References:
1. Bohmann, K., et al., Environmental DNA for wildlife biology and
biodiversity monitoring. Trends in ecology & evolution, 2014.29 (6): p. 358-367.
2. Deiner, K., H. Yamanaka, and L. Bernatchez, The future of
biodiversity monitoring and conservation utilizing environmental DNA.Environmental DNA, 2021. 3 (1): p. 3-7.
3. Harper, L.R., et al., Prospects and challenges of environmental
DNA (eDNA) monitoring in freshwater ponds. Hydrobiologia, 2019.826 (1): p. 25-41.
4. McGee, K.M., C.V. Robinson, and M. Hajibabaei, Gaps in
DNA-Based Biomonitoring Across the Globe. Frontiers in Ecology and
Evolution, 2019. 7 (337).
5. Schenekar, T., et al., Reference databases, primer choice, and
assay sensitivity for environmental metabarcoding: Lessons learnt from a
re-evaluation of an eDNA fish assessment in the Volga headwaters. River
Research and Applications, 2020. 36 (7): p. 1004-1013.
6. Folmer, O., et al., DNA primers for amplification of
mitochondrial cytochrome c oxidase subunit I from diverse metazoan
invertebrates. Molecular Marine Biology and Biotechnology, 1994.3 (5): p. 294–299.
7. China Plant BOL Group, Comparative analysis of a large dataset
indicates that internal transcribed spacer (ITS) should be incorporated
into the core barcode for seed plants. Proceedings of the National
Academy of Sciences, 2011. 108 (49): p. 19641-19646.
8. Ratnasingham, S. and P.D.N. Hebert, BOLD : The barcode of life
data system. Molecular Ecology Notes, 2007. 7 : p. 355–364.
9. Marques, V., et al., GAPeDNA: Assessing and mapping global
species gaps in genetic databases for eDNA metabarcoding. Diversity and
Distributions.
10. Luo, A., et al., Potential efficacy of mitochondrial genes for
animal DNA barcoding: a case study using eutherian mammals. BMC
Genomics, 2011. 12 : p. 84.
11. Gold, Z., et al., Improving metabarcoding taxonomic
assignment: A case study of fishes in a large marine ecosystem.Molecular Ecology Resources, 2021. 21 (7): p. 2546-2564.
12. D’Ercole, J., S.W.J. Prosser, and P.D.N. Hebert, A SMRT
approach for targeted amplicon sequencing of museum specimens
(Lepidoptera)—patterns of nucleotide misincorporation. PeerJ, 2021.9 : p. e10420.
13. Winker, K., Natural History Museums in a Postbiodiversity
Era. BioScience, 2004. 54 (5): p. 455.
14. Wandeler, P., P.E. Hoeck, and L.F. Keller, Back to the future:
museum specimens in population genetics. Trends Ecol Evol, 2007.22 (12): p. 634-42.
15. Hebert, P.D.N., et al., A DNA ‘Barcode Blitz’: Rapid
Digitization and Sequencing of a Natural History Collection. PLOS ONE,
2013. 8 (7): p. e68535.
16. Shokralla, S., et al., Pyrosequencing for Mini-Barcoding of
Fresh and Old Museum Specimens. PLoS ONE, 2011. 6 (7): p.
e21252.
17. Boyer, S., et al., Sliding Window Analyses for Optimal
Selection of Mini-Barcodes, and Application to 454-Pyrosequencing for
Specimen Identification from Degraded DNA. PLoS ONE, 2012.7 (5): p. e38215.
18. Lindahl, T., Instability and decay of the primary structure of
DNA. Nature, 1993. 362 (6422): p. 709-715.
19. Batovska, J., et al., Developing a non-destructive
metabarcoding protocol for detection of pest insects in bulk trap
catches. Scientific Reports, 2021. 11 (1): p. 7946.
20. Carew, M.E., R.A. Coleman, and A.A. Hoffmann, Can
non-destructive DNA extraction of bulk invertebrate samples be used for
metabarcoding? PeerJ, 2018. 6 : p. e4980.
21. Wong, W.H., et al., ‘Direct PCR’ optimization yields a rapid,
cost-effective, nondestructive and efficient method for obtaining DNA
barcodes without DNA extraction. Molecular Ecology Resources, 2014.14 (6): p. 1271-1280.
22. Prosser, S.W.J., et al., DNA barcodes from century-old type
specimens using next-generation sequencing. Molecular Ecology
Resources, 2016. 16 (2): p. 487-497.
23. Shokralla, S., et al., Massively parallel multiplex DNA
sequencing for specimen identification using an Illumina MiSeq
platform. Scientific Reports, 2015. 5 (1): p. 9687.
24. de Santana, C.D., et al., The critical role of natural history
museums in advancing eDNA for biodiversity studies: a case study with
Amazonian fishes. Sci Rep, 2021. 11 (1): p. 18159.
