References
1. Mattson, C.L., Tanz, L.J., Quinn, K., Kariisa, M., Patel, P. & Davis, N.L. Trends and geographic patterns in drug and synthetic opioid overdose deaths - United States, 2013-2019. MMWR Morb. Mortal. Wkly. Rep. 70 , 202-207 (2021).
2. Martin, W.R., Eades, C.G., Thompson, J.A., Huppler, R.E. & Gilbert, P.E. The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog. J. Pharmacol. Exp. Ther. 197 , 517-532 (1976).
3. Negus, S.S., Bidlack, J.M., Mello, N.K., Furness, M.S., Rice, K.C. & Brandt, M.R. Delta opioid antagonist effects of buprenorphine in rhesus monkeys. Behav. Pharmacol. 13 , 557-570 (2002).
4. Leander, J.D. Buprenorphine is a potent kappa-opioid receptor antagonist in pigeons and mice. Eur. J. Pharmacol. 151 , 457-461 (1988).
5. Wnendt, S., Krüger, T., Janocha, E., Hildebrandt, D. & Englberger, W. Agonistic effect of buprenorphine in a nociceptin/OFQ receptor-triggered reporter gene assay. Mol. Pharmacol.56 , 334-338 (1999).
6. Pergolizzi, J. et al. Current knowledge of buprenorphine and its unique pharmacological profile. Pain Pract. 10 , 428-450 (2010).
7. Donohue, J.M. et al. Use of medications for treatment of opioid use disorder among US Medicaid enrollees in 11 states, 2014-2018.JAMA 326 , 154-164 (2021).
8. Ko, J.Y. et al. Vital signs: prescription opioid pain reliever use during pregnancy — 34 U.S. jurisdictions, 2019. MMWR Morb. Mortal. Wkly. Rep. 69 , 897–903 (2020).
9. Hudak, M.L. & Tan, R.C. Neonatal drug withdrawal. Pediatrics129 , e540-560 (2012).
10. Wachman, E.M., Schiff, D.M. & Silverstein, M. Neonatal abstinence syndrome: advances in diagnosis and treatment. JAMA 319 , 1362-1374 (2018).
11. Simon, A.E., Freund, M.P., Archer, S.W. & Bremer, A.A. Toward the use of buprenorphine in infants for neonatal opioid withdrawal syndrome: summary of an NIH workshop. J. Perinatol. 1-3 (2021).
12. Ng, C.M. et al. Population pharmacokinetic model of sublingual buprenorphine in neonatal abstinence syndrome.Pharmacotherapy 35 , 670-680 (2015).
13. Mizuno, T. et al. Physiologic indirect response modeling to describe buprenorphine pharmacodynamics in newborns treated for neonatal opioid withdrawal syndrome. Clin. Pharmacokinet. 60 , 249-259 (2021).
14. van Hoogdalem, M.W. et al. Pharmacotherapy of neonatal opioid withdrawal syndrome: a review of pharmacokinetics and pharmacodynamics.Expert Opin. Drug Metab. Toxicol. 17 , 87-103 (2021).
15. van Hoogdalem, M.W. et al. Physiologically-based pharmacokinetic modeling to investigate the effect of maturation on buprenorphine pharmacokinetics in newborns with neonatal opioid withdrawal syndrome. Clin. Pharmacol. Ther. 111 , 496-508 (2022).
16. Liu, A.J., Jones, M.P., Murray, H., Cook, C.M. & Nanan, R. Perinatal risk factors for the neonatal abstinence syndrome in infants born to women on methadone maintenance therapy. Aust. N. Z. J. Obstet. Gynaecol. 50 , 253-258 (2010).
17. Bakstad, B., Sarfi, M., Welle-Strand, G.K. & Ravndal, E. Opioid maintenance treatment during pregnancy: occurrence and severity of neonatal abstinence syndrome. A national prospective study. Eur. Addict. Res. 15 , 128-134 (2009).
18. Choo, R.E., Huestis, M.A., Schroeder, J.R., Shin, A.S. & Jones, H.E. Neonatal abstinence syndrome in methadone-exposed infants is altered by level of prenatal tobacco exposure. Drug Alcohol Depend. 75 , 253-260 (2004).
19. van Hoogdalem, M.W., Wexelblatt, S.L., Akinbi, H.T., Vinks, A.A. & Mizuno, T. A review of pregnancy-induced changes in opioid pharmacokinetics, placental transfer, and fetal exposure: towards fetomaternal physiologically-based pharmacokinetic modeling to improve the treatment of neonatal opioid withdrawal syndrome. Pharmacol. Ther. doi: 10.1016/j.pharmthera.2021.108045 (2021).
20. Jones, H.E. et al. Neonatal outcomes and their relationship to maternal buprenorphine dose during pregnancy. Drug Alcohol Depend. 134 , 414-417 (2014).
