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Abstract. In order to study the asymptotic behavior, several authors claimed

global existence in time of solutions to a tritrophic food chain models following
a modified Leslie-Gower formulation considering the interactions between three

species: a generalist top predator depredating on a middle predator, that in

turn is depreds a prey. To the contrary it is shown finite time blow-up in such
models can occur. We show in this work that blow up in finite time persists

even when the intermediate (middle) predator is abscent to the contrary to

what it is claimed by Kundu and Patra (2022, [13]). It is shown under some
restrictions on the parameters, the model has bounded solutions for all positive

initial conditions. We show that this is not true. Solutions to the model
can blow up in finite time, for initial data sufficiently large, even under the

restrictions derived by the authors. We can show same results even for small

initial data but we concentrate our proofs for the first case. We also show
similar results for the spatially extended system. We illustrate all our results

through numerical simulations.

1. Introduction

Top predators have the potential to act as biological control agents. Biological
control methods, which help in protecting the flora and fauna of an ecosystem, are
used in many recovery plans [5].

After introducing the logistic delay term ρ to the system and changing variables
following the authors in [13], we consider the following nondimensionalised reduced
predator–prey model of two species food chain ODE model

(1)

du

dt
= u (1− u (t− ρ))− muv

up + c
= f1(u, v),

dv

dt
= α3

(
γ − ω

u+ a

)
v2 = f2 (u, v) ,

where m, c, p, ω, γ, a and α3 are positive constants. System (1) represents a
predator-prey model with one prey and one predator with maturation delay on
the growth function of the prey population. Predator’s functional response repre-
sents group defence in the prey species. The functional response of the generalist
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predator species is modelled by the modified Leslie–Gower scheme, and it is of sex-
ually reproductive type. Here u is the population density of the prey and v is the
population density of the predator whose only food is that prey.

Authors in [13] took a dimensional system where predatory species are lost due
to a severe shortage of species.

Predators will form groups to maximize their predation rate, while preys will
form groups to reduce the predation rate. The term group defense is used for char-
acterization Phenomenon due to the prey species’ ability to defend or camouflage
itself against attacking predatory species, so the predation rate reduced or some-
times prevented by a large number of prey items (see [12], [24], [11], [8], [25] and
[3]).

There are many literatures which use different functional responses to depict the
herd behavior in prey species (see [1], [4], [7], [9] and [14]).

A two-way competition model is considered and tested with the assumption
that the prey species exhibits logistic growth retardation and that the predator
style is generalistic. Switching food when prey is scarce is one of the most common
behaviors of generalist predators. The predator’s functional response is modelled
by a functional response which shows the grouping behavior of a prey species in
defence against predation.

In this regard the works of the authors in [2], [15], [16], [6] concerning tritrophic
food chain models and [13] when the intermediate predator equation hasn’t been
considered which is the case of system (1) are very interesting, and such investiga-
tions are highly desirable. However, one must be very careful with the derivation of
global existence results for such systems, given recent results that show finite time
blow-up in such models ( [17]; [18], [19], [20], [21] and [23]).

2. Blow up at finite time in the ODE

Given a system of ODE’s, a solution cannot always exist globally in time and
blow-up in finite time may occur. Recall,

Definition 2.1. (Finite time blow-up for ODE) We say that a solution of a given
ODE, with suitable initial conditions, blows-up at finite time if

lim
t→T∗

|v (t)| = +∞,

where T ∗ is the blow-up time.

We state the following

Theorem 2.1. Consider the system (1), v(t) blows up at finite time for large initial
data, that is

lim
t→Tmax

v (t) = +∞,

where 0 < Tmax < +∞

Proof. Let u0 = u(0) and v0 = v(0) be the initial conditions in system (1). By
integrating the second equation, we obtain

−1

v
+

1

v0
= α3

γt− ω t∫
0

γt

u+ a

 ,
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whereupon

v =
1

1
v0
− α3

(
γt− ω

t∫
0

γt
u+a

) .
If we prove that the following function

t→ ψ (t) =
1

v0
− α3

γt− ω t∫
0

γt

u+ a

 ,

vanishes at a time T > 0, then the solution will blow up in finite time.
Since the reaction terms are continuous functions, then the solutions are classical
and continuous and

lim
t→0

1

t

t∫
0

t

u+ a

 =
1

u0 + a
.

If u0 is sufficiently large, then there exists δ > 0 such that

1

t

t∫
0

γt

u+ a
<

γ

2ω
, for all t ∈ (0, δ) .

Then for all t ∈ (0, δ), we have

ψ (t) =
1

v0
− α3

γt− ω t∫
0

γt

u+ a


=

1

v0
+ α3

−γ +
ω

t

t∫
0

γt

u+ a

 t < 1

v0
− γα3

2
t.

