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Summary

There are real life situations in our lives where the things are changing continuously
or from time to time. It is a very important problem for one whether to continue
the existing relationship or to form a new one after some occasions. That is, people,
companies, cities, countries, etc. may change their opinion or position rapidly. In
this work, we think of the problem of changing relationships from a mathematical
point of view and think of an answer. In some sense, we comment these changes as
power changes. Our number theoretical model will be based on this idea. Using the
convolution sum of the restricted divisor function E, we obtain the answer to this
problem.
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1 INTRODUCTION

Throughout this article, p, ℕ, ℕ0 and ℤ will denote a prime number, the set of natural numbers, the set of positive integers and
the set of integers, respectively.

There are many cases in our lives where the things change from time to time. As a recent unfortunate example, Russia invaded
Ukraine after being long term allies with them. Earlier, Russia was allied with Ukraine, and USA was allied with NATO. In
some sense, Ukraine and Russia had a relation where there had been a potential for change due to several historical, political,
economical, geopolitical reasons appearing in the years. For many, the war seems to have started as Ukraine tried to join NATO
which did not make Russia happy. Now, for Ukraine, after all the mean behaviour and invasion by Russia, it is a very important
problem whether to continue the existing relationship or to form a new one. That is, people, companies, cities, countries, etc.
may change their opinion or position rapidly. Let us think of the problem of changing relationships from a mathematical point
of view and think of an answer. In some sense, we can comment these changes as power changes. Our number theoretical
model will be based on this idea.

Let A, B, C and D be four sets and let the graph potential for change of B be c times as strong as the graph potential for
change of A and the graph potential for change of D be d times as strong as the graph potential for change of C . Assuming
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FIGURE 1 Three relationships (C,I,N)

that each element is a square (x2, y2, z2, w2) with x ∈ A, y ∈ B, z ∈ C and w ∈ D, first, suppose that A and B are related
and C and D are related. That is, suppose that A (resp. C) and B (resp. D) can produce the same graph potential for change
x2 + cy2 = m (resp. z2 + dw2 = n).

Consider the problem of investigating how many new relationships could be created if four are gathered to create graph
potential for change x2 + cy2 + z2 + dw2 = l under the assumption that two sets can create some common graph potential for
change. Let us model this to make it a mathematical problem:

Problem 1. To make things easier, we will only deal with the case where l = pn, c = d = 2 and m and n are also multiples of
p. Let

ℜ(pn) ∶= {(x, y, z, w) ∈ ℤ4
| x2 + 2y2 + z2 + 2w2 = pn}

be the relation set of pn;

ℭ(pn) ∶= {(x, y, z, w) ∈ ℜ(pn) | x2 + 2y2 + 02 + 2 ⋅ 02 = pn, 02 + 2 ⋅ 02 + z2 + 2w2 = pn}
be the closed relation set C of pn;

ℑ(pn) ∶= {(x, y, z, w) ∈ ℜ(pn) − ℭ(pn) | x2 + 2y2 = pm1, z
2 + 2w2 = pm2, mi (i = 1, 2) ∈ ℕ}

be the invariant relation set I of pn; and

N(pn) ∶= ℜ(pn) − (ℭ(pn) ∪ℑ(pn)) = {(x1, y1, z1, w1) ∈ ℜ(pn) | x21 + 2y21 ≠ pm1, z
2
1 + 2w2

1 ≠ pm2, mi (i = 1, 2) ∈ ℕ0}

be the new relation set N of pn. Here #U denotes the number of elements in a set U .

Find the value of #N?
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Fig. 1 shows the three relationships. In order to solve Problem 1 easily by means of convolution sums of divisors, we first
need some mathematical notations and properties introduced below:

The Dirichlet convolution of two arithmetic functions f1 and f2 is defined by

(f1 ∗ f2)(n) =
∑

d|n
f1(d)f2(n∕d),

see14 p. 301. An arithmetic function f2 is called an inverse of f1 if

(f1 ∗ f2)(n) = (f2 ∗ f1)(n) = I(n)
with

I(n) =

{

1 if n = 1,
0 otherwise.

In this article, we take f2 ∶= f−1
1 . Such an arithmetic inverse function f−1

1 of f1 exists and satisfy the following equality12 p.6

f−1
1 (1) = 1∕f1(1) and f−1

1 (n) = − 1
f1(1)

∑

d|n
d>1

f1(d)f−1
1 (n∕d) (1)

if f1(1) ≠ 0. For more properties of arithmetic functions, see7,9,12,14,17.

