jones,
H.E. Neonatal abstinence syndrome in methadone-exposed infants is
altered by level of prenatal tobacco exposure. Drug Alcohol
Depend. 75 , 253-260 (2004).
19. van Hoogdalem, M.W., Wexelblatt, S.L., Akinbi, H.T., Vinks, A.A. &
Mizuno, T. A review of pregnancy-induced changes in opioid
pharmacokinetics, placental transfer, and fetal exposure: towards
fetomaternal physiologically-based pharmacokinetic modeling to improve
the treatment of neonatal opioid withdrawal syndrome. Pharmacol.
Ther. doi: 10.1016/j.pharmthera.2021.108045 (2021).
20. Jones, H.E. et al. Neonatal outcomes and their relationship
to maternal buprenorphine dose during pregnancy. Drug Alcohol
Depend. 134 , 414-417 (2014).
21. Dashe, J.S., Sheffield, J.S., Olscher, D.A., Todd, S.J., Jackson,
G.L. & Wendel, G.D. Relationship between maternal methadone dosage and
neonatal withdrawal. Obstet. Gynecol. 100 , 1244-1249
(2002).
22. Dryden, C., Young, D., Hepburn, M. & Mactier, H. Maternal methadone
use in pregnancy: factors associated with the development of neonatal
abstinence syndrome and implications for healthcare resources.BJOG 116 , 665-671 (2009).
23. Schuh, K.J. & Johanson, C.E. Pharmacokinetic comparison of the
buprenorphine sublingual liquid and tablet. Drug Alcohol Depend.56 , 55-60 (1999).
24. Strain, E.C., Moody, D.E., Stoller, K.B., Walsh, S.L. & Bigelow,
G.E. Relative bioavailability of different buprenorphine formulations
under chronic dosing conditions. Drug Alcohol Depend.74 , 37-43 (2004).
25. Chawarski, M.C., Moody, D.E., Pakes, J., O’Connor, P.G. &
Schottenfeld, R.S. Buprenorphine tablet versus liquid: a clinical trial
comparing plasma levels, efficacy, and symptoms. J. Subst. Abuse
Treat. 29 , 307-312 (2005).
26. Harris, D.S., Mendelson, J.E., Lin, E.T., Upton, R.A. & Jones, R.T.
Pharmacokinetics and subjective effects of sublingual buprenorphine,
alone or in combination with naloxone: lack of dose proportionality.Clin. Pharmacokinet. 43 , 329-340 (2004).
27. Nath, R.P. et al. Buprenorphine pharmacokinetics: relative
bioavailability of sublingual tablet and liquid formulations. J.
Clin. Pharmacol. 39 , 619-623 (1999).
28. Dong, R. et al. Pharmacokinetics of sublingual buprenorphine
tablets following single and multiple doses in Chinese participants with
and without opioid use disorder. Drugs R D 19 , 255-265
(2019).
29. Ciraulo, D.A. et al. Pharmacokinetics and pharmacodynamics of
multiple sublingual buprenorphine tablets in dose-escalation trials.J. Clin. Pharmacol. 46 , 179-192 (2006).
30. Kalluri, H.V., Zhang, H., Caritis, S.N. & Venkataramanan, R. A
physiologically based pharmacokinetic modelling approach to predict
buprenorphine pharmacokinetics following intravenous and sublingual
administration. Br. J. Clin. Pharmacol. 83 , 2458-2473
(2017).
31. Zhang, H. et al. Gestational changes in buprenorphine
exposure: A physiologically-based pharmacokinetic analysis. Br. J.
Clin. Pharmacol. 84 , 2075-2087 (2018).
32. Silva, L.L., Silvola, R.M., Haas, D.M. & Quinney, S.K.
Physiologically based pharmacokinetic modelling in pregnancy: model
reproducibility and external validation. Br. J. Clin. Pharmacol.doi: 10.1111/bcp.15018 (2021).
33. Johnson, T.N., Jamei, M. & Rowland-Yeo, K. How does in vivo biliary
elimination of drugs change with age? Evidence from in vitro and
clinical data using a systems pharmacology approach. Drug Metab.
Dispos. 44 , 1090-1098 (2016).
34. National Center for Biotechnology Information. PubChem Compound
Summary for CID 644073, Buprenorphine.
<https://pubchem.ncbi.nlm.nih.gov/compound/644073>
(2022). Accessed 20 April 2022.
35. Avdeef, A., Barrett, D.A., Shaw, P.N., Knaggs, R.D. & Davis, S.S.
Octanol-, chloroform-, and propylene glycol dipelargonat-water
partitioning of morphine-6-glucuronide and other related opiates.J. Med. Chem. 39 , 4377-4381 (1996).
36. Bullingham, R.E., McQuay, H.J., Moore, A. & Bennett, M.R.
Buprenorphine kinetics. Clin. Pharmacol. Ther. 28 ,
667-672 (1980).
37. Elkader, A. & Sproule, B. Buprenorphine: clinical pharmacokinetics
in the treatment of opioid dependence. Clin. Pharmacokinet.44 , 661-680 (2005).
38. Takahashi, Y. et al. [Pharmacokinetics of buprenorphine
hydrochloride (BN•HCl) (1): absorption, distribution, metabolism and
excretion after percutaneous (TSN-09: BN•HCl containing tape
application) or subcutaneous administration of BN•HCl in rats].Xenobiot. Metab. Dispos. 16 , 569-583 (2001).