21. Dashe, J.S., Sheffield, J.S., Olscher, D.A., Todd, S.J., Jackson, G.L. & Wendel, G.D. Relationship between maternal methadone dosage and neonatal withdrawal. Obstet. Gynecol. 100 , 1244-1249 (2002).
22. Dryden, C., Young, D., Hepburn, M. & Mactier, H. Maternal methadone use in pregnancy: factors associated with the development of neonatal abstinence syndrome and implications for healthcare resources.BJOG 116 , 665-671 (2009).
23. Schuh, K.J. & Johanson, C.E. Pharmacokinetic comparison of the buprenorphine sublingual liquid and tablet. Drug Alcohol Depend.56 , 55-60 (1999).
24. Strain, E.C., Moody, D.E., Stoller, K.B., Walsh, S.L. & Bigelow, G.E. Relative bioavailability of different buprenorphine formulations under chronic dosing conditions. Drug Alcohol Depend.74 , 37-43 (2004).
25. Chawarski, M.C., Moody, D.E., Pakes, J., O’Connor, P.G. & Schottenfeld, R.S. Buprenorphine tablet versus liquid: a clinical trial comparing plasma levels, efficacy, and symptoms. J. Subst. Abuse Treat. 29 , 307-312 (2005).
26. Harris, D.S., Mendelson, J.E., Lin, E.T., Upton, R.A. & Jones, R.T. Pharmacokinetics and subjective effects of sublingual buprenorphine, alone or in combination with naloxone: lack of dose proportionality.Clin. Pharmacokinet. 43 , 329-340 (2004).
27. Nath, R.P. et al. Buprenorphine pharmacokinetics: relative bioavailability of sublingual tablet and liquid formulations. J. Clin. Pharmacol. 39 , 619-623 (1999).
28. Dong, R. et al. Pharmacokinetics of sublingual buprenorphine tablets following single and multiple doses in Chinese participants with and without opioid use disorder. Drugs R D 19 , 255-265 (2019).
29. Ciraulo, D.A. et al. Pharmacokinetics and pharmacodynamics of multiple sublingual buprenorphine tablets in dose-escalation trials.J. Clin. Pharmacol. 46 , 179-192 (2006).
30. Kalluri, H.V., Zhang, H., Caritis, S.N. & Venkataramanan, R. A physiologically based pharmacokinetic modelling approach to predict buprenorphine pharmacokinetics following intravenous and sublingual administration. Br. J. Clin. Pharmacol. 83 , 2458-2473 (2017).
31. Zhang, H. et al. Gestational changes in buprenorphine exposure: A physiologically-based pharmacokinetic analysis. Br. J. Clin. Pharmacol. 84 , 2075-2087 (2018).
32. Silva, L.L., Silvola, R.M., Haas, D.M. & Quinney, S.K. Physiologically based pharmacokinetic modelling in pregnancy: model reproducibility and external validation. Br. J. Clin. Pharmacol.doi: 10.1111/bcp.15018 (2021).
33. Johnson, T.N., Jamei, M. & Rowland-Yeo, K. How does in vivo biliary elimination of drugs change with age? Evidence from in vitro and clinical data using a systems pharmacology approach. Drug Metab. Dispos. 44 , 1090-1098 (2016).
34. National Center for Biotechnology Information. PubChem Compound Summary for CID 644073, Buprenorphine. <https://pubchem.ncbi.nlm.nih.gov/compound/644073> (2022). Accessed 20 April 2022.
35. Avdeef, A., Barrett, D.A., Shaw, P.N., Knaggs, R.D. & Davis, S.S. Octanol-, chloroform-, and propylene glycol dipelargonat-water partitioning of morphine-6-glucuronide and other related opiates.J. Med. Chem. 39 , 4377-4381 (1996).
36. Bullingham, R.E., McQuay, H.J., Moore, A. & Bennett, M.R. Buprenorphine kinetics. Clin. Pharmacol. Ther. 28 , 667-672 (1980).
37. Elkader, A. & Sproule, B. Buprenorphine: clinical pharmacokinetics in the treatment of opioid dependence. Clin. Pharmacokinet.44 , 661-680 (2005).
38. Takahashi, Y. et al. [Pharmacokinetics of buprenorphine hydrochloride (BN•HCl) (1): absorption, distribution, metabolism and excretion after percutaneous (TSN-09: BN•HCl containing tape application) or subcutaneous administration of BN•HCl in rats].Xenobiot. Metab. Dispos. 16 , 569-583 (2001).
39. Hassan, H.E., Myers, A.L., Coop, A. & Eddington, N.D. Differential involvement of P-glycoprotein (ABCB1) in permeability, tissue distribution, and antinociceptive activity of methadone, buprenorphine, and diprenorphine: in vitro and in vivo evaluation. J. Pharm. Sci. 98 , 4928-4940 (2009).
