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Abstract—In this work, we present a modification to the digital
Wallace-based Gaussian Random Number Generator (GRNG)
by implementing an in-memory memristive dot-product engine
in place of the vector-matrix multiplication (VMM) stage. The
dot-product engine provides an analog interface to the GRNG
with statistical robustness and better resource efficiency. One
modification with three different structures is proposed and
evaluated by the statistical test pass rates and benchmarked
against the digital implementations. The best-proposed modifi-
cation achieved a 95.8% test pass rate for 100 iterative small
pool generation while requiring 23.6% and 44.4% less power
and area consumption.

Keywords—Memristor, Crossbar, Vector-Matrix Multiplica-
tion, Gaussian Random Number Generator

I. INTRODUCTION

GAUSSIAN random numbers (GRNs) are widely used in
fields such as Monte Carlo simulation [1], simulated

annealing and white noise models [2] which a significant
portion of the time is devoted in such applications for gen-
erating random numbers. Wallace method [3] has been con-
sidered to have the most considerable speedups for GRNs over
conventional methods. Recent studies have been focusing on
developing hardware GRNs to achieve faster throughput and
better connectivity with peripheral circuits [4]. In particular,
the Wallace method [3], which requires vector-matrix multipli-
cation (VMM) and eliminates the use of hardware-expensive
fundamental mathematical functions, gathers increased atten-
tion on its hardware implementation. State-of-the-art examples
include [5] which implemented an FPGA-based GRNG based
on Wallace, with the VMM step divided into Multiplication
and Accumulation (MAC) processes. Though, the pipelining
of components yields a long critical path and reduces the
resource efficiency [6]. Consequently, alternative methods for
implementing such operations are desirable and should be
explored. One such approach may benefit from memristive
in-memory computing.

Crossbars constructed using individual non-volatile memris-
tive devices can perform the VMM operation [6] in one step
[7]. By mapping the matrix onto the memristor conductance
states, and inputting the vector as voltages applied to the rows
of the crossbar, the resultant current sensed at the end of each

column of the crossbar will reflect one element of the output
vector. Memristive devices usually have a high resistance range
(1K−1MΩ) and few nanometers size, which leads to a better
resource efficiency. However, a major concern with memristive
crossbar VMM computation is their low accuracy [8]. Non-
idealities such as sneak-path current, interconnect resistance,
and ageing effect in the crossbar, and the quantization problem
of the memristor itself jeopardize the precision of calculations
carried on it To mitigate their impacts, additional techniques
such as precision enhancement need to be applied to the
crossbar.

In this paper, we propose to use in-memory computing using
memristive crossbars for the VMM of the Wallace method to
implement more efficient GRNGs. Generating random num-
bers from a gaussian distribution by utilizing true randomness
of memristor crossbar switching is providing a higher quality
random number generation in comparison with pseudo-random
numbers algorithms typically used in computer programs. In
this work, not only we are generating high quality random
numbers by getting the benefit from memristor device switch-
ing randomness but also we are accelerating the hardware
performance by using fully parallel VMM on memory crossbar
array.

II. PRELIMINARY

A. The Wallace Method
The Wallace method (Fig 1(a)) begins with an old pool of

N (= KL) GRNs generated by software method. The numbers
are normalized for an average squared value that equals one
and then stored in the memory. At each iteration, K numbers
are randomly fetched, and organized into a vector XT . The
vector is then multiplied with an orthonormal transformation
matrix A to form the new GRNs by X ′T = AXT . Ideally, all
the addresses in the old pool should have been covered and
transformed into the new pool after each pass (defined as a
complete formation of a new pool in L iterations). The new
pool is then treated as an old pool in the next pass. The system
ends up with a χ2 correction step to decorrelate the numbers
and reverse the normalization in the first step [9]. A random
variate v can be approximated with the χ2

N distribution by
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Fig. 1. (a) A graphic representation of the Wallace method. (b) The existing CMOS-based GRNG hardware implementation described in [5]. (c) The bit
slicing technique used in the crossbar calculation to enhance accuracy and precision.

where x is randomly picked from the new pool. A correction
factor G = ( v

N )0.5 is then applied to each number in the pass.

B. GRNG Structure
An existing hardware GRNG in [5] is composed of two

main parts: a random address generator (stages 1 and 2 in
Fig. 1(b)), and a transformation-correction block (stage 3 and
4 in Fig. 1(b)). The old-pool GRNs are initially generated by
software methods and stored in an on-chip dual-port RAM.
The random address generator derived from conventional lin-
ear feedback shift registers (LFSRs) [10] generates bitstream
that is sliced into three log2(L)-bit patterns labelled as start,
stride and mask. Each of the bit patterns are further logistically
mixed by performing

addri = (start+ stride× i)⊕mask (2)

where i ∈ {1, ...,K} to ensure the optimal coverage of
addresses. Old GRNs are fetched from the RAM accordingly
and transformed by MAC circuit. By benefiting from the
only ±1 entries in the Hadamard matrix, old GRNs can be
preprocessed and operated by separate adders/subtractors in
parallel. The optimal critical path then contains only one
multiplexer and one subtractor. The result is stored back into
the RAM per iteration and one new number from each pass
is selected for approximating the distribution correction factor
G, which is then applied to all the outputs.

