References
  1. Latest global cancer data: cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020. Available at: https://www.iarc.fr/faq/latest-global-cancer-data-2020-qa. Accessed December 10, 2021.
  2. Liao G, Jiang X, She B, Tang H, Wang Z, Zhou H, et al. Multi-Infection Patterns and Co-infection Preference of 27 Human Papillomavirus Types Among 137,943 Gynecological Outpatients Across China. Front Oncol 2020;10:449.
  3. Shanmugasundaram S, You J. Targeting Persistent Human Papillomavirus Infection. Viruses 2017;9:229.
  4. Venuti A, Paolini F, Nasir L, Corteggio A, Roperto S, Campo MS, et al. Papillomavirus E5: The smallest oncoprotein with many functions. Mol Cancer 2011;10:140.
  5. Peralta-Zaragoza O, Bermúdez-Morales VH, Pérez-Plasencia C, Salazar-León J, Gómez-Cerón C, Madrid-Marina V. Targeted treatments for cervical cancer: a review. Onco Targets Ther 2012;5:315-28.
  6. Pal A, Kundu R. Human Papillomavirus E6 and E7: The Cervical Cancer Hallmarks and Targets for Therapy. Front Microbiol 2020;10:3116.
  7. Malla R, Kamal MA. E6 and E7 Oncoproteins: Potential Targets of Cervical Cancer. Curr Med Chem 2021;28:8163-81.
  8. Akhatova A, Chan CK, Azizan A, Aimagambetova G. The Efficacy of Therapeutic DNA Vaccines Expressing the Human Papillomavirus E6 and E7 Oncoproteins for Treatment of Cervical Cancer: Systematic Review. Vaccines (Basel) 2021;10:53.
  9. Smalley Rumfield C, Roller N, Pellom ST, Schlom J, Jochems C. Therapeutic Vaccines for HPV-Associated Malignancies. Immunotargets Ther. 2020;9:167-200.
  10. Tang J, Li M, Zhao C, Shen D, Liu L, Zhang X, et al. Therapeutic DNA Vaccines against HPV-Related Malignancies: Promising Leads from Clinical Trials. Viruses 2022;14:239.
  11. Yousefi Z, Aria H, Ghaedrahmati F, Bakhtiari T, Azizi M, Bastan R, et al. An Update on Human Papilloma Virus Vaccines: History, Types, Protection, and Efficacy. Front Immunol 2022;12:805695.
  12. Duan SM, Wang GY, Yang WF, Zhang CF. Efficient suppression of E6 and E7 gene expression and the growth of HPV16/HPV18-induced tumor in mouse model by REBACIN, a novel antiviral factor. 26th international papillomavious conference with clinical and public health workshops, Montreal Canada. Abstract P270.2010.
  13. Yang Y, Meng YL, Duan SM, Zhan SB, Guan RL, Yue TF, et al. REBACIN® as a noninvasive clinical intervention for high-risk human papillomavirus persistent infection. Int J Cancer 2019;145:2712-19.
  14. Wang F, Liu R, Ma Y, Wu DF, Deng LH, Wang S, et al. Case Report: Noninvasive Clinical Intervention of REBACIN® on Histologic Regression of High Grade Cervical Intraepithelial Neoplasia. Front Med (Lausanne) 2021;8:627355.
  15. Haręża DA, Wilczyński JR, Paradowska E. Human Papillomaviruses as Infectious Agents in Gynecological Cancers. Oncogenic Properties of Viral Proteins. Int J Mol Sci 2022;23:1818.
  16. Cosper PF, Bradley S, Luo L, Kimple RJ. Biology of HPV Mediated Carcinogenesis and Tumor Progression. Semin Radiat Oncol 2021;31:265-73.
  17. Pal A, Kundu R. Human Papillomavirus E6 and E7: The Cervical Cancer Hallmarks and Targets for Therapy. Front Microbiol 2020;10:3116.
  18. Kamal M, Lameiras S, Deloger M, Morel A, Vacher S, Lecerf C, et al. RAIDs Consortium. Human papilloma virus (HPV) integration signature in Cervical Cancer: identification of MACROD2 gene as HPV hot spot integration site. Br J Cancer 2021;124:777-85.
  19. Zhou SG, Yao H, Zhang WY, Zhu Y, Wang S, Jiang X, et al. Efficacy of REBACIN® and recombinant human interferon alpha-2b on the non-invasive treatment of clearing high-risk human papilloma virus persistent infection. 34th International Papillomavirus Conference (IPVC). Toronto, Canada. IPVC 2021, Abstract P200.
  20. Shanmugasundaram S, You J. Targeting Persistent Human Papillomavirus Infection. Viruses 2017;9:229.
  21. Day PM, Schelhaas M. Concepts of papillomavirus entry into host cells. Curr Opin Virol 2014;4:24-31.
  22. Della Fera AN, Warburton A, Coursey TL, Khurana S, McBride AA. Persistent Human Papillomavirus Infection. Viruses 2021;13:321.
  23. Yang Y, Hu T, Ming X, Yang E, Min W, Li Z. REBACIN®is an optional intervention for persistent high-risk human papillomavirus infection: A retrospective analysis of 364 patients. Int J Gynaecol Obstet 2021;152:82-87.
  24. Zhang GN, Lei W, Ding L, Zheng QL, Pan LZ, Zhang L, et al. Real-world evidence on clinical effect of REBACIN® as a non-invasive intervention for high-risk human papillomavirus persistent infection. 33th International Papillomavirus Conference (IPVC). Barcelona, Spain. IPVC 2020, Abstracts P111.
  25. Murakami I, Egawa N, Griffin H, Yin W, Kranjec C, Nakahara T, et al. Roles for E1-independent replication and E6-mediated p53 degradation during low-risk and high-risk human papillomavirus genome maintenance. PLoS Pathog 2019;15:e1007755.
  26. Winer RL, Kiviat NB, Hughes JP, Adam DE, Lee S, Kuypers JM, et al. Development and Duration of Human Papillomavirus Lesions, after Initial Infection. J Infect Dis 2005;191:731-38.
  27. Brun JL, Rajaonarison J, Nocart N, Hoarau L, Brun S, Garrigue I. Targeted immunotherapy of high-grade cervical intra-epithelial neoplasia: Expectations from clinical trials. Mol Clin Oncol 2018;8:227-35.
  28. Tainio K, Athanasiou A, Tikkinen KAO, Aaltonen R, Cárdenas J, Hernándes, et al. Clinical course of untreated cervical intraepithelial neoplasia grade 2 under active surveillance: systematic review and meta-analysis. BMJ 2018;360:k499.
  29. Zhang J, Lu CS. Spontaneous regression of cervical intraepithelial neoplasia 2: a meta-analysis. Gynecol Obstet Invest 2019;84:562-7.
  30. Cheng L, Wang GY, Zhang CF. Effects of REBACIN in treatment of cervical Intraepithelial neoplasia (CIN) following LEEP procedure. 28th international papillomavious conference (IPVC) with clinical and public health workshops. San Juan, Puerto Rico. IPVC 2012, Abstract P 225.