For d, n ∈ ℕ and k ∈ ℕ0, we define

�k(n) ∶=
∑

d|n dk, �(n) ∶= �1(n),

E(n) ∶=
∑

d|n
d≡1,3(mod 8)

1 −
∑

d|n
d≡5,7(mod 8)

1, E(n) ∶=
∑n−1
k=1 E(k)E(n − k),

E(n) ∶= E(n) +
∑n−1
k=1 E(k)E(n − k), Ê(n) ∶=

∑

1≤k≤n−1
gcd(k,n−k)=1

E(k)E(n − k).

Here, we let E(1) = Ê(1) = 0. Usually, E(n) is often denoted by E1,3(n; 8)6 p.12. However, since this symbol appears a lot in
this article, it is written as E(n) for brevity.

On the other hand, using Jacobi’s identity, we can easily show that

#{(x, y) ∈ ℤ2
|x2 + 2y2 = n} = 2E(n) (2)

with n ∈ ℕ. See6 (31.12). By means of Eqn. (2), Problem 1 is equivalent to problem of showing 4Ê(pn) =
4
∑

1≤k≤pn−1
gcd(k,pn−k)=1

E(k)E(pn − k). In more detail, we have

ℜ(pn) = ℭ(pn) ∪ℑ(pn) ∪N(pn),
#ℜ(pn) = 4E(pn), #ℭ(pn) = 4E(pn), #N(pn) = 4Ê(pn)

and
#ℑ(pn) = #E(pn) − #ℭ(pn) − #N(pn).

Using the convolution sum of the restricted divisor function E, we obtain the answer to Problem 1 as follows:

Theorem 2. Let �(n) =

{

0 if n ≡ 1 (mod 2),
1 if n ≡ 0 (mod 2).

(a) If p ≡ 1, 3(mod 8) is an odd prime, then

#N(pn) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

4(p − 1) if n = 1,
4(p − 1)(p − 2) if n = 2,
4(p − 1)(p2 − 2p + 2) if n = 3,
4(�(pn) − 4�(pn−1) + 7�(pn−2) + 2(−1)�(n) − 8p�(n)�2(p(n−�(n)−3)∕2)) if n ≥ 4
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FIGURE 2 Relation set of 3

FIGURE 3 Relation set of 9

and if p ≡ 5, 7(mod 8) is an odd prime, then #N(pn) = 4pn−1(p + 1).

(b) If n ∈ ℕ, then

#N(2n) =

⎧

⎪

⎨

⎪

⎩

4 if n = 1,
16 if n = 2,
0 if n ≥ 3.

If it is assumed that two sets of four satisfy the sum of squares relation, then 4Ê will be the value of the new relation set. In
other words, using Theorem 2, Problem 1 is solved.

Example 3. For ℜ(3) = {(±1,±1, 0, 0), (±1, 0, 0,±1), (0,±1,±1, 0), (0, 0,±1,±1)}, we have the following sets ℭ(3) =
{(±1,±1, 0, 0), (0, 0,±1,±1)}, ℑ(3) = { }, N(3) = {(±1, 0, 0,±1), (0,±1,±1, 0), (±1, 0, 0,∓1), (0,±1,∓1, 0)} and hence
#ℜ(3) = 4E(3) = 16, #ℭ(3) = 4E(3) = 8, #N(3) = 4Ê(3) = 8, #ℑ(3) = 4(E(3) − Ê(3) − E(3)) = 0, #ℜ(9) = 4E(9) = 52,
#ℭ(9) = 4E(9) = 12, #N(9) = 4Ê(9) = 8 and #ℑ(9) = 32. Fig. 2 (resp. Fig. 3 ) shows the whole of ℜ(3) (resp. ℜ(9)). In
Fig. 2 , (A) and (B) belong to the closed relation, and (C) and (D) belong to the new relation. In Fig. 3 , (E) ∼(H) belong to the
closed relation, (I) and (J) belong to the new relation and (K) and (L) belong to the invariant relation.

