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Summary

Nanocomposites are heterogeneous media with two or more microstructural levels.
For instance, a nano-level characterized by isolated nano-inclusions and a micro-
level represented by the clusters resulting from aggregation processes. Our goal is to
present a procedure to study the influence of this aggregation process and interfacial
thermal resistance on the effective thermal conductivity. The procedure is based on
the Reiterated Homogenization Method and consists of two stages. First, an effective
intermediate thermal property is obtained by taking into account only the influence
of the individual nano-inclusions in the matrix. Second, the final effective thermal
coefficient (k̂RH ) is calculated considering the clusters immersed in the intermediate
effective medium derived in the first step. The conductivity gain (kgain) is defined as
the quotient (k̂RH∕k̂CH ) where k̂CH is the effective thermal coefficient computed
considering only one microstructural level. The scheme is exemplified for 2-D square
arrays of circular cylinders. The analytical formulas of the effective coefficient used
in the calculations generalize other well known formulas reported in the literature.
Finally, the effect of thermal conductivity gain is illustrated as a function of the Biot
number, the quotient of the thermal conductivities, the fibers volume fraction and an
aggregation parameter. The present contribution could be useful for nano-reinforced
fibers applications and nanofluids. Furthermore, the present formulas can be used to
assess numerical computations. An appendix is included showing similarities and
differences between the obtained analytical formulas of effective coefficients, for dif-
ferent truncation orders, and those derived from the trifasic model.
KEYWORDS:
conduction, reiterated homogenization, effective properties, imperfect contact, multiple scales

1 INTRODUCTION

The study of the effective thermal conductivity in heterogeneous media with various micro-structural scales has gained increas-
ing interest because of its importance in heat transfer applications, especially in the areas of nanocomposites1,2,3,4,5 and
nanofluids6,7,8,9,10.

There is also an increasing interest in the influence of the thermal barriers at the interfaces11,12. In13 an Ad-hoc homogenization
model was developed to analyze the role of aggregation processes and interfacial thermal resistance on the effective thermal
conductivity of nanofluids and nanocomposites. Based on the relationship between aggregation process and the existence of



2 E. Iglesias-Rodríguez ET AL

FIGURE 1 An illustration of the influence of aggregation in the base geometry (in black are marked the clustered inclusions).

multiple spatial scales, their model showed a significant enhancement of the effective thermal conductivity with respect to fully
dispersed media.

The methodology to be followed in this work is based on the reiterated homogenization method (RH). This is a mathematical
method of homogenization developed in14. The ad hoc multiscale model formulated by13 was an inspiration for the application
of RH in some of our works. For instance, in15 the RH was applied to investigate the macroscopic behavior of the strong form
Fourier heat conduction problem with periodic and rapidly oscillating coefficients depending on two fast variables representing
two microstructural scales. Laminate composites were considered, and no improvement of the effective thermal conductivity
was was observed relative to conventional laminates. However, in16 perfect interfacial contact was considered and an improved
effective thermal conductivity was observed for multiscale fibrous and particulate composites with-ordered microstructures by
combining the reiterated homogenization method with known analytical formulas. Similar gain of the effective thermal con-
ductivity was also observed in17,18,19 for two-dimensional multiscale heterogeneous media through reiterated homogenization
and finite element methods. In12, a one-dimensional walk-through of the RH, involving numerical examples, mathematical jus-
tifications and examples of thermal conductivity gain can be seen. Recently, in20, the methodology used in15 was extended by
considering the effects of thermal barriers at the interfaces, and also enhancement of the effective conductivity was detected.

In the current work, the analysis in16 is generalized to the case of imperfect interfacial contact. For simplicity, we consider
the same square periodic arrangement of circular cylinders for both microstructural levels. However, the formulas that we will
use for the effective coefficients were calculated following the Rayleigh method described in21,22,23. Unlike22,23, we derive in
a conductive context five types of explicit analytical formulas for the effective thermal coefficient with different approximation
orders. These formulas were obtained considering the imperfect spring-type contact condition at the interface24. Furthermore,
these new formulas are expressed in the style of those reported by25 for perfect contact in a three-phase conductive problem. In
this way, the equivalence between the imperfect spring-type contact model with the three-phase model is detailed26,24,27,28. The
validation also includes comparisons with finite element results and Laurent series expansion for small concentrations as in29.

1.1 Physical motivation
Let’s consider a two-dimensional conductive medium formed from a matrix and inclusions with a periodic configuration. The
inclusions in the nano-scale can be grouped into aggregates periodically distributed in the micro-scale. In this manner, we have
two-scale periodic media where the bigger micro-structure is formed by a larger inclusion with the same conductivity as the
smaller nano-structure.

To distinguish a medium which is fully aggregated, fully disperse or in an intermediate phase we will define an aggregation
parameter (Figure 1 ). Following13, for the described model we set
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FIGURE 2 Schematic representation of a real material (left), proposed model (center) with-ordered microstructure and basic
cells Y and Z (on the right). The d and D scales characterize the nano- and micro-level, respectively. The volume fraction in
each basic cells depends on aggregation.
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�
=

� − �nc

�
,

where � is the volume fraction of the inclusions in the medium, �c is the volume fraction of the aggregates and �nc is the volume
fraction of the inclusions that are not clustered in an aggregate (� = �c +�nc). In this way, when � = 0 we have a fully disperse
medium with only one scale formed by nano-scale inclusions in the matrix, and when � = 1 we have a fully aggregated medium
with one scale formed by micro-scale aggregates in the matrix.

For modeling purposes we will assume a periodic bimodal heterodisperse medium, that is, the inclusions have two different
geometries and sizes (modes). The periods in each mode are assumed proportional, and then we will define the scales from the
ratio between these periods. In this model, the largest inclusions would represent the clusters, for which we will consider the
same conductivity as for an isolated particle, and which have managed to form a regular network. An example of this model is
proposed in Figure 2 .

Aggregation relates directly with multiple spatial scales, and a significantly enhancement of the overall thermal conductivity
was founded in media with multiple micro-scales, see, for instance,13,1,3,16. For both scales, we will consider a thermal barrier
at the interfaces between matrix and inclusions, as will be described in the next section. Our interest is to compare media with
multiple micro-scales against a single micro-scale, more details on this property gain will be given in section 4.