III. METHODOLOGY

Here, we present modifications into the transformation stage
(stage 3 of Fig. 1(b)) of the GRNG in [5] by replacing the logic
circuits with a memristor crossbar to perform VMM.

A. Baseline Design
To enhance the calculation precision, a bit-slicing method

(Fig 1(c)) is adopted in the computation. The digital numbers
are sliced into 16 1-bit patterns and programmed into a

bitstream to be fed to the crossbar. The output analog values
are then transferred back to a K × 1 output vector.

As shown in Fig 2(a), the old-pool GRNs fetched from
RAM are written into an input buffer, grouped to a K × 1
vector and sliced. The 16-bit input slices are converted to
analog signals and fed into the rows of the crossbar. The
transformation matrix entries are reflected by the resistance
of memristors as shown in Fig 2(b) and pre-programmed into
the crossbar in its transposed form by write-and-verify pulses
in Fig 2(c). In this model, the matrix has been defined as a
fixed Hadamard matrix to eliminate the need for reprogram-
ming. The values (V ) in the matrix are represented by two
neighbouring columns, one for the positive part (V +) and the
other for the negative part (V −) to form V = V + − V −. The
resultant current I = I+ − I− is collected at the end of each
two columns, converted to digital signal, accumulated in the
output buffer, and written back into the memory.

B. Random Transformation Selection

To further reduce the correlation between the generated
numbers, we use a pool of transformation matrices, from
which one matrix is randomly selected and programmed into
the crossbar per iteration. To adapt the method, extra on-chip
memory is needed to store all possible matrices. During each
writing, the row pulses are kept the same and the column
inputs determine the final number written into the row as
shown in Fig 2(b). Therefore, the matrices are stored as the
bitline current values in the memory. The overall structure of
the method is shown in Fig 2(d). Extra programming time of
a crossbar is directly proportional to the number of rows, and
the minimum switching time tmin of the memristor devices.

C. Multi-stage Transformation

Another enhancement on the baseline model changes the
number of transformations performed during each iteration.
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Fig. 2. (a) The proposed circuit structure for implementing the baseline model of the memristor-based transformation method. (b) Examples of memristor
resistances mapped from the transformation matrices. (c) The Read-and-Verify pulses for programming e.g. [1 1 0 1] into the first column of the crossbar. (d)
The first modification plan with a pool of transformation matrices. (e) The second modification plan with a pair of matrices multiplied with the input vector.

Each time, a pair of matrices are multiplied with the old-GRN
vector [11]. Consequently, extra memory is needed to store all
possible pairs of matrices. Similar to the previous method, the
matrices are stored as bitline voltages in the memory. Another
set of VMM engines, including the crossbar and the subtractor
circuit, is appended at the end of the first one. The resultant
current from the first crossbar is converted to voltage and
passed to the input of second crossbar. The same calculation
procedure is carried out again and the results are converted
back to digital form. The overall structure of the method is
shown in Fig 2(e). Since each crossbar bitline has its own
power source, the programming of the two crossbars can be
in parallel but the computations in crossbars are serial.

IV. RESULTS AND DISCUSSION

To evaluate the proposed designs, a number of credibility
tests are performed. All of the tests are carried out using
the simulation platform for the memristor crossbar model
built based on [12]. The device model in [13] is used by
considering LRS = 10KΩ and HRS = 100KΩ. The CMOS
32nm technology is used for digital blocks simulations. All
calculations are on 16-bit (Q13.3) fixed-point arithmetic with
16 slices per number. All results have been summarized in
Table I.

A. Goodness-of-Fit Tests
The four goodness-of-fit tests on the distribution of gen-

erated GRNs are: 1) Anderson-Darling (A-D) [17]; 2)
Kolmogorov-Smirnov (K-S) [18]; 3) Shapiro-Wilk [19] and
4) D’Agostino K-squared [20], with null hypothesis stated as:
the observed data follows a normal distribution. Acceptances

are made on the test scores (p > 0.05), except for A-D test in
which the statistics are compared with the critical value (stats
< crit. val) at each significance level. All tests are carried out
with wire resistance of 20Ω and stuck probabilities of 0.1%.

The first tests are based on a relatively large pool of
4096 GRNs, with test scores compared directly. As shown
in Fig 3(a), all three versions of the proposed design pass the
statistical tests. The random transformation and multi-stage
methods have shown at least 2.7× and 2.3× improvement on
the test score over the baseline. Another set of tests are carried
out on small pool sizes (N = 128 and 256) with 100 pools
generated. The accumulated test pass rates are recorded in Fig
3(b). In both pool sizes, all three methods achieve a pass rate
over 90%. An average increase of 3.58% and 1.69% is yielded
by the latter two methods, respectively.