Remark. If p is an odd prime and n is big enough, then the number of new relations #N(pn) is approximately 4pn. However, in
the case of p = 2, no matter how large n is, there are no new relations #N(2n). Here, in the case of p = 2, it is an example that
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N(p�) 2 3 5 7 11 13

1 4 8 24 32 40 56
2 16 8 120 224 360 728
3 0 40 600 1568 4040 9464
4 0 104 3000 10976 44360 123032
5 0 328 15000 76832 488040 1599416
6 0 968 75000 537824 5368360 20792408
7 0 2920 375000 3764768 59052040 270301304
8 0 8744 1875000 26353376 649572360 3513916952
9 0 26248 9375000 184473632 7145296040 45680920376
10 0 78728 46875000 1291315424 78598256360 593851964888

TABLE 1 Values of N(p�)(1 ≤ � ≤ 10) with 2 ≤ p ≤ 13.

mathematically informs us that there may be a structure in which a new relationship is not created even if a lot of graph potential
for change is given to the four sets. In other words, Theorem 2 shows that there is a system in which a new relationship is not
created even if a lot of effort is put into it.

In Section 2, for the case where n is odd, we find results related to E(n). In Section 3, we obtain the inverses of E and E2 and
find their properties. Finally, in Section 4, we prove Theorem 2.

2 VALUES OF E(N) AND E(N)

Let q be a fixed complex number with absolute value less than 1, so that we may write q = e�it where Im(t) > 0. Fine6
(9.3),(18.62) wrote that

∏

n≥1

(1 − qn)2

(1 − 2qn cos 2u + q2n)
= 1 − 4 sin u

∑

n≥1
qn

∑

w|n
sin

(2n
w

−w
)

u (3)

and
∏

n≥1

(1 − qn)4

(1 − 2qn cos u′ + q2n)2
= 1 − 8 sin2 u

′

2
∑

N≥1
qN

∑

nk=N
n,k≥1

n cos(k − n)u′. (4)

In (3) and (4), set u = �
4
and u′ = �

2
to obtain

∏

n≥1

(1 − qn)2

(1 + q2n)
= 1 − 4

√

2
sin u

∑

n≥1
qn

∑

w|n
sin

(2n
w

−w
) �
4
∶=

∑

k≥0
ℎ1(k)qk (5)

and
∏

n≥1

(1 − qn)4

(1 + q2n)4
= 1 − 4

∑

N≥1
qN

∑

nk=N
n,k≥1

n cos(k − n)�
2
∶=

∑

i≥0
ℎ2(i)qi. (6)

Thus, by Eqns. (5) and (6),
n
∑

k=0
ℎ1(k)ℎ1(n − k) = ℎ2(n) (7)

and ℎ2(0) = 1.
The study of the convolution sum of arithmetic functions has been studied by many researchers (see3,4,5,10,11,15,16,18 and the

references therein). Furthermore, these studies are related to the study of Dedekind eta functions, Hecke operator and Eisenstein
series (see1,2,13). The formula for the convolution sum with respect to E is written below as it is necessary to obtain the main
result of this paper.
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Proposition 4. 8 If n = 2am ∈ ℕ with gcd(2, m) = 1, then

ℎ2(n) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−4�(n) if n ≡ 1 (mod 4),
4�(n) if n ≡ 3 (mod 4),
0 if a = 1,
−8�(m) if a = 2,
24�(m) if a ≥ 3.

Using Eqn. (5), we will find E(n) term by term.

Lemma 5. If n is a positive integer, then

E(n) =

{

− 1
2
ℎ1(n) if n ≡ 1, 5 (mod 8),

1
2
ℎ1(n) if n ≡ 3, 7 (mod 8).

In particular, if n ≡ 5, 7 (mod 8) then E(n) = ℎ1(n) = 0.

Proof. First, let n ≡ 1 (mod 8) and d|n. Then d is an odd positive integer satisfying n = d ⋅ n
d
≡ 1 (mod 8) and d ≡ n

d
(mod 8).

Hence sin
(

2n
d
− d

)

�
4
= sin d�

4
. By Eqn. (5), we can write

−1
2
ℎ1(n) =

√

2

⎧

⎪

⎨

⎪

⎩

∑

d|n
d≡1,3(mod 8)

sin
(2n
d

− d
) �
4
+

∑

d|n
d≡5,7(mod 8)

sin
(2n
d

− d
) �
4

⎫

⎪

⎬

⎪

⎭

=
√

2

⎧

⎪

⎨

⎪

⎩

∑

d|n
d≡1,3(mod 8)

sin d�
4

+
∑

d|n
d≡5,7(mod 8)

sin d�
4

⎫

⎪

⎬

⎪

⎭

=
∑

d|n
d≡1,3(mod 8)

1 −
∑

d|n
d≡5,7(mod 8)

1.