In the case of fibrous composite, we will only analyze fibers with circular cross-sections in the nanoscale. In the microscale,
we consider clusters resulting from the aggregation process that will be represented as larger fibers with the same shape. A
similar situation can be found in advanced composite material30, for example, the addition of nanotubes to the matrix of fiber
composites modifies their thermal and mechanical properties, even for low concentrations31,32.

The paper continues as follows. In Section 2, we obtain the physical and mathematical formulation of the problem. Section 3,
is devoted to the solving methodology, with special emphasis on reiterated homogenization and obtaining analytical formulas.
More details on these formulas and a comparison with the triphasic model can be seen in the appendix. In Section 4, results on
thermal conductivity gain will be given, in order to study the role of aggregation processes and interfacial thermal resistance in
the effective coefficient. Finally, some concluding remarks are presented in Section 5.
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2 PROBLEM STATEMENT

We will model the heat conduction based on the Fourier heat equation in the interior of the body, and Dirichlet conditions on the
boundaries (perfect thermal contact with the environment). We will also consider that there is an imperfect contact between the
matrix and such inclusions, whether they are individual or clusters. That is assumed as a thermal barrier that induces a spring-
type contact condition, i. e. the heat flow through each interface is proportional to the corresponding jump of temperature. The
thermal barrier will be characterized by the non-dimensional Biot number33,34,35:

Bi = ℎS
JKK

, (1)
that measures the thermal barrier at the interface with respect to the thermal conductivities of the components. Here JKK rep-
resents the jump in thermal conductivities, ℎ is the interfacial conductance and S is the surface area of the contact. In this
formulation, Bi → ∞ indicates the presence of a perfect contact.

Here and henceforth we used the contrast notation J(⋅)K = (⋅)(m) − (⋅)(i) where the indices indicates the expression being
evaluated inside the domain representing an inclusion (⋅)(i), or inside the domain representing the matrix (⋅)(m). The next section
will be devoted to the mathematical formulation of the heat transfer problem, for more details we refer to20.

2.1 Mathematical formulation
We will consider a conductive medium formed by a matrix and an arrangement of parallel fibers, assuming a periodic configu-
ration. There is no loss of generality for this case if we consider the two-dimensional problem, that is, considering only a plane
perpendicular to the fibers. These fibers can be grouped into clusters that will be considered individual fibers with arbitrary
shape, assuming then that each fiber is in a single periodic cell. We will also consider that there is an imperfect contact between
the matrix and such fibers, whether they are individual or clusters. We are interested in solving local problems in the principal
directions (perpendicular to the directions of the fiber) and calculating the matrix of final effective properties.

For our study, we will consider only a uniaxially reinforced composite. This can be interpreted as a two-phase medium formed
by a connected phase (matrix) and the non-connected phase formed by the repetition of the same domain (inclusions). These
types of media are known as matrix-inclusion systems. We will assume a periodic arrangement of parallel cylindrical inclusions
distributed evenly and periodically in a plane perpendicular to the axes of the cylinders.

Let the position of a typical point on the body be denoted by three coordinates (x1, x2, x3) in a Cartesian coordinate system. We
can assume, for example, that the axis x3 corresponds to the transverse axis of symmetry in the direction of the cylindrical fiber.
This means that the dimension of the problem is two and the cylinders are distributed in a periodic network of the transversal
cross-section plane. In this sense, we will consider a domain Ω ⊂ ℝ2 with piecewise smooth boundaries )Ω. Said domain
extends over the spatial coordinate x = (x1, x2) ∈ ℝ2 (known as a slow variable) and cylinders reduce to circles.

In this context, we will consider a complex structure that can be periodically characterized by two microstructural levels. A
first level with period D and a second level with period d. In this way, for a medium with characteristic length L we can consider
the small parameters:

"1 =
D
L
, "2 =

d
L
,

where "1 ≪ 1 (the parameter is small) and "2 ≪ "1 (there is a clear scales separation)36,37. For simplicity we will consider
"1 = " and "2 = "2 (i. e. the case d = "D).

The presence of two micro-structural periodic scales is related to the existence of two periodic cells "Y , "2Z whose repeated
application covers the domain Ω20,4. We will consider unitary squares for these cells

(

−1
2
, 1
2

)

×
(

−1
2
, 1
2

)

,

and restrict our study to a periodic conductive composite with two components with known behavior (two-phase), although the
extension to other multiphase media is direct. This means that each cell is formed by non-empty subsets38,39,

Y = Y (m) ∪ Y (i) ()Y (i) ∩ )Y = ∅),
Z = Z (m) ∪Z (i) ()Z (i) ∩ )Z = ∅),

(2)

where Y (i) and Z(i) represent the region occupied by the inclusions at each scale. For the model defined in Section 1.1 we
denote by K (m) and K (i) the thermal conductivities of matrix and inclusions, respectively. Notice that the volume fractions can
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be expressed as
�c =

|Y (i)
|

|Y |
= |Y (i)

|, �nc = (1 − �c)
|Z (i)

|

|Z|

= (1 − �c)|Z (i)
|,

where |!| = ∫! dV .
We will consider the steady-state "-dependent multiscale heat conduction boundary value problem20; i. e.
Global Problem: find u" ∈ C2(Ω ⧵ Γ"), such as

L"u" ≡ −∇ ⋅ (K"∇u") = f in Ω ⧵ Γ", (3)
K"∇u" ⋅ n = −B"Ju"K on Γ" = Γ"

Y ∪ Γ"
Z , (4)

JK"∇u" ⋅ nK = 0 on Γ" = Γ"
Y ∪ Γ"

Z , (5)
u" = 0 on )Ω, (6)

where K" = K(x∕", x∕"2) and f are the thermal conductivity and heat output, respectively. In these equations x represents the
spatial variable on a global scale and

B" =

⎧

⎪

⎨

⎪

⎩

�"−1, on Γ"
Y

�"−2, on Γ"
Z

is the Biot number33,35. The thermal conductivity tensor K" is symmetric, positive definite, and it is worth noting that for small
" its coefficients are rapidly oscillating.

Now we are going to present the fundamental theory which allows us to pass from problem (3)-(6) to an equivalent (homog-
enized) one whose coefficients are constant. This constant coefficient is known as the effective coefficient of the macro-scale or
global effective coefficient, and will be obtained in the next section (equation (12)). The derived problem will be solved using
the theory of complex variable functions and will present various estimates of the effective coefficients.