If v0 is sufficiently large, then we can find T ∈ (0, δ) such that

T =
2

v0
.

1

γα3
< δ.

Then the solution of the ODE blows up in finite time for initial conditions u0 and
v0 sufficiently large:

1

u0 + a
<

1

2ω
and

1

v0
− γα3

2
δ < 0.

�

3. Finite time blow-up in the associated PDE model

Definition 3.1. Given a PDE, with suitable initial and boundary conditions, finite
time blow-up occurs if

lim
t→Tmax

‖z (t, .)‖∞ = +∞,

where the norm ‖.‖∞ denotes the supremum norm on Ω and z (t, .) is the solution
to the PDE in question.
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We now consider the following PDE system

(2)

∂w

∂ν
= d1∆w + (1− w ((t− ρ) , x))− mwz

wp + c
= f1w, z),

∂z

∂ν
= d2∆z + α3

(
γ − ω

w + a

)
z2 = f2 (w, z) ,

t > 0, x ∈ Ω,

with homogeneous boundary conditions of Dirichlet type

(3) w (t, x) = z (t, x) = 0, t > 0, x ∈ ∂Ω,

or homogeneous boundary conditions of Neumann type

(4)
∂w (t, x)

∂ν
=
∂z (t, x)

∂ν
= 0, t > 0, x ∈ ∂Ω,

where Ω is an open bounded set of Rn with smooth boundary ∂Ω. The parameters
m, c, p, ω, γ, a and α3 are positive constants as described above. The constants
of diffusion d1 and d2 are also positive. The initial data

w (0, x) = w0 (x) and z (0, x) = z0 (x) , x ∈ Ω,

are assumed to be nonnegative and uniformly bounded on Ω.
The usual norms in spaces Lp(Ω), L∞(Ω) and C

(
Ω
)

are respectively denoted by

(5) ‖w‖pp =
1

|Ω|

∫
Ω

|w(x)|p dx,

(6) ‖w‖∞=ess sup
x∈Ω

|w(x)| .

Since the nonlinear right hand sides of (2) are continuously differentiable on R+×
R+, then for any initial data in C

(
Ω
)

or Lp(Ω), p ∈ (1,+∞), it is easy to directly
verify its Lipschitz continuity on bounded subsets of the domain of a fractional
power of the operator

(7)

(
−d1∆ 0
0 −d2∆

)
.

Under these assumptions, as it is well known, we have the following local existence
result on PDE (see D. Henry [10])

Proposition 3.1. The system (2) admits a unique, classical solution (w, z) on
[0, Tmax[×Ω. Moreover if Tmax <∞ then

(8) lim
t↗Tmax

{‖w(t, .)‖∞ + ‖z(t, .)‖∞} =∞,

where Tmax denotes the eventual blowing-up time in L∞(Ω).

The non-negativity of the solutions is preserved by application of classical results
on invariant regions since the reaction terms are quasi-positive, i.e.

f1 (0, z) ≥ 0, f2 (w, 0) ≥ 0, for all w ≥ 0, z ≥ 0.

We state the following
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Corollary 3.2. Consider the system (2) with Neumann homogeneous boundary
conditions, then z(t, .) blows up at finite time, in the Lp-norm for all 1 ≤ p ≤ +∞
for large initial data, that is

lim
t→Tmax

‖z (t, .)‖p = +∞, 1 ≤ p ≤ +∞,

where 0 < Tmax < +∞.

Proof. (of Corollary 3.2) It suffices to prove that z (t, .) blows up at finite time, in
the L1-norm, then using the inequality

|Ω|1−
1
p . ‖z (t, .)‖p ≥ ‖z (t, .)‖1 , 1 < p ≤ +∞,

we will deduce the blow up at finite time, in the Lp-norm for all 1 < p ≤ +∞ for
large initial data.

Integrating the two terms of the second equation of system (2) and using the
homogeneous condition (4), we get

(9)
d

dt

(∫
Ω

zdx

)
= α3

∫
Ω

(
γ − ω

w + a

)
z2dx.

For w0 sufficiently large, we can find δ > 0 such that
ω

w + a
≤ γ

2
, for all x ∈ Ω, and all 0 < t < δ.

This implies
d

dt

(∫
Ω

zdx

)
≥ α3

2γ

∫
Ω

z2dx.

As (∫
Ω

zdx

)2

≤ |Ω|
∫

Ω

z2dx.