(8)

Secondly, let n ≡ 3 (mod 8) and d|n. If d ≡ 1 (resp. 3, 5, 7) (mod 8), then d
n
≡ 3(resp., 1, 7, 5)(mod 8). So, we obtain

√

2 sin
(2n
d

− d
) �
4
=

{

1 if d ≡ 5, 7 (mod 8),
−1 if d ≡ 1, 3 (mod 8),

and

1
2
ℎ1(n) = −

√

2

⎧

⎪

⎨

⎪

⎩

∑

d|n
d≡1,3(mod 8)

sin
(2n
d

− d
) �
4
+

∑

d|n
d≡5,7(mod 8)

sin
(2n
d

− d
) �
4

⎫

⎪

⎬

⎪

⎭

=
∑

d|n
d≡1,3(mod 8)

1 −
∑

d|n
d≡5,7(mod 8)

1.

(9)

Thirdly, let n ≡ 5 (mod 8) and d|n. Then

−1
2
ℎ1(n) =

√

2
∑

k=1,3,5,7

⎛

⎜

⎜

⎜

⎝

∑

d|n
d≡k(mod 8)

sin k�
4

⎞

⎟

⎟

⎟

⎠

=
∑

d|n
d≡1,3(mod 8)

1 −
∑

d|n
d≡5,7(mod 8)

1.

(10)

As an easy calculation, assuming d ≡ 1 or 3 (resp. 5 or 7) (mod 8), we get n
d
≡ 5 or 7 (resp. 1 or 3) (mod 8). Therefore

#{d | d ≡ 1, 3 (mod 8)} = #{d | d ≡ 5, 7 (mod 8)}.
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By Eqn. (10), − 1
2
ℎ1(n) = E(n) = 0.

Finally, let n ≡ 7 (mod 8) and d|n. Then

1
2
ℎ1(n) = −

√

2
∑

k=1,3,5,7

⎛

⎜

⎜

⎜

⎝

∑

d|n
d≡k(mod 8)

sin
(k + 4)�

4

⎞

⎟

⎟

⎟

⎠

=
∑

d|n
d≡1,3(mod 8)

1 −
∑

d|n
d≡5,7(mod 8)

1.

(11)

We can show that 1
2
ℎ1(n) = E(n) = 0 in the same way as in the case of n ≡ 5 (mod 8). Therefore, Lemma 5 is deduced by

Eqns. (8)-(11).

To compute ℎ1(n) where n is even, we need the following lemma:

Lemma 6. If n is an even integer, then
∑

d|n
d≡0(mod 2)

sin
(2n
d

− d
) �
4
= 0.

Proof. Let T1 ∶= {d | d ≡ 0 (mod 2), d|n, 2n
d
− d ≡ 2 (mod 8)} and T2 ∶= {d | d ≡ 0 (mod 2), d|n, 2n

d
− d ≡ 6 (mod 8)}. It is

easily checked that
2n
d

− d ≡ 0 (mod 2) if and only if d ≡ 0 (mod 2) (12)

with d|n. If f1 ∶ T1 → T2 via f1(d) =
2n
d
, then f1 is bijective and

#T1 = #T2. (13)

It is trivial that
sin n� = 0 if n is an integer. (14)

By Eqns. (12)-(14),
∑

d|n
d≡0(mod 2)

sin
(2n
d

− d
) �
4
=

∑

d|n
2n
d
−d≡0,4(mod 8)

0 +
∑

d|n
2n
d
−d≡2(mod 8)

1 −
∑

d|n
2n
d
−d≡6(mod 8)

1 = 0.

Lemma 7. If n is an even positive integer, then

E(n) =

{

− 1
2
ℎ1(n) if n ≡ 2, 6 (mod 8),

1
2
ℎ1(n) if n ≡ 0, 4 (mod 8).

