
Intuition and symmetries in
electromagnetism: Eigen states of 4
antennas

B. HAMDI and T. AGUILI

Symmetries play an essential role in the field of physics. In this
paper, we examine the relationship between the eigen-amplitudes
of 4 symmetrical antennas and the symmetry of the amplitudes of
their sources (excitations) using mirroring effects. By exploiting the
symmetry problem, we can show the advantage of reducing the size
of the analysis domain, at least by a factor of two or more (2,4 and
8)(depending on the problem). Several simulation examples have been
developed by the MoM-GEC and HFSS to validate this approach.

Problem Formulation:

Setting up of the problem: Let S1, S2, S3 and S4 be 4 sources of self-
amplitudes E1,E2,E3 and E4 of 4 antennas are given in the figure (1) [1]
. Each eigenstate of symmetry (under the condition of the mirror effect )
has an amplitude Ẽ1 ,Ẽ2,Ẽ3 and Ẽ4 , as we are going to explain [2, 3, 4,
5].
∗ Proper states :

Fig. 1 Four antenna configuration with a combination of electrical and
magnetic symmetries

Depending on the direction (ox): we can put up magnetic wall or electric
wall. Similarly for the direction (oy), we can set up magnetic wall or
electric wall, as described in the figure (1) . The combination between the
2 axes (ox) and (oy) allows to establish 4 states of amplitude mirroring,
which can be summarized as follows [2, 3, 6, 7]:

States Walls Amplitudes of sources
1 magnetic (ox) \ magnetic (oy) 1 1 -1 -1
2 magnetic (ox) \ electric (oy) 1 -1 -1 1
3 electric (ox) \ magnetic (oy) 1 1 1 1
4 electric (ox) \ electric (oy) 1 -1 1 -1

By normalizing the states , we have :
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u1, u2 , u3 and u4 are orthonormal vectors.
Then, using the theorem of superposition, any state can be written [15] :
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, so,
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The passage matrix P is unitary ⇒ (P−1 = P t).
⇒ Ẽ = P−1E = P tE

⇒ E︸︷︷︸
Amplitudes of the antennas

= P Ẽ︸︷︷︸
Amplitudes of the states ( sources in symmetries )

Each antenna self-amplitude in the total configuration of 4 antennas is
written as the the superposition of the symmetry amplitudes (states) (all
the combination of symmetry between electric and magnetic walls are
considered ) [8, 9, 10].

Symmetries and phases: In this case, we consider only the case of two
sources (a source and its image) having an even or odd symmetry relation
( in the presence of magnetic or electric planes) [8]. According to the
theorem of image explained in [10, 11, 12], we can simply count the
phases established between 2 symmetrical or anti-symmetrical sources
(in phase or in phase opposition), as indicated in the figure (2) [13].
In the case of even symmetry, the phase shift established between 2

Fig. 2. Symmetry and antisymmetry between 2 sources

sources was :

ΦS12 = 0[2π] = 2kπ ⇒ 2 sources are in phase (2)

Inversely, in the case of odd symmetry the phase shift was :

ΦS12 = (2k + 1)[π] = (2k + 1)π ⇒ 2 sources are in phase opposition (3)

According to the appendix (See the last section) [14], S can be written as:

[S] =

(
S11e−jΦ1 S12e−j(Φ2+Φ1)

S21e−j(Φ2+Φ1) S22e−jΦ2

)
(4)

∗ Special cases:
♢ Case of even symmetry : if we fix Φ1= 0⇒Φ2= 0.
So,

[S] =

(
S11 S12

S21 S22

)
(5)

♢ Case of odd symmetry :if we fix Φ1= 0⇒Φ2= π and vice versa if
Φ1= π⇒Φ2= 0 .
⇒

[S] =

(
S11 S12e−jπ

S21e−jπ S22e−jπ

)
(6)

♢ In the case of an arbitrary phase shift and an odd symmetry: we define
any phase Φ1 will automatically add a phase shift of π to Φ2 :
⇒ Φ2=Φ1 + π ⇒ Φ2− Φ1= π ( Note that this case is verified under
HFSS with the phase commands (e.g. Arg(S21)). Finally, the matrix S is
written :

[S] =

(
S11e−jΦ1 S12e−j(2Φ1+π)

S21e−j(2Φ1+π) S22e−j(Φ1+π)

)
(7)

We can generalize these different cases to study the configurations of the
previous section ( two by two between the 4 antennas). It is now possible
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to simulate this problem using commercial software (such as HFSS and
CST ) or other software.
Finally, we can generalize the case of [S] parameters adapted to 4-antenna
structures in each symmetry state (in the presence of all combinations of
magnetic and electrical walls), which is written as follows [14]:

[S] =

 S11e−jΦ1 S12e−j(Φ2−Φ1) S13e−j(Φ3−Φ1) S14e−j(Φ4−Φ1)

S21e−j(Φ2−Φ1) S22e−jΦ2 S23e−j(Φ3−Φ2) S24e−j(Φ4−Φ2)

S31e−j(Φ3−Φ1) S32e−j(Φ3−Φ2) S33e−j(Φ3) S34e−j(Φ4−Φ3)

S41e−j(Φ4−Φ1) S42e−j(Φ4−Φ2) S43e−j(Φ4−Φ3) S44e−j(Φ4)

 (8)

Φ1, Φ2, Φ3 and Φ4 are parameters that depend on the nature of the
symmetry (odd \ even ) used at each configuration.
The particular cases of odd-even symmetries of equation(8) will be
treated in the same way as the case of 2 sources (see equations (5),(6)
, and (7)).