40. Holland, M.J., Carr, K.D. & Simon, E.J. Pharmacokinetics of [3H]-buprenorphine in the rat. Res. Commun. Chem. Pathol. Pharmacol. 64 , 3-16 (1989).
41. Kuhlman, J.J., Jr., Lalani, S., Magluilo, J., Jr., Levine, B. & Darwin, W.D. Human pharmacokinetics of intravenous, sublingual, and buccal buprenorphine. J. Anal. Toxicol. 20 , 369-378 (1996).
42. Picard, N., Cresteil, T., Djebli, N. & Marquet, P. In vitro metabolism study of buprenorphine: evidence for new metabolic pathways.Drug Metab. Dispos. 33 , 689-695 (2005).
43. Chang, Y. & Moody, D.E. Glucuronidation of buprenorphine and norbuprenorphine by human liver microsomes and UDP-glucuronosyltransferases. Drug Metab. Lett. 3 , 101-107 (2009).
44. Cubitt, H.E., Houston, J.B. & Galetin, A. Relative importance of intestinal and hepatic glucuronidation-impact on the prediction of drug clearance. Pharm. Res. 26 , 1073-1083 (2009).
45. Reckitt & Colman Pharmaceuticals. NDA: 20-733 Suboxone® sublingual tablets – Clinical pharmacology/biopharmaceutics review. Richmond, VA: Reckitt & Colman. (2000).
46. Moore, J.N. et al. The pharmacokinetics and pharmacodynamics of buprenorphine in neonatal abstinence syndrome. Clin. Pharmacol. Ther. 103 , 1029-1037 (2018).
47. Bullingham, R.E., McQuay, H.J., Porter, E.J., Allen, M.C. & Moore, R.A. Sublingual buprenorphine used postoperatively: ten hour plasma drug concentration analysis. Br. J. Clin. Pharmacol. 13 , 665-673 (1982).
48. Bai, S.A., Xiang, Q. & Finn, A. Evaluation of the pharmacokinetics of single- and multiple-dose buprenorphine buccal film in healthy volunteers. Clin. Ther. 38 , 358-369 (2016).
49. Lim, S.C.B., Schug, S. & Krishnarajah, J. The pharmacokinetics and local tolerability of a novel sublingual formulation of buprenorphine.Pain Med. 20 , 143-152 (2019).
50. Mendelson, J., Upton, R.A., Everhart, E.T., Jacob, P., 3rd & Jones, R.T. Bioavailability of sublingual buprenorphine. J. Clin. Pharmacol. 37 , 31-37 (1997).
51. Huestis, M.A., Cone, E.J., Pirnay, S.O., Umbricht, A. & Preston, K.L. Intravenous buprenorphine and norbuprenorphine pharmacokinetics in humans. Drug Alcohol Depend. 131 , 258-262 (2013).
52. McAleer, S.D. et al. Pharmacokinetics of high-dose buprenorphine following single administration of sublingual tablet formulations in opioid naïve healthy male volunteers under a naltrexone block. Drug Alcohol Depend. 72 , 75-83 (2003).
53. Jönsson, M., Mundin, G. & Sumner, M. Pharmacokinetic and pharmaceutical properties of a novel buprenorphine/naloxone sublingual tablet for opioid substitution therapy versus conventional buprenorphine/naloxone sublingual tablet in healthy volunteers.Eur. J. Pharm. Sci. 122 , 125-133 (2018).
54. Moody, D.E., Fang, W.B., Morrison, J. & McCance-Katz, E. Gender differences in pharmacokinetics of maintenance dosed buprenorphine.Drug Alcohol Depend. 118 , 479-483 (2011).
55. Cone, E.J., Dickerson, S.L., Darwin, W.D., Fudala, P. & Johnson, R.E. Elevated drug saliva levels suggest a ”depot-like” effect in subjects treated with sublingual buprenorphine. NIDA Res. Monogr.105 , 569 (1990).
56. Rodgers, T. & Rowland, M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J. Pharm. Sci. 95 , 1238-1257 (2006).
57. Yassen, A. et al. Mechanism-based PK/PD modeling of the respiratory depressant effect of buprenorphine and fentanyl in healthy volunteers. Clin. Pharmacol. Ther. 81 , 50-58 (2007).
58. Boom, M., Niesters, M., Sarton, E., Aarts, L., Smith, T.W. & Dahan, A. Non-analgesic effects of opioids: opioid-induced respiratory depression. Curr. Pharm. Des. 18 , 5994-6004 (2012).
59. Upton, R.N., Semple, T.J. & Macintyre, P.E. Pharmacokinetic optimisation of opioid treatment in acute pain therapy. Clin. Pharmacokinet. 33 , 225-244 (1997).