Proof. By Lemma 6, we only need to consider the odd divisors d. If n ≡ 2, 6 (mod 8) is an even integer, then
√

2 sin
(2n
d

− d
) �
4
=

{

1 if d ≡ 1, 3 (mod 8),
−1 if d ≡ 5, 7 (mod 8)

and
−1
2
ℎ1(n) =

∑

d|n
d≡1,3(mod 8)

1 −
∑

d|n
d≡5,7(mod 8)

1 = E(n).

If n ≡ 0, 4 (mod 8) is an even integer, then
√

2 sin
(2n
d

− d
) �
4
=

{

−1 if d ≡ 1, 3 (mod 8),
1 if d ≡ 5, 7 (mod 8)

and
1
2
ℎ1(n) =

∑

d|n
d≡1,3(mod 8)

1 −
∑

d|n
d≡5,7(mod 8)

1 = E(n).
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By Lemma 5, 6 and 7, we get
Proposition 8. 8 If n ∈ ℕ then

E(n) =

{

− 1
2
ℎ1(n) if n ≡ 1, 2, 5, 6 (mod 8),

1
2
ℎ1(n) if n ≡ 0, 3, 4, 7 (mod 8).

In particular, if n ≡ 5, 7 (mod 8) then E(n) = ℎ1(n) = 0.

Proposition 9 is a well-known result6 (31.32),11 Theorem 6.5 that can be derived from the theory of the sum of squares,
Jacobi theta functions, modular forms, basic hypergeometric series, etc. The necessary case in this paper is to find the case of
Ê(pn), so the result of Proposition 9 is sufficient. Proposition 9 is revisited using the results obtained in this section.

Proposition 9. Let n(>1) be an odd positive integer. ThenE(n) = �(n)−E(n). In particular, if n ≡ 5, 7 (mod 8), thenE(n) = �(n)
and

E(2t) =

{

1 if t = 1,
5 if t ≥ 2.

Proof. Let n ≡ 1 (mod 8) be a positive integer. By Proposition 8, we obtain

E(n) =
n−1
∑

k=1
E(k)E(n − k) =

7
∑

i=0

∑

1≤k<n
k≡i(mod 8)

E(k)E(n − k)

= −1
4

⎛

⎜

⎜

⎜

⎝

∑

1≤k<n
k≡0,1(mod 8)

ℎ1(k)ℎ1(n − k) +
∑

1≤k<n
k≡3,6(mod 8)

ℎ1(k)ℎ1(n − k)

⎞

⎟

⎟

⎟

⎠

= −1
4

n−1
∑

k=1
ℎ1(k)ℎ1(n − k).

(15)

The last identity is obtained from the fact that ℎ1(m) = 0 if m ≡ 5, 7 (mod 8). By Proposition 4, Lemma 5 and (15),
n−1
∑

k=1
E(k)E(n − k) = −1

4

( n
∑

k=0
ℎ1(k)ℎ1(n − k) − 2ℎ1(0)ℎ1(n)

)

= �(n) − E(n).

In the remaining cases n ≡ 3, 5, 7 (mod 8), E(n) =
∑n−1
k=1 E(k)E(n − k) can be obtained using the same method as n ≡ 1

(mod 8). In particular, if n ≡ 5, 7 (mod 8), then E(n) = �(n) − E(n) = �(n) because E(n) = 0. It is easily obtained that
∑2−1
k=1 E(k)E(2 − k) = 1 and

∑4−1
k=1 E(k)E(4 − k) = 5. If t ≥ 3 then 2t ≡ 0 (mod 8).

Finally, we use Proposition 4 to obtain
2t−1
∑

k=1
E(k)E(2t − k) = 1

4

( 2t
∑

k=0
ℎ1(k)ℎ1(2t − k) − 2ℎ1(0)ℎ1(2t)

)

= 1
4
(24�(1) − 4) = 5

in the same way as in (15).

3 INVERSE FUNCTIONS OF E AND E2

From the definition of E, we get

E(pt) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if p = 2,
t + 1 if p ≡ 1, 3 (mod 8),
1 if p ≡ 5, 7 (mod 8) and t ≡ 0 (mod 2),
0 if p ≡ 5, 7 (mod 8) and t ≡ 1 (mod 2).

(16)

Here, t ∈ ℕ0. It is a well-known fact that E is a multiplicative function, but we briefly prove it again in Lemma 10.
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Lemma 10. E, E2, E−1 and (E2)−1 are multiplicative functions.