3 ASYMPTOTIC HOMOGENIZATION METHOD

Homogenization is an upscaling procedure that provides mathematical models that allow the calculations of effective properties
of a composite from known properties of its components. In this manner, the macroscopic behavior of a heterogeneous medium
is obtained as an equivalent homogeneous material based on the relationships at the smallest scales.

From the mathematical point of view, the homogenization process transforms problems involving systems of partial differen-
tial equations with rapidly oscillating coefficients in a homogenized problem with constant ones, called effective coefficients. In
a previous work20, the formal procedure to derive the homogenized problem and effective coefficients are described for a gen-
eral three-dimensional problem. The solution of local problems in each micro-structural scale is used to calculate the effective
coefficients. This is the case for the model defined in Section 1.1, when the aggregation parameter � ∈ {0, 1}.

The name homogenization was introduced in40,41,42, who worked a similar approach to the prior work of43. Since then there
have been great advances in this theory and it has proven to be very useful in all kinds of applications. For our work we
use the Asymptotic Homogenization Method (A.H.M), which was stated by14,44,45 and systematically formalized to handle
homogenization of contour problems with rapidly oscillating periodic coefficients46,47. This is based on the asymptotic expansion
of the solution of the boundary problem, and the idea is to obtain a homogenized problem whose solution u0 is the limit (when
" → 0) of the solutions u" of (3)-(6).

3.1 Reiterated homogenization
The Reiterated Homogenization Method (RHM) is a rigorous mathematical technique for investigating the macroscopic behavior
of periodic composites with different micro-structural levels14. In our case, and due to the presence of multiple scales, we will
apply this formalism in the context of the reiterated homogenization. More details on this procedure can be found in20, but it
can be stated briefly as follow.

An asymptotic expansion for the solution with the form
u(x, y, z) = u0(x) + "u1(x, y) + "2u2(x, y, z) + O("3) (7)
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will be proposed, where each ui is considered Y -periodic respect to y = x∕" and Z-periodic respect to z = x∕"2 (these new
variables are known as fast variables).

Formally applying the operators in (3)-(5) to the series described, and after some manipulations, we obtain a recurring chain
of problems whose solutions are the coefficients of (7). In particular, u0 is the solution to the next problem

Homogenized Problem: find u ∈ C2(Ω), such as

−∇ ⋅ (K̂∇u0) = f in Ω, (8)
u0 = 0 on )Ω, (9)

where the K̂ is the global effective coefficients for the macro-scale. This is a symmetric, positive definite, constant tensor, in
contrast with K" which is rapidly oscillating.

In terms of the proposed model (section 1.1) we consider, in the nano-scale,

K(y, z) =

⎧

⎪

⎨

⎪

⎩

K (m), z ∈ Z (m), y ∈ Y (m) (i.e. matrix),
K (i), z ∈ Z (i), y ∈ Y (m) (i.e. isolated inclusion),
K (i), y ∈ Y (i) (i.e. aggregates).

(10)

We will consider the same conductivity for the aggregates as for an isolated inclusion, and they are represented as larger
inclusions in the micro-scale with the form

K̄(y) =

{

K1 , y ∈ Y (m) (i.e. effective matrix),
K (i), y ∈ Y (i) (i.e. aggregates). (11)

We find K̂ in the form
k̂ij =

⟨

k̄ij − k̄ik
)Nj

)yk

⟩

Y
, (12)

but K̄(y) depends on the micro-scale through K1. This intermediate effective coefficient have the form

k1ij =

⟨

kij − kik
)Ny

j

)zk

⟩

Z
. (13)

The given formulas for both effective coefficients (K1, K̂) are depending on functions (Ny
j , Nj) that will be obtained as

solutions of what are known in A.H.M as local problems.
Local Problem 1: find the family {Ny

j }y∈Y Z-periodic such as

−∇z ⋅
(

K −K∇zN
y
j

)

= 0, in Z ⧵ ΓZ , (14)
K −K∇zN

y
j = −BJNy

j K, on ΓZ , (15)
JK −K∇zN

y
j K = 0, on ΓZ , (16)

⟨

Ny
j

⟩

Z
= 0. (17)

Local Problem 2: find Nj Y -periodic such as

∇y ⋅
(

K̄ − K̄∇yNj

)

= 0, in Y ⧵ ΓY , (18)
K̄ − K̄∇yNj = −BJNjK, on ΓY , (19)

JK̄ − K̄∇yNjK = 0, on ΓY , (20)
⟨

Nj

⟩

Z
= 0. (21)

It is worth noting that a single microstructural scale (conventional homogenization)48,45,49 become special cases of the more
general treatment presented here. We will consider both single microstructural scale and later we will extend these results to the
case of two microstructural scales.

Our final goal is to analyze the role of aggregation processes (single scale against multiple scales) and interfacial thermal
resistance in the effective thermal conductivity. The results of this comparison will be given in section 4.
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FIGURE 3 Square periodic cell with circular inclusion.

The previous development is valid for any geometry, number of dimensions and any material20. We will solve this problem
in the case of homogeneous isotropic components, inclusion with circular cross section and assuming constant conductance at
the interface.

3.2 Analytical solution of the local problems
The geometric arrangement described in 2.1 is equivalent, in the complex plane, to the structures known as lattices46,50. We will
use the theory of complex variable functions to solve the local problem in the isotropic case. We will follow the methodology
proposed by22 although the notations and development follow the works of21,51,52.

As we are solving the problem for homogeneous isotropic materials, we will denote by W = Y ,Z and by
 = (�(�)�ij),

where  = K, K̄, � = y, z, and
�(�) =

{

�(m), � ∈ W (m) i.e. (in the matrix),
�(i), � ∈ W (i) i.e. (in the inclusion).