By putting Z(t) =
∫

Ω
z (t, x) dx, we get the following quadratic differential inequal-

ity
dZ

dt
≥ α3

2γ |Ω|
Z2,

which gives, after integration on the interval (0, t),

− 1

Z
+

1

Z0
≥ α3

2γ |Ω|
t, for all 0 < t < δ,

where Z0 =
∫

Ω
z0 (x) dx. That is

Z ≥ 1
1
Z0
− α3

2γ|Ω| t
,

which gives
lim

t→Tmax

Z = +∞,

whenever Tmax = 2γ|Ω|
α3Z0

. This ends the proof of the Theorem. �

For Dirichlet homogeneous boundary condition, using the positivity of z on Ω,
we have ∫

Ω

∆zdx ≤ 0,

and so we can’t obtain an inequality analogous to (9). However using comparison
theorems, we can prove the following.
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Proposition 3.3. Consider the system (2) with Dirichlet homogeneous boundary
conditions, then z(t, .) blows up at finite time, in the L∞-norm for large initial data,
that is

lim
t→Tmax

‖z (t, .)‖∞ = +∞, ,

where 0 < Tmax < +∞.

Proof. We follow the same reasoning as in the case of Neumann homogeneous
boundary conditions, but without integration on Ω. We compare the second equa-
tion of the system (2) with initial condition (w0 (x) , z0 (x)) and the correspond-
ing equation of the system (1) with initial condition (u0, v0) sufficiently large
(w0 (x) ≥ u0 � 0 and z0 (x) ≥ v0 � 0).

Let us choose in the system (1) u0 sufficiently large, then we can find δ > 0 such
that

ω

u+ a
≤ γ

2
, for all 0 < t < δ.

Following the same reasonning as before, we can prove that v blows up at finite
time T ∗ = 2

γαv0
. Comparing the initial condition of the PDE (2)) with those of the

ODE (1), i.e. z0 (x) ≥ v0 on Ω, then the standard comparison method gives

z (t, x) ≥ v (t) for all x ∈ Ω, and all 0 < t < T ∗.

Consequently, we deduce blow up at finite time of the PDE system. This ends the
proof of the proposition. �

4. Numerical illustration

In this section, we show by computer simulations, that the v component of the
ODE system (1), as well as the z component of the PDE system (2), blow up in a
finite time. In these illustrations we took ρ = 0, but the blowing up in a fine time
of the ODE or PDE systems remains valid for ρ 6= 0.

4.1. Illustration of Theorem 2.1. We validate in this section the result stated in

Theorem 2.1. For this, we consider the ODE system (1) using the following choice
of its parameters,

ρ = 0 m = 10 ; p =
6

5
; c = 10

α3 = 1.11 ; γ = 0.125 ; ω =
6

5
; a = 10

These values were chosen so that the solution v(t) of system (1) blows up in a
finite for initial conditions (u0, v0) = (10, 157).

ODE system (1) is simulated with Matlab R2017a. The numerical resolution of
this system is carried out using the ode45 solver of ordinary differential equations.
Figure 1 presents the evolution of v(t) over the time interval [0, 1].
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Figure 1. Blow-up in the ODE case. The initial conditions are
(u0, v0) = (10, 157).

4.2. Illustration of Corollary 3.2 and Proposition 3.3. We validate in this
section the result stated in Corollary 3.2 and Proposition 3.3. For this, we consider
the PDE system (2) using the following choice of its parameters,

(10)
d1 = d2 = 2.5 ; ρ = 0 ; m = 0.55 ; c = 10
α3 = 1.1 ; γ = 0.0512 ; a = 20 ; ω = 1.2

These values were chosen so that the solution z(t) of system (2) blows up in a finite
for initial conditions (w0, z0) = (1520, 18.1). PDE system (2) is simulated with
Matlab R2017a. The numerical resolution of this system is carried out using the
pdepe solver of partial differential equations. Figure 2 presents the evolution of
z(t, x) over the domain [0, 1]× [0, 1].

5. Conclusion

In the present manuscript we study the solutions of the ODE system (1), mod-
eling a reduced predator–prey model of two species food chain ODE with delay.
The system is with a generalist predator and group defence in the prey species. We
prove that for large initial data and under conditions stated in ([13], Theorem 3.2),
the solutions of system (1) can blow up in a finite time. This is also true in the
case of the spatially explicit model (2). Thus, even when the logistic delay term ρ
is not zero, the blow up in finite time persists in the ODE and PDE cases. These
results are confirmed by computer simulations.

6. Data availability

The datasets generated during and/or analysed during the current study are
available in the github repository, http://github.com/abdelhamidzaidi/BlowUp.

http://github.com/abdelhamidzaidi/BlowUp
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Figure 2. Blow-up in the 1-D PDE case. The initial conditions
are (w0, z0) = (1520, 18.1). The boundray condition are given by
(3), and (4).
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