39. Hassan, H.E., Myers, A.L., Coop, A. & Eddington, N.D. Differential
involvement of P-glycoprotein (ABCB1) in permeability, tissue
distribution, and antinociceptive activity of methadone, buprenorphine,
and diprenorphine: in vitro and in vivo evaluation. J. Pharm.
Sci. 98 , 4928-4940 (2009).
40. Holland, M.J., Carr, K.D. & Simon, E.J. Pharmacokinetics of
[3H]-buprenorphine in the rat. Res. Commun. Chem. Pathol.
Pharmacol. 64 , 3-16 (1989).
41. Kuhlman, J.J., Jr., Lalani, S., Magluilo, J., Jr., Levine, B. &
Darwin, W.D. Human pharmacokinetics of intravenous, sublingual, and
buccal buprenorphine. J. Anal. Toxicol. 20 , 369-378
(1996).
42. Picard, N., Cresteil, T., Djebli, N. & Marquet, P. In vitro
metabolism study of buprenorphine: evidence for new metabolic pathways.Drug Metab. Dispos. 33 , 689-695 (2005).
43. Chang, Y. & Moody, D.E. Glucuronidation of buprenorphine and
norbuprenorphine by human liver microsomes and
UDP-glucuronosyltransferases. Drug Metab. Lett. 3 ,
101-107 (2009).
44. Cubitt, H.E., Houston, J.B. & Galetin, A. Relative importance of
intestinal and hepatic glucuronidation-impact on the prediction of drug
clearance. Pharm. Res. 26 , 1073-1083 (2009).
45. Reckitt & Colman Pharmaceuticals. NDA: 20-733 Suboxone® sublingual
tablets – Clinical pharmacology/biopharmaceutics review. Richmond, VA:
Reckitt & Colman. (2000).
46. Moore, J.N. et al. The pharmacokinetics and pharmacodynamics
of buprenorphine in neonatal abstinence syndrome. Clin. Pharmacol.
Ther. 103 , 1029-1037 (2018).
47. Bullingham, R.E., McQuay, H.J., Porter, E.J., Allen, M.C. & Moore,
R.A. Sublingual buprenorphine used postoperatively: ten hour plasma drug
concentration analysis. Br. J. Clin. Pharmacol. 13 ,
665-673 (1982).
48. Bai, S.A., Xiang, Q. & Finn, A. Evaluation of the pharmacokinetics
of single- and multiple-dose buprenorphine buccal film in healthy
volunteers. Clin. Ther. 38 , 358-369 (2016).
49. Lim, S.C.B., Schug, S. & Krishnarajah, J. The pharmacokinetics and
local tolerability of a novel sublingual formulation of buprenorphine.Pain Med. 20 , 143-152 (2019).
50. Mendelson, J., Upton, R.A., Everhart, E.T., Jacob, P., 3rd & Jones,
R.T. Bioavailability of sublingual buprenorphine. J. Clin.
Pharmacol. 37 , 31-37 (1997).
51. Huestis, M.A., Cone, E.J., Pirnay, S.O., Umbricht, A. & Preston,
K.L. Intravenous buprenorphine and norbuprenorphine pharmacokinetics in
humans. Drug Alcohol Depend. 131 , 258-262 (2013).
52. McAleer, S.D. et al. Pharmacokinetics of high-dose
buprenorphine following single administration of sublingual tablet
formulations in opioid naïve healthy male volunteers under a naltrexone
block. Drug Alcohol Depend. 72 , 75-83 (2003).
53. Jönsson, M., Mundin, G. & Sumner, M. Pharmacokinetic and
pharmaceutical properties of a novel buprenorphine/naloxone sublingual
tablet for opioid substitution therapy versus conventional
buprenorphine/naloxone sublingual tablet in healthy volunteers.Eur. J. Pharm. Sci. 122 , 125-133 (2018).
54. Moody, D.E., Fang, W.B., Morrison, J. & McCance-Katz, E. Gender
differences in pharmacokinetics of maintenance dosed buprenorphine.Drug Alcohol Depend. 118 , 479-483 (2011).
55. Cone, E.J., Dickerson, S.L., Darwin, W.D., Fudala, P. & Johnson,
R.E. Elevated drug saliva levels suggest a ”depot-like” effect in
subjects treated with sublingual buprenorphine. NIDA Res. Monogr.105 , 569 (1990).
56. Rodgers, T. & Rowland, M. Physiologically based pharmacokinetic
modelling 2: predicting the tissue distribution of acids, very weak
bases, neutrals and zwitterions. J. Pharm. Sci. 95 ,
1238-1257 (2006).
57. Yassen, A. et al. Mechanism-based PK/PD modeling of the
respiratory depressant effect of buprenorphine and fentanyl in healthy
volunteers. Clin. Pharmacol. Ther. 81 , 50-58 (2007).
58. Boom, M., Niesters, M., Sarton, E., Aarts, L., Smith, T.W. & Dahan,
A. Non-analgesic effects of opioids: opioid-induced respiratory
depression. Curr. Pharm. Des. 18 , 5994-6004 (2012).
59. Upton, R.N., Semple, T.J. & Macintyre, P.E. Pharmacokinetic
optimisation of opioid treatment in acute pain therapy. Clin.
Pharmacokinet. 33 , 225-244 (1997).