We assumed here that �(i) ≠ 0, the case of empty fibers (perforated material) is extensible analyzed in53,54,52.
By isotropy, (14) and (18) are equivalent to Laplace’s equation and Nk are harmonic functions. Under this conditions the

problems in question have the form:
Find Nk, W − periodic such as

∇2Nk = 0, in W ⧵ Γ (22)
−J�

)Nk

)�i
K�i = J�K�k on Γ (23)

−�
)Nk

)�i
�i = ��k − �JNkK. on Γ (24)

Although we will only solve this problem below for k = 1, the case k = 2 is analogous.
We will consider that each inclusion is centered at the origin of coordinates of the periodic cell, in the sense that said point

belongs to the domain represented by the inclusion (Fig. 3 ). We will denote then by
�1 = e(z), �2 = m(z).
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The inclusions are located in a network of the plane generated by a pair of vectors !1, !2 ∈ ℂ such as m(!2∕!1) ≠ 0. Double
periodic harmonic functions are sought in the regions formed by the matrix (Y (m)) and the inclusion (Y (i)) for each local problem.
We also know that there must be some analytical function in the complex plane Φ(z) such as

N1 = e {Φ(z)} , (25)
and m {Φ(z)} is its conjugate harmonic50. We will propose solutions of the form

Φ(z) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Φin =
∞
∑

n=0
c2n+1z

2n+1, z ∈ Y (i) (inclusion),

Φex = a0z +
∞
∑

n=0

a2n+1
(2n)!

d2n�
dz2n

(z), z ∈ Y (m) (matrix).
(26)

where � (z) = � (z, !1, !2) is the Weierstrass Zeta55 function and the coefficients ai, ci are reals.
The term

a0 =
�1
!1

a1

is obtained from the periodicity condition from the Legendre relation55:
�1!2 − �2!1 = 2�i.

The remaining indeterminate coefficients ak and ck will be obtained from evaluating the proposal (26) formally in the contact
conditions (23)-(24). For this, we will use Laurent’s series development, which is of the form21,56:

Φex =
∞
∑

n=0

(

a2n+1z
−2n−1 + �2n+1z

2n+1) , (27)

where
�l =

∞
∑

k=1

oak�kl ≡
∞
∑

n=0
a2n+1�2n+1 l, (28)

�11 =
�1
!1

, (29)

�kl = −
(k + l − 1)!
(k − 1)!l!

Sk+l = −
((

k
l

))

Sk+l, (k + l > 2), (30)
S� =

∑

m2+n2≠0

(

m!1 + n!2
)−� , (� > 2). (31)

We have used here the notation ∑ o to indicate that the sum is carried out only on the odd index. ((k
l

)

) is known as the multiset
number57 and is related to the generalization of combinatorial numbers58. The sums S� are known as lattice sum.

For the case of a circular cross section and constant conductance at the interface (Fig. 3 ), we can parameterize the boundary
in such a way that

Γ =
{

z = Rei� ∶ R = constante ∈
(

0, 1
2

)

, −� ≤ � ≤ �
}

.

Note also that, on Γ, � = (�1, �2) = (cos �, sin �) = 1
R

(

d�2
d�

,−
d�1
d�

)

.

Substituting the series (26),(27) in (23),(24), and by the Cauchy-Riemann relations, the following equations written in the
form of expansion in cosine series are obtained:

∞
∑

k=1

o
(

�(m)[−akR−2k + �k] − �(i)ck + (�(m) − �(i))�1k
)

kRk cos(k�) = 0, (32)

�(i)
∞
∑

k=1

o(ck + �1k)kRk cos(k�) = �
∞
∑

k=1

o (−ck + akR
−2k + �k

)

Rk cos(k�). (33)
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Using here the orthogonality of {cos(k�)}k as square-integrable functions we have
�(i)

�(m)
ck = −akR−2k + �k + (1 − �)�1k, (34)

ck = �(� + �(i)k)−1
(

akR
−2k + �k −

�(i)

�
�1k

)

. (35)
Note that to use the orthogonality as square-integrable functions we require that the series formed by the sum of the squares of
the coefficients multiplying cos(k�) to be convergent. For this, it is sufficient to consider the bounding of {ak}k and {ck}k.

Finaly equating the coefficients ck in (34) and (35) we obtain the following infinite linear system of equations:

�k

( ∞
∑

n=0
a2n+1�2n+1 k + �1k

)

− akR
−2k = 0. (36)

where k are odd and
�k =

(1 − �)� + �(i)k
(1 + �)� + �(i)k

(

� = �(i)

�(m)

)

. (37)
This result agree with those obtained in22,56 for elastic media. When � → ∞:

lim
�→∞

�k =
1 − �
1 + �

= �(m) − �(i)

�(m) + �(i)
,

and our formulation coincide with those reported in51,21.
Additionally, it is convenient, in some contexts, to write the system (36) in its matrix form. Let us denote the following infinite

matrices by
I = (�kl), H = (�kl), P = (�klRk), B = (�kl�k).

With this notation, the vectors being infinite a = (a1, a3,…)⊤ and e1 ≡ (1, 0, 0,…)⊤, the system can be written as
Ma ≡ (I − BP 2H)a = v, (38)

where v = BP 2e1 = (�1R2, 0, 0,…)⊤ and BP 2H = (�kR2k�kl).

3.3 Effective coefficient aproximations
In this section, we will obtain approximations to the solutions of the infinite system and the effective coefficients associated with
these approximations through finite order truncations.

To calculate the effective properties (12) and (13) we can use

�̂ij =
⟨

�ij
⟩

W +

⟨

�ik
)Nj

)yk

⟩

W

= �ij ⟨�⟩W +

⟨

�
)Nj

)yi

⟩

W
.

(39)

For �11 we can apply the Green theorem to get
⟨

�
)N1

)y1

⟩

W
= −

�

∫
−�

∞
∑

k=1

o
(

�(m)
[

a1�11�1k + akR
−2k + �k

]

− �(m)
[

a1�11�1k − akR
−2k + �k + (1 − �)�1k

])

Rk cos(k�)R cos �d�

= −
∞
∑

k=1

o�(m)
[

2akR−2k − (1 − �)�1k
]

Rk+1

�

∫
−�

cos(k�) cos �d�,
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and
�

∫
−�

cos(k�) cos �d� = ��k1. It is obtained then

�̂11 = �(m) − (�(m) − �(i))�R2 + (�(m) − �(i))�R2 − 2�(m)�a1
= �(m)(1 − 2�a1).

(40)
For the rest of coefficients

�̂12 = �̂21 = 0, (41)
�̂22 = �̂11, (42)

This means that it is not necessary to solve the entire infinite system but only to find the solution for the first variable a1. For
small order truncations it is possible to find formulas where few terms are involved, however, for the rest of truncations it is
convenient to use the system in its matrix form (38) and solve it by numerical methods.

Take for example a first-order truncation of the system (36). That is, when we keep only a single unknown (a1) in (36). Then
�1
[

a1�11 + 1
]

− a1R
−2 = 0, (43)

Thus
a1 = −�1(�1�11 − R−2)−1 = (R−2�−11 − �11)−1, (44)

where
�1 =

(1 − �)� + �(i)

(1 + �)� + �(i)
.