Proof. Let n = 2lm with gcd(2, m) = 1. Then, it is easily checked that 2t ≢ 1, 3, 5, 7 (mod 8) with 1 ≤ t ≤ l and d|m. By Eqn.
(16), E(2lm) = E(m) = E(2l)E(m).

To prove Lemma 10, we only check thatE(m1m2) = E(m1)E(m2)with gcd(m1, m2) = 1 andm1 ≡ m2 (mod 2). Let pi (1 ≤ i ≤
r) ≡ 1, 3 (mod 8) and qj(1 ≤ j ≤ s) ≡ 5, 7 (mod 8) be distinct primes. Let n1 = pe11 ⋯ perr q

f1
1 ⋯ qfss . It can be easily proved that

E(n1) = 0 if and only if there exist at least one fj ≡ 1 (mod 2). (17)

For convenience, assume that f1 is odd. Let n1 = m1m2 with gcd(m1, m2). Then p
f1
1 |m1 or pf11 |m2. By Eqn. (17), E(n1) = 0

and E(m1) = 0 or E(m2) = 0. So E(n1) = 0 = E(m1)E(m2). By the definition of E, E(pe11 ⋯ perr ) = (e1 + 1)⋯ (er +
1) and E(pe11 ⋯ perr q

2f1
1 ⋯ q2fuu ) = (e1 + 1)⋯ (er + 1) = E(pe11 ⋯ perr ). Thus, if m3 = pe11 ⋯ pett q

2f1
1 ⋯ q2fvv and m4 =

pet+1t+1 ⋯ perr q
2fv+1
v+1 ⋯ q2fss , then E(m3m4) = (e1 + 1)⋯ (er + 1) = E(m3)E(m4). Therefore, E is a multiplicative function. By the

definition of E2, E2(m1m2) = E(m1m2)E(m1m2) = E(m1)E(m2)E(m1)E(m2) = E2(m1)E2(m2) with gcd(m1, m2) = 1. On
the other hand, if f1 is a multiplicative function, then f−1

1 is also a multiplicative function. See12 p.8. Using this, the proof of
Lemma 10 is completed.

Now, considerE−1(pn) and (E2)−1(pn). It can be expressed a little differently, but for convenience, we will useE−2(m) instead
of (E2)−1(m). That is, we will use E2 ∗ (E2)−1(m) = I(m) as E2 ∗ E−2(m) = I(m). Using Eqns. (1) and (16), we get

E−i(2t) =

⎧

⎪

⎨

⎪

⎩

1 if t = 0,
−1 if t = 1,
0 if t ≥ 2

and E−i(pt) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if t = 0,
0 if t = 1,
−1 if t = 2,
0 if t ≥ 3

(18)

with p ≡ 5, 7(mod 8) and i = 1, 2. If p ≡ 1, 3(mod 8), then

E−1(pt) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if t = 0,
−2 if t = 1,
1 if t = 2,
0 if t ≥ 3

and E−2(pt) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if t = 0,
−4 if t = 1,
7 if t = 2,
(−1)t8 if t ≥ 3.

(19)

4 PROOF OF THEOREM 2

To prove Theorem 2, the following Lemma 11 is necessary. That is, the following is the result giving the relationship between
convolution sum and Dirichlet convolution sum:

Lemma 11. If a ∈ ℕ0 and Ê(1) ∶= 0, then

Ê(pa) ∶=
∑

1≤k≤pa−1
gcd(k,pa−k)=1

E(k)E(pa − k) =

⎧

⎪

⎨

⎪

⎩

0 if a = 0,
E(p) if a = 1,
(E−2 ∗ E)(pa) if a ≥ 2.

Proof. Since p is prime, if a = 1, then

Ê(p) ∶=
∑

1≤k≤p−1
gcd(k,p−k)=1

E(k)E(p − k) =
p−1
∑

k=1
E(k)E(p − k) = E(p)
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obviously holds. Let a (≥ 2) be a positive integer. By Lemma 10,

E(pa) =
pa−1
∑

k=1
E(k)E(pa − k) =

a−1
∑

i=0

∑

1≤k<pa−1
gcd(k,pa−k)=pi

E(k)E(pa − k)

= (E(p0))2Ê(pa) + (E(p))2Ê(pa−1) +⋯ + (E(pa))2Ê(p0)

= (E2 ∗ Ê)(pa).

(20)

Therefore, Lemma 11 is proven.