B. Robustness Against Non-idealities
Here we investigate the effect of three major non-idealities:

sneak-path current, wire resistance between electric com-
ponents, memristance variation and probabilities of stuck
ON/OFF as the memristor ages. The effect of sneak-path cur-
rent is considered and it is associated with the wire resistance
and the state of each memristor. Therefore, it is considered
with the two other factors simultaneously. In the test of wire
resistance, the resistance varies in [10Ω, 110Ω] and the pass
rates of 100 pools of 128 random numbers are recorded in Fig
3(c). The memristor resistance state variation effect is consid-
ered 10% for both READ and programming stages. All pass
rates decrease as the resistance increases, with the best case in
the random transform method which only drops from 91.9%
to 88%. The multi-stage transformation has a much steeper
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Fig. 3. (a) Large pool generation test result. (b) Small pool generation test result. (c) The impact of increasing wire resistance on the test pass rate. (d) The
impact of memristor stuck ON/OFF on the test pass rate. (e) BPSK simulation result. (f) Squared error distance from the theory to the simulated BER.

TABLE I
GOODNESS-OF-FIT TEST RESULTS

Design Baseline Model (Section III.A) Random Transform (Section III.B) Multi-stage (Section III.C)
Tested Pool Size 128 256 4096 128 256 4096 128 256 4096

Best p-value - - 0.345 - - 0.953 - - 0.95
Test pass Rate 91.50% 92.40% - 94.70% 95.80% - 93% 94% -

Test pass
Rate Drop

Wire Resistance 2.08% 2.72% 4.55%
Stuck ON/OFF 24.20% 36.80% 69.20%

TABLE II
PERFORMANCE COMPARISON OF EXISTING MEMRISTOR-BASED URNGS

Design [5] [14] [15] [16] This Work
Baseline
Model

Random
Transform Multi-stage

Method Wallace Box-Muller Wallace Physical randomness Wallace
Technology FPGA (Xilinx) FPGA (Xilinx) FPGA (Altera) Resistive RAM RRAM + digital peripheral

Power [mW] 54.78 48 560.25∗ 32.54∗ 41.83 42.98 44.23
Area [mm2] 53.9 - - 8.53E-06 29.97 29.973 29.975

Speed** [MHz] 155 138.8 117.63 33.3 125 35.7 29.4
∗

64 units in parallel for stage 3 without standardizing the distribution, ∗∗ Random values generated per second.

descent after 70Ω and even drops below the baseline. Fig
3(d) shows tests based on the stuck probability of memristors,
increased from 0.1% to 45%. Due to rapid reprogramming,
both enhancement methods are more susceptible. The random
transform and the multi-stage method each experienced a
36.8% and 69.2% descent, compared to the 24.2% decrease in
the baseline model. The multi-stage method is the least robust
due to the serial operation, which exacerbates the errors made
earlier.

C. Application Test

This test uses GRNG as White Gaussian Noise sources
and simulates the Bit Error Rate (BER) in the Binary Phase
Shift Keying (BPSK) modulation [21]. Fig 3(e) illustrates the
simulation result of BER versus the Signal-to-Noise Ratio.
Simulated values show no large deviation from the theoretical
values. To better visualize the differences, the squared error
is calculated in Fig 3(f). All three methods have a mean error

less than 5× 10−5 with a 14.9% and a 63.7% decrease in the
two enhancement methods from the baseline.

D. Overhead Analysis and Comparison

The overhead analysis in Table II are estimated on exist-
ing technology, using the Yakopcic Tantalum Oxide (TaOx)
memristor model [13] for memristor devices and 32nm CMOS
technology referred from [22] in SPICE. The digital blocks
implementation overhead are estimated based on power con-
sumption equations in [23] and slice area estimated in [24].
The proposed baseline model consumes 41.83mW power
per random number generated, 23.6% and 12.9% less than
its digital counterpart in [5], [14] with different methods,
while overhead power is required by two enhanced methods
due to fetching of the new matrices and reprogramming of
memristors. Another memristor-based GRNG implemented in
[16] utilizing the inherent stochasticity consumed significantly
less power and area but suffered from the problem of uncon-
trolled mean and variance of the distribution. Extra peripherals



are therefore required for standardizing the distribution. The
baseline model also requires an area of 29.97mm2, 44.4% less
than the original. The area consumption increases in the latter
two methods because of the extra memory and crossbar. The
speed of the crossbar is considered with a fast transitioning
binary Tantalum Oxide (TaOx) memristor model in [13], and
is proportional to the number of bit slices. Under the most
optimistic situation where no slice is applied, the baseline
can reach a maximum speed of 125MHz. The computation
speed in the latter two methods drops significantly due to the
reprogramming time and serial operation of crossbars.

V. CONCLUSION

In this work, we proposed modifications to the transforma-
tion stage of a Wallace-based hardware GRNG implementa-
tion. By exploiting the unique properties of memristive cross-
bars and by using statistical enhancement methods to perform
VMM operations, we achieved a maximum of 95.8% in the
statistical test pass rates with 23.6% less power consumption.
Future implementations will be focusing on extending the
memristor implementation to the other stages and improving
its robustness against non-idealities.
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