For the square cell, from (40) it is obtained
�̂11
�(m)

=
1 − �R2�1
1 + �R2�1

=
1 − ��1
1 + ��1

. (45)
This result agrees with the classic results of59,60, who derive them independently for a spheroid of which the fiber is the limiting
case when its major axis tends to infinity. Equivalent formulas were obtained by61,51,21 in the perfect contact case (� → ∞).
Also of interest are the cases �(i) ∈ {0,∞}:

lim
�(i)→0

�̂11
�(m)

=
1 − �
1 + �

lim
�(i)→∞

�̂11
�(m)

=
1 + �
1 − �

.

These limit cases correspond to media whose inclusions are thermally insulating or superconductive, respectively, and agree
with classic results.

In the case of a second-order truncation of the system (36) we have:
�1
[

a1�11 + a3�31 + 1
]

− a1R
−2 = 0, (46)

�3
[

a1�13 + a3�33
]

− a3R
−6 = 0. (47)

We shall notice that, for a square cell �11 = −�, �31 = −3S4, �13 = −S4 and �33 = 0, where

S4 =
Γ
(

1
4

)8

960�2
≈ 3.1512120021538975…

Finally, by Cramer’s rule, we get
�̂11
�(m)

=
1 − ��1 − 3S2

4�
−4�1�3�4

1 + ��1 − 3S2
4�

−4�1�3�4
. (48)

Similarly, for a third-order truncation we obtain:
�̂11
�(m)

=
1 − ��1 − 3S2

4�
−4�1�3�4∕Δ1

1 + ��1 − 3S2
4�

−4�1�3�4∕Δ1
, (49)

where
Δ1 = 1 − 735S2

8�
−8�3�5�

8, (50)
and

S8 =
3
7
S2
4 ≈ 4.2557730353651895…
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TABLE 1 Comparison of effective conductivities in the case of thermally insulating fibers (� = 10−6∕3) for different
approximations and known results

� Eq.(45) Eq.(48) Eq.(49) Eq.(51) 25∗ 22∗∗ 62†

0.1 0.818182 0.818177 0.818177 0.818177 0.818177 0.818177 0.818177
0.2 0.666667 0.666531 0.666531 0.666531 0.666531 0.666530 0.666530
0.3 0.538462 0.537580 0.537580 0.537580 0.537580 0.537580 0.537580
0.4 0.428572 0.425358 0.425355 0.425351 0.425351 0.425350 0.425350
0.5 0.333333 0.324729 0.324681 0.324655 0.324655 0.324654 0.324653
0.6 0.25 0.230949 0.230477 0.230329 0.230322 0.230318 0.23032
∗ Table 1, 6th order formula, at 25
∗∗ Table 3, at 22
† Table 7, at 62

Furthermore, a fourth-order truncation leads to the following formula:
�̂11
�(m)

=
1 − ��1 − C4�1�3�4∕Δ2 − C8�1�7�8Δ′

1∕Δ2

1 + ��1 − C4�1�3�4∕Δ2 − C8�1�7�8Δ′
1∕Δ2

, (51)
where

C4 = 3S2
4�

−4, C8 = 7S2
8�

−8,
Δ′

1(�) = Δ1(�) − b12�5�7�
12,

Δ2 = 1 − 735S2
8�

−8�3�5�
8 − 662 ⋅ 35S2

12�
−12�5�7�

12,

and
S12 =

18
143

S3
4 ≈ 3.9388490128279704…

The fourth-order formula (51) will be used in section 4 to obtain the effective coefficient via conventional and reiter-
ated homogenization. As a matter of validation, we compare next our approach with analytical formulas, variational bounds,
numerical results, and limiting cases found in the literature.

Higher-order formulas can be found from this procedure, but the current ones are sufficient for our goal. The obtained formulas
of the fifth order have the form

�̂11
�(m)

=
1 − ��1 − C4�1�3�4Δ0(�)∕Δ3(�) − C8�1�7�8Δ′

2(�)∕Δ3(�)
1 + ��1 − C4�1�3�4Δ0(�)∕Δ3(�) − C8�1�7�8Δ′

2(�)∕Δ3(�)
. (52)

For detailed information of these functions we refer to table 5 of the appendix.

3.4 Validation
As mentioned in section 3.2, the system (36) agree with the ones presented by22,56. In this section we will evaluate the behavior
of the different proposed truncations, comparing them with the results obtained there and others present in the literature.

Similar developments to ours are found in the literature for elastic materials. In the table 1 it is compared with the effective
longitudinal shear modulus for a lattice of square cells and thermally insulating fibers (voids in the elastic equivalent). In this
case, even second formulas are very accurate comparing them with the results present in the literature, and small improvement
are obtained from higher order.

In tables 2 and 3 the effective conductivities obtained for an arrangement of square cells with our approximations are shown,
comparing them with results present in the literature25,22,33. We have considered � = 0.3 and � = 0.75 as representative of the
small and large volume fractions, respectively. For small values of the volume fraction, all approximations are very similar. Even
first-order formulas result in very accurate results for small concentrations, as we will see next from Laurent series analysis. For
high volume fraction the difference is more notable with increasing �. This difference should vanish for higher order truncations,
as seen in table 4 near percolation. In this case, the numerical solution given by23 for N0 = 0, 1, 2, 3 are equivalent to Eq.(45),
(48), (49) and Eq.(51), respectively.
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TABLE 2 Comparison of effective conductivities in the case of low volume fraction (� = 0.3) for different approximations
and known results

Bi � Eq.(45) Eq.(48) Eq.(49) Eq.(51) 25∗ 22∗∗ 33†

10−7

2

0.538462 0.537580 0.537580 0.537580 0.537580 0.537580 0.537620
10−5 0.538465 0.537584 0.537584 0.537584 0.537584 0.537584 0.537620
0.001 0.538816 0.537937 0.537937 0.537936 0.537936 0.537936 0.537970
0.01 0.541993 0.541129 0.541129 0.541128 0.541128 0.541128 0.541170
0.1 0.572212 0.571480 0.571480 0.571479 0.571479 0.571479 0.571510
1 0.772152 0.771995 0.771995 0.771995 0.771995 0.771995 0.772020
10 1.111801 1.111799 1.111799 1.111799 1.111799 1.111800 1.111800
100 1.209302 1.209353 1.209353 1.209353 1.209353 1.209350 1.209300
1000 1.220908 1.220974 1.220974 1.220974 1.220974 1.220970 1.220900
105 1.222209 1.222277 1.222277 1.222277 1.222277 1.222280 1.222200
107 1.222222 1.222290 1.222290 1.222290 1.222290 1.222290 1.222300
10−7