Theorem 12. (a) If p ≡ 1, 3 (mod 8) and n ∈ ℕ, then

Ê(pn) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

p − 1 if n = 1,
(p − 1)(p − 2) if n = 2,
(p − 1)(p2 − 2p + 2) if n = 3,
�(pn) − 4�(pn−1) + 7�(pn−2) + (−1)�(n)2 − 8p�(n)�2(p(n−�(n)−3)∕2) if n ≥ 4

and if p ≡ 5, 7 (mod 8), then Ê(pn) = pn−1(p + 1).
(b) If n ∈ ℕ, then

Ê(2n) =

⎧

⎪

⎨

⎪

⎩

1 if n = 1,
4 if n = 2,
0 if n ≥ 3.

Proof. (a)

Ê(p) = E(p) = �(p) − E(p) = (p + 1) − 2 = (p − 1),

Ê(p2) = (E−2 ∗ E)(p2) = E−2(1)E(p2) + E−2(p)E(p)
= (�(p2) − E(p2)) − 4(�(p) − E(p))
= (p2 + p + 1 − 3) − 4(p + 1 − 2) = (p − 1)(p − 2)

and
Ê(p3) =E−2(1)E(p3) + E−2(p)E(p2) + E−2(p2)E(p)

=(�(p3) − E(p3)) − 4(�(p2) − E(p2)) + 7(�(p) − E(p))
=(p − 1)(p2 − 2p + 2).

Now, consider the case where n is a positive integer greater than or equal to 4. Let n = 2a with a ≥ 2. Then we obtain

Ê(p2a) =(�(p2a) − E(p2a)) − 4(�(p2a−1) − E(p2a−1))

+ 7(�(p2a−2) − E(p2a−2)) − 8
2a−2
∑

k=0
(−1)k(�(p2a−3−k) − E(p2a−3−k))

=�(p2a) − 4�(p2a−1) + 7�(p2a−2) + (−E(p2a) + 4E(p2a−1) − 7E(p2a−2))

− 8
a−2
∑

k=1
(�(p2k+1) − �(p2k)) + 8

a−2
∑

k=1
(E(p2k+1) − E(p2k)) − 8(�(p) − E(p)).

It is easily checked that −E(p2a) + 4E(p2a−1) − 7E(p2a−2) = −8a + 6, �(p2k+1) − �(p2k) = p2k+1, E(p2k+1) − E(p2k) = 1 and
−8(�(p) − E(p)) = −8p + 8. Thus,

Ê(p2a) =�(p2a) − 4�(p2a−1) + 7�(p2a−2) − 8a + 6 − 8(p3 +⋯ + p2a−3) + 8(a − 2) − 8p + 8
=�(p2a) − 4�(p2a−1) + 7�(p2a−2) − 8p�2(pa−2) − 2.
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Let n = 2a − 1 be an odd integer with a ≥ 3. Similarly to the case n = 2a, we obtain

Ê(p2a−1) =�(p2a−1) − 4�(p2a−2) + 7�(p2a−3) + (−E(p2a−1) + 4E(p2a−2) − 7E(p2a−3))

− 8
a−2
∑

k=1
(�(p2k) − �(p2k−1)) + 8

a−2
∑

k=1
(E(p2k) − E(p2k−1))

=�(p2a−1) − 4�(p2a−2) + 7�(p2a−3) − 8�2(pa−2) + 2.
Secondly, consider the case where n ≡ 5, 7 (mod 8). Then, by (18) and Lemma 11,

Ê(p) = E(p) = �(p) − E(p) = �(p) = p + 1,

Ê(p2) = (E−2 ∗ E)(p2) = E−2(1)E(p2) + E−2(p)E(p) = �(p2) − E(p2) = p(p + 1),

Ê(pn) = (E−2 ∗ E)(pn) = E−2(1)E(pn) + E−2(p2)E(pn−2) = pn−1(p + 1)
with n ≥ 3.

(b) It is easily seen that Ê(2) = 1 and Ê(4) = 4. By Proposition 9, Lemma 11 and Eqn. (18), Ê(2n) = E−2(1)E(2n) +
E−2(2)E(2n−1) = 5 − 5 = 0 with n ≥ 3.

Finally, using (1), if we put Ê(pn) = 1
4
#N(pn) in Theorem 12, the proof of Theorem 2 is completed.
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