Results: To distinguish the different cases of symmetry, it is necessary
to use the phases of the physical quantities J, E, and H and the coupling
parameters S, Z, Y, ....etc. In our case, we used the MoM-GEC and HFSS
as simulation tools (see figure(3)). In this context, several results were
shown to validate this approach. First, we validated the MoM GEC and
HFSS on the input impedance of the planar dipole antenna used in the
4 antenna configuration, as indicated in the figure (4)[15]. After that, a
validation based on the boundary conditions of 4 antennas, was proven
by the surface currents described by the guide modes and test functions,
solved with MoM GEC, as given in in the figure (5) [15].

Fig. 3 Example of a 4 antenna symmetric configuration with amplitudes of
11-1-1 (under HFSS): (ox) electrical walls, (oy) magnetic walls.

Fig. 4 Input impedance seen at the source of one of 4 antenna given by the
MoM GEC method and the HFSS tool (Validation) :

A limitation with the MoM-GEC is shown to differentiate the
different cases of symmetries. According to the MoM GEC formulation,
the coupling parameters Z, Y and S are independent of the phase shifts of
the excitation sources (From the coupling expression Z = 1

At[Zi,j ]−1A

) [15]. These phase shifts will be caused only by the amplitudes of
the surface currents JS and the surface electric field ES (JS and ES

Fig. 5 Distrubution of the current density for (2 x 2) phased half-wavelength
planar dipoles described with the guide’s modes functions at f=5.4 Ghz, α0=0
rad m−1andβ0=0 rad m−1 (MoM-GEC method)

Fig. 6 Distrubution of the current density for (2 x 2) phased half-wavelength
planar dipoles described with the trial functions (test functions ) at f=5.4 Ghz,
α0=0 rad m−1andβ0=0 rad m−1 (MoM-GEC method)

are complex numbers). We were able to differentiate these different
symmetries with the MoM-GEC using the surface current phase of the
4-antenna structure, as given in the figures (7) and (8). It is an advantage
for HFSS to show and distinguish these symmetries with the coupling
parameters Z, Y, and S by using the commands Arg(S), Arg(Y), and
Arg(Z) (or the HFSS Phase commands).
According to the figure (9), we considered Arg(S12) between the
interaction of 2 sources of the configuration 1111 (2 symmetrical
sources in-phase) and Arg(S12) between the interaction of 2 sources
of the configuration 11-1-1 (2 anti-symmetrical sources in phase
opposition), we found a phase shift of angle π is established between
Arg(Ssymmetric sources

12 ) and Arg(Santi symmetric sources
12 ) , at any point of the

frequency band [0 20 ] GHz, as depicted in the figure(9).
This verifies , Arg(Ssymmetric sources

12 ) - Arg(Santi symmetric sources
12 )=π

(or = 180◦) which seems to the equation: Φ1 − Φ2 = π and the
reasoning which follows the equation (6). Finally, we can distinguish the
cases of symmetries by the introduction of phase shift in the matrix of
[S] parameters, as explained in the previous section.

Appendix: Technique to count the phase shift between 2 sources
(particular cases of odd and even symmetries) : This method explains
how to calculate the phase between two sources. By the same reasoning
established in [14], we imagine a line tracing placed at the input of a
quadripole of known parameter [ S ] (for example a source and its image),
as proposed in the figure(10). This case is considered general to produce
the phase shift between 2 sources by the addition of line portions. This
line segment provides a phase shift Φ1 related to the propagation (In our
case, related to the source (S1) and its image (S2)).
If we first assume that the output is matched, then a2 = 0 and,
The input reflection coefficient undergoes 2 times the phase shift, so

S
′
11 = S11e

−(2jΦ1) (9)

2



Fig. 7 Current Je’s phase (or Angle) of a symmetry configuration with an
electric wall along (ox) and a magnetic wall along (oy) : the amplitudes of
the excitations are 1111 (MoM-GEC method)

Fig. 8 Current Je ’s phase (or Angle) of a symmetry configuration with a
magnetic wall along (ox) and a magnetic wall along (oy) : the amplitudes of
the excitations are 11-1-1 (MoM-GEC method)

The transmission coefficient from the input to the output undergoes the
phase shift once, so

S
′
21 = S21e

−(jΦ1) (10)

If we now assume that the input is matched, then a1 = 0, and,
The reflection coefficient seen from the output does not change

S
′
22 = S22 (11)

The reflection coefficient from the output to the input undergoes the phase
shift only once, so

S
′
12 = S12e

−(jΦ1) (12)

In short, it leads to

[S
′
] =

(
S11e−2jΦ1 S12e−j(Φ1)

S21e−j(Φ1) S22

)
(13)

When the change concerns the two reference planes at the two accesses
of a quadrupole, similar reasoning leads to :

[S] =

(
S11e−j2Φ1 S12e−j(Φ2+Φ1)

S21e−j(Φ2+Φ1) S22e−j2Φ2

)
(14)

Conclusion: This paper presented the connection between the eigen-
amplitudes of the 4 antennas and the symmetry of the amplitude of
the associated sources (states) through mirror effects . A phase shift
technique has been used to highlight all combinations of symmetry
between electric and magnetic walls disposed along (ox) and (oy) axis.
To distinguish these different symmetries, a method of calculating the
S-parameters is introduced. Note that the main advantage of symmetry
is to reduce the domain of analysis .As a perspective, we can apply
this symmetry approach to a (largely extended) antenna sub-arrays with
different source amplitudes.
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Fig. 9 Arg (S12) between 2 sources of 4 antennas in two different symmetry
configurations 1111 and 11-1-1 : The frequency range from 0 to 20 GHz .
(Simulation under HFSS) (It checks Φ2− Φ1= π (See after Equation 6))

Fig. 10 A portion of line added at the input of a quadrupole of known matrix
[S] to reconstruct the phase established between 2 sources: we can work on
the cases of symmetries as particular cases where the sources are in phase or
opposition of phase)
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