50

0.538462 0.537580 0.537580 0.537580 0.537580 0.537580 0.537620
10−5 0.538465 0.537584 0.537584 0.537584 0.537584 0.537584 0.537620
0.001 0.538816 0.537937 0.537937 0.537936 0.537936 0.537936 0.537970
0.01 0.541993 0.541129 0.541129 0.541128 0.541128 0.541128 0.541170
0.1 0.572212 0.571480 0.571480 0.571479 0.571479 0.571479 0.571510
1 0.772152 0.771995 0.771995 0.771995 0.771995 0.771995 0.772020
10 1.111801 1.111799 1.111799 1.111799 1.111799 1.111800 1.111800
100 1.209302 1.209353 1.209353 1.209353 1.209353 1.209350 1.209300
1000 1.220908 1.220974 1.220974 1.220974 1.220974 1.220970 1.220900
105 1.222209 1.222277 1.222277 1.222277 1.222277 1.222280 1.222200
107 1.222222 1.222290 1.222290 1.222290 1.222290 1.222290 1.222300
∗ Table 1, 6th order formula, at 25
∗∗ Table 3, at 22
† Table 1, at 33

To analyze the approximation orders obtained in (45), (48), (49) and (51) it is necessary to write the developments in Laurent
series around � = 0. For example, in the case of (45):

1 − ��1
1 + ��1

= 1 + 2
∞
∑

j=1

(

−�1�
)j . (53)

The complexity of these developments increases as the truncation is of a higher order. However, we were able to obtain an
expression up to the eighth term, which is true for all higher-order truncations. Moreover the Laurent series of (51) and those
of the highest order formulas proposed by25 (see table 5 of the appendix) coincide up to the twelfth term, and have the form:

�̂11
�(m)

= 1 + 2
12
∑

j=1

(

−�1
)j �j − 2

8
∑

j=1

(

3jS2
4�

−4 (−�1
)j+1 �3

)

�4+j

+ 2
4
∑

j=1

(

9
j(j + 1)

2
S4
4�

−8 (−�1
)j+2 �23 − 7jS2

8�
−8 (−�1

)j+1 �7

)

�8+j

+ O(�13). (54)

The development (54) is a generalization of29, Eq. 76, and coincides exactly with it in the context of perfect contact, i.e. when
� → ∞.
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TABLE 3 Comparison of effective conductivities in the case of high volume fraction (� = 0.75) for different approximations
and known results

Bi � Eq.(45) Eq.(48) Eq.(49) Eq.(51) 25∗ 22∗∗ FEM 33†

10−7

2

0.142857 0.092688 0.083926 0.080420 0.080038 0.078424 0.078423
10−5 0.142862 0.092693 0.083932 0.080426 0.080044 0.078431 0.078438
0.001 0.143347 0.093254 0.084512 0.081013 0.080632 0.079022 0.079030
0.01 0.147739 0.098331 0.089761 0.086328 0.085955 0.084381 0.084389
0.1 0.190311 0.147216 0.140183 0.137336 0.137030 0.135768 0.135770
1 0.513514 0.502053 0.500960 0.500430 0.500383 0.500212 0.500220
10 1.305085 1.304799 1.304799 1.304772 1.304772 1.304770 1.304800
100 1.620690 1.627780 1.627851 1.627939 1.627942 1.627940 1.627900
1000 1.661941 1.671344 1.671489 1.671646 1.671652 1.671660 1.671600
105 1.666619 1.676312 1.676468 1.676635 1.676641 1.676650 1.676600
107 1.666666 1.676362 1.676518 1.676685 1.676691 1.676700 1.676700
10−7

50

0.142857 0.092688 0.083926 0.080420 0.080038 0.078424 0.078423
10−5 0.142862 0.092693 0.083932 0.080426 0.080044 0.078431 0.078438
0.001 0.143347 0.093254 0.084512 0.081013 0.080632 0.079023 0.079030
0.01 0.147751 0.098344 0.089775 0.086342 0.085968 0.084395 0.084402
0.1 0.191441 0.148481 0.141474 0.138636 0.138332 0.137074 0.137080
1 0.595773 0.588092 0.587389 0.587039 0.587009 0.586898 0.586900
10 2.842520 2.895365 2.895347 2.894793 2.894785 2.894780 2.894800
100 5.500000 6.978402 7.189395 7.262994 7.270545 7.286740 7.287200
1000 6.084922 8.384497 8.897360 9.113386 9.137249 9.224800 9.225600
105 6.157156 8.579661 9.149738 9.396639 9.424103 9.532260 9.533100
107 6.157887 8.581664 9.152350 9.399586 9.427089 9.535470 9.536300
∗ Table 1, 6th order formula, at 25
∗∗ Table 3, at 22
† Table 1, at 33

4 PROPERTY GAIN

In13 an Ad-hoc homogenization model was developed to analyze the role of aggregation processes and interfacial thermal
resistance on the effective thermal conductivity of nanofluids and nanocomposites. Gain has also been reported for multiscale
fibrous and particulate composites16,17,18 considering perfect contact. In the case of laminates, it was also reported12,20 taking
into account imperfect contact.

Given K (m), K (i) the thermal conductivities of the matrix and inclusions, lets denote by K̂CH , K̂RH the effective coefficient of
the whole medium obtained via conventional and reiterated homogenization. For our isotropic medium case we can write them
in terms of their scalar equivalents:

K (m) = k(m)I, K (i) = k(i)I,
K̂CH = k̂CHI, K̂RH = k̂CHI,

where I is the identity matrix.
These quantities will depend on the volume fraction of inclusions (�), the phase conductivity ratio (� = k(i)∕k(m)), the

geometry and the thermal barrier (characterized by �). The geometry is characterized by the shape of the inclusions and, for
k̂RH will also depend on the shape of the clusters and the aggregation parameter (�), previously discussed in 1.1.

Both, k̂CH and k̂RH can be calculated by means of the formulas obtained in Section 3.2, or other means. We obtain k̂CH by
direct application of the fifth order formula (52), and k̂RH applying the same formula twice: first in (10) to obtain the intermediate
effective coefficient (13) and finally in (11) to obtain the global effective coefficient (12). Notice that, from (41)-(42) they have
the isotropy property and only one coefficient should be calculated in each step.

For comparison we consider the cases where the volume fraction � of the inclusions are the same and the complexity of the
second media is characterized by the aggregation parameter �. We are particularly interested in the benefits or inconvenience
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TABLE 4 Comparison of effective conductivities for volume fractions near percolation (� = 0.78) with different approxima-
tions23

Bi � Eq.(45) Eq.(48) Eq.(49) Eq.(51) 23∗

0

6

0.1236 0.0641 0.0487 0.0405 0.0279
12 2.2787 2.3029 2.3029 2.3026 2.3026
40 3.0176 3.1835 3.1912 3.1942 3.1946

240 3.4214 3.7491 3.7843 3.8001 3.8068
800 3.4872 3.8488 3.8925 3.9129 3.9233

2 ⋅ 1012 3.5161 3.8935 3.9415 3.9643 3.9771
0

400

0.1236 0.0641 0.0487 0.0405 0.0279
12 3.4872 3.6452 3.6462 3.6455 3.6454
40 5.7156 7.3012 7.5026 7.5662 7.5823

240 7.4488 12.5760 14.7625 16.0557 17.3740
800 7.7811 14.0994 17.5498 20.0453 24.2400

2 ⋅ 1012 7.9329 14.8821 19.1605 22.6171 31.0040
∗Table 3, N0 = 20, at 23

of considering two micro-scales (reiterated homogenization) against only one micro-scale (conventional homogenization). For
this purpose we define a gain function as in16 in the form:

kgain(�, �, �, �) ≡
k̂RH (�, �, �, �)
k̂CH (�, �, �)

. (55)
We will analyze the effect of the thermal barrier at the interface for two-phase media which inclusions have higher conductivity

than the matrix (� = 500).
For greater Biot numbers (better contact) the gain continues its tendency to grow for low concentrations and decrease with

high concentrations (Figure 4 ). This gains, as in the perfect contact, have a maximum up to 9% for � ∈ (0.5, 0.6) and � ≈ 0.6.
Figure 5 shows the influence of aggregation in the property gain in the case of perfect contact. The gain tends to grow with

the concentration and for the higher concentrations, the gain oscillates around the obtained for � = 0.6 and starts to decrease
reporting loss near the maximum (percolation).

For smaller Biot numbers (worst contact) the behavior is the opposite: the gain decreases for small concentrations with certain
loss and starts to grow for higher ones (Figure 6 ). The concentration value where this change of behavior happens decreases
when the Biot number decreases, reporting gains for each fixed small Biot at higher concentrations. On the other hand, the
maximum gain increases when the Biot number decreases, being higher than 25% in the case of Bi → 0, which represents
decoupling of the phases. Independence of � for no gain/loss value also occurs in this case.

It is physically expected that the gain should increase as the Biot number decreases and this behavior is reflected in our results.
In fact, the three-scale geometric arrangement is better conductive than the associated two-scale counterpart. Thus, the better
conductive three-scale geometric arrangement will be relatively more important as the interfacial thermal barrier increases.

5 CONCLUDING REMARKS

In the present work, the reiterated homogenization method was applied to investigate the macroscopic behavior of fibrous com-
posites with aggregation. Although the model and procedures are very general, due to the limitation of analytical procedures
employed, for application purposes, we restrict our work to parallel isotropic long fibers with two microstructural levels. A
thermal barrier was considered assuming imperfect spring-type contact condition at the interface24.

The partial differential equations derived from reiterated homogenization method (RH) were solved via an analytical method,
following the Rayleigh method. We derive five types of explicit analytical formulas for the effective thermal coefficient with
different approximation orders (Eq. (45),(48),(49),(51),(52)).

These formulas are expressed in the style of those reported by25 for perfect contact in a three-phase conductive problem,
establishing an equivalence relationship between both models. The comparison with results in the literature, including the finite
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FIGURE 4 Gain for � = 500 as a function of the agregation for different concentrations and high Biot numbers Bi ∈
{103; 102}).

element method33, showed an improvement of the accuracy as truncation order increase. In particular, for small concentrations,
the obtained Laurent series expansion is a generalization of the results in29 (Eq.(54)).

The two micro-structural levels analysis in16 is generalized to the case of imperfect interfacial contact. The results reveal
the role of aggregation processes and imperfect contact in thermal conductivity. In fact, we can identify the ranges of problem
parameters in which the arrangement of the inclusions in three-scales leads to gain/loss relative to the conventional two-scales
arrangement. It has been found that the values of the gain are highly dependent on Biot numbers, with attained maximums that
go from 9% when Bi → ∞ (perfect contact) to beyond 25% when Bi → 0 (decoupling). Besides, while16 considered low
volume fraction, our method is also feasible in high volume fraction cases.

APPENDIX: COMPARISON WITH THREE-PHASE MEDIUM

In the literature, there are different ways of modeling imperfect contact. So far it has been considered the imperfection as a
surface with certain effect that separates two phases, one representing the matrix and the other formed by the inclusions. Another
model can be based on considering a three-phase medium, the ones mentioned and a third that separates both, with its own
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FIGURE 5 Gain for � = 500 as a function of the agregation for different concentrations. In this case the perfect contact
(Bi → ∞) is computed using the by aproximation Bi = 106.

characteristics and properties. In this way, when the thickness of the intermediate layer is very thin, both models should be
equivalent (Figure 7 ).

For this three-phase model, there are two main difficulties: From the theoretical point of view, the difficulty is to guarantee
the equivalence of both in the limit (existence of said limit, that the problems are well-posed, etc.). From a practical point of
view, the numerical methods some times not converge to the correct value when the dimensions of the layer are very small (due
to discretization, aliasing, and other numerical artifacts).

In this section, we will compare the analytical results of25 for a three-phase model with our proposal. In this way, for small
thicknesses, we can validate our results and look for conditions that guarantee the equivalence of both models, at least in the
limiting cases, when the thickness tends to zero.

We will denote by

�(y) =

⎧

⎪

⎨

⎪

⎩

�(m), y ∈ Y (m) (matrix),
�(Γ), y ∈ Y (Γ) (interface),
�(i), y ∈ Y (i) (inclusion),

and by
ro = r + �

2
, ri = r − �

2
.

Hypothesis: The following developments will be carried out under the assumption that there is a certain normalization
constant C(r) such that, for the models presented, the following limit exists:

lim
�→0

�Γ

��
= C(r). (56)

In25 we obtain approximations of the effective property of the form
Fcond ≡ �̂

�(m)
=

1 − �v1 − terms
1 + �v1 − terms

= 1 −
2�v1

1 + �v1 − terms
. (57)

where termsis a weighted sum of terms of � whose coefficients are calculated using the following formulas:

vk =
�o + �i

(

ri
ro

)2k

1 + �o�i

(

ri
ro

)2k
, (58)

where
�o =

�(m) − �(Γ)

�(m) + �(Γ)
, �i =

�(Γ) − �(i)

�(Γ) + �(i)
.
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FIGURE 6 Gain for � = 500 as a function of the agregation for different concentrations and small Biots numbers (Bi ∈
{10−1; 10−2; 10−5}).
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FIGURE 7 Cross section of an equivalent three-phase medium.

In the table 5 we present the explicit formulas for terms.
Our intention is to find the relationship between vk and �k from (37) and (58), as long as � << 1.
Let’s rewrite

vk =
(�(m) − �(Γ))(�(Γ) + �(i)) + (�(m) + �(Γ))(�(Γ) − �(i))

(

ri
ro

)2k

(�(m) + �(Γ))(�(Γ) + �(i)) + (�(m) − �(Γ))(�(Γ) − �(i))
(

ri
ro

)2k

=
2(1 − �)�(Γ) + �(i)

(

1 −
(

ri
ro

)2k
)

− �(Γ)A−
k

2(1 + �)�(Γ) + �(i)
(

1 −
(

ri
ro

)2k
)

− �(Γ)A+
k

,

where
A−

n =
(

1 − �(i) − �(Γ)

�(m)

)

(

1 −
(

ri
ro

)2n
)

,

A+
n =

(

1 + �(i) − �(Γ)

�(m)

)

(

1 −
(

ri
ro

)2n
)

.

In this way the limits
lim
�→0

vk =
(1 − �)rC(r)� + k�(i)

(1 + �)rC(r)� + k�(i)
(59)

are obtained.
This means that in (56), using the normalization

�(Γ) =
��
r

(60)
it is possible to establish a parallelism between our model and the three-phase model proposed by25 being

�k = lim
�→0

vk.

This normalization (60) also coincides with the proposals in26,27,22. In other words, given a sufficiently small thickness � and
if we know � in our imperfect contact model, it is possible to calculate a �(Γ) = ��∕r, for which the three-phase model is
equivalent, and vice versa (find � knowing �(Γ)).
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FIGURE 8 Comparison of effective conductivities estimates for high volume fractions. For the computation of the dashed
curves (marked with *), the formulas from25 were used instead of ours.

From the numerical point of view, the approximations obtained by us in the section 3.3 coincide reasonably with the results
presented by25. In fact the accompanying terms in (57) coincide for the first and second truncation of the system (equations
(45) and (48) respectively). For third-order truncation, some differences appear between the two approximations, since while25
proposes the same approximation of the previous order, in our case, it was obtained (49). The fourth- and fifth-order differs
even more and an exact equivalence cannot be established between its results and ours. In the figure 8 some values from the
literature are also shown together with the approximations in a close range. Table 5 presents a summary of this comparison
between the results in25 and ours.
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TABLE 5 Comparison between25 (square cell) and the present work.
Trunc.
Order

Eq.(45),(48)-(52) Manteufel-Todreas 25
Coefficients and auxiliary functions�̂11

�(m)
=

1 − ��1 − �
1 + ��1 − �

�̂11
�(m)

=
1 − �v1 − �
1 + �v1 − �

1º � = 0 � = 0
2º � = C4�1�3�4 � = C4v1v3�4 C4 = 3S2

4�
−4 ≈ 0.305827833

3º � = C4�1�3�
4∕Δ1(�)

Δ1(�) = 1 − b8�3�5�
8

b8 = 735S2
8�

−8 ≈ 1.40295995

4º
� = C4�1�3�

4∕Δ2(�)

+ C8�1�7�
8
Δ′

1(�)
Δ2(�)

� = C4v1v3�
4∕D1(�)

+ C8v1v7�
8

C8 = 7S2
8�

−8 ≈ 0.013361523

D1(�) = 1 − b8v3v5�
8

Δ2(�) = 1 − 5041
132

b8�3�5�
8

Δ′
1(�) = Δ1(�) − b12�5�7�

12

b12 = 152460S2
12�

−12 ≈ 2.55915216

5º

� = C4�1�3�
4 Δ0(�)
Δ3(�)

+ C8�1�7�
8
Δ′

2(�)
Δ3(�)

Δ0(�) = 1 − b12�5�7�
12 − b16�7�9�

16

Δ3(�) = Δ2(�) − b′12�3�9�
12

− b16�7�9�
16 − C24�3�5�7�9�

24

Δ′
2(�) = Δ′

1(�) +
168
13

b8�3�5�
8

+ 1001
17

b′12�3�9�
12

b′12 =
5
84

b12 ≈ 0.15233049

b16 = 32207175S2
16�

−16 ≈ 5.76867559

C24 = 2858625(22S2
12 − 91S16S8)2�−24

≈ 4.93057350

6º&7º � = C4v1v3�
4∕D2(�)

+ C8v1v7�
8

+ C12(v1)2�12

+ C16v1v3v5v7�
16∕D3(�)

+ C20v1v5(v7)2�20∕D0(�)

+ C28v1v3(v5)2(v7)2�28∕D4(�)

C12 ≈ 0.000184643;C16 ≈ 0.242252;
C20 ≈ 0.0341942;C28 ≈ 0.0479731;
D0(�) = 1 − b12v5v7�

12,

D2(�) = 1 − b8v3v5�
8∕D0(�) − b′12v3v9�

12

D3(�) = 1 − b8v3v5�
8∕D0(�)

−
[

b12v5v7 + b′12v3v9
]

�12

+ b20v3
(

v5
)2 v7�

20∕D0(�)

+ b24v3v5v7v9�
24

D4(�) = 1 − b8v3v5�
8∕D0(�)

− [2b12v5v7 + b′12v3v9]�
12

+ 2b20v3(v5)2v7�20∕D0(�)
+ [2b24v3v5v7v9
+ b′24(v5)

2(v7)2]�24

− b32v3(v5)3(v7)2�32∕D0(�)

− b36v3(v5)2(v7)2v9�36

Where: b20 = 3.59039, b24 = 0.389837, b′24 =
84
5
b24, b32 = 9.18835, b36 = 0.997652
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