25. Moinet, G.Y.K., et al., Soil microbial sensitivity to
temperature remains unchanged despite community compositional shifts
along geothermal gradients. Global Change Biology, 2021.
26. Toju, H., et al., Priority effects can persist across floral
generations in nectar microbial metacommunities. Oikos, 2018.127 (3): p. 345-352.
27. Hamady, M., et al., Error-correcting barcoded primers for
pyrosequencing hundreds of samples in multiplex. Nature Methods, 2008.5 (3): p. 235-237.
28. Tanabe, A.S. and H. Toju, Two New Computational Methods for
Universal DNA Barcoding: A Benchmark Using Barcode Sequences of
Bacteria, Archaea, Animals, Fungi, and Land Plants. PLoS ONE, 2013.8 (10): p. e76910.
29. Zhang, J., et al., PEAR: a fast and accurate Illumina
Paired-End reAd mergeR. Bioinformatics, 2014. 30 (5): p.
614-620.
30. Rognes, T., et al., VSEARCH: a versatile open source tool for
metagenomics. PeerJ, 2016. 4 : p. e2584.
31. Rice, P., I. Longden, and A. Bleasby, EMBOSS: The European
Molecular Biology Open Software Suite. Trends in Genetics, 2000.16 (6): p. 276-277.
32. Katoh, K. and D.M. Standley, MAFFT multiple sequence alignment
software version 7: Improvements in performance and usability.Molecular Biology and Evolution, 2013. 30 (4): p. 772–780.
33. Price, M.N., P.S. Dehal, and A.P. Arkin, FastTree 2 -
approximately maximum-likelihood trees for large alignments. PLoS ONE,
2010. 5 (3): p. e9490.
34. Yu, G., et al., ggtree: an r package for visualization and
annotation of phylogenetic trees with their covariates and other
associated data. Methods in Ecology and Evolution, 2017. 8 (1):
p. 28-36.
35. Hebert, P.D.N., et al., A Sequel to Sanger: amplicon
sequencing that scales. BMC Genomics, 2018. 19 .
36. Sire, L., et al., The Challenge of DNA Barcoding Saproxylic
Beetles in Natural History Collections—Exploring the Potential of
Parallel Multiplex Sequencing With Illumina MiSeq. Frontiers in Ecology
and Evolution, 2019. 7 : p. 495.
37. Sint, D., L. Raso, and M. Traugott, Advances in multiplex PCR:
balancing primer efficiencies and improving detection success. Methods
in Ecology and Evolution, 2012. 3 (5): p. 898-905.
38. Hajibabaei, M., et al., A minimalist barcode can identify a
specimen whose DNA is degraded. Molecular Ecology Notes, 2006.6 (4): p. 959-964.
39. Paniagua Voirol, L.R., et al., How the ‘kitome’ influences the
characterization of bacterial communities in lepidopteran samples with
low bacterial biomass. Journal of Applied Microbiology, 2021.130 (6): p. 1780-1793.
40. Sicard, M., M. Bonneau, and M. Weill, Wolbachia prevalence,
diversity, and ability to induce cytoplasmic incompatibility in
mosquitoes. Current Opinion in Insect Science, 2019. 34 : p.
12-20.
41. Potapov, V. and J.L. Ong, Examining Sources of Error in PCR by
Single-Molecule Sequencing. PloS one, 2017. 12 (1): p.
e0169774-e0169774.
42. Song, H., et al., Many species in one: DNA barcoding
overestimates the number of species when nuclear mitochondrial
pseudogenes are coamplified. Proc Natl Acad Sci U S A, 2008.105 (36): p. 13486-91.
43. Minich, J.J., et al., Quantifying and Understanding
Well-to-Well Contamination in Microbiome Research. mSystems, 2019.4 (4): p. e00186-19.
44. Schnell, I.B., K. Bohmann, and M.T.P. Gilbert, Tag jumps
illuminated – reducing sequence-to-sample misidentifications in
metabarcoding studies. Molecular Ecology Resources, 2015.15 (6): p. 1289-1303.
45. Eisenhofer, R., et al., Contamination in Low Microbial Biomass
Microbiome Studies: Issues and Recommendations. Trends Microbiol, 2019.27 (2): p. 105-117.
46. Bohmann, K., et al., Strategies for sample labelling and
library preparation in DNA metabarcoding studies. Molecular Ecology
Resources. n/a (n/a).
47. Sze, M.A. and P.D. Schloss, The Impact of DNA Polymerase and
Number of Rounds of Amplification in PCR on 16S rRNA Gene Sequence
Data. mSphere, 2019. 4 (3): p. e00163-19.
48. Elbrecht, V., et al., Validation of COI metabarcoding primers
for terrestrial arthropods. PeerJ, 2019. 7 : p. e7745.
49. Lobo, J., et al., Enhanced primers for amplification of DNA
barcodes from a broad range of marine metazoans. BMC Ecology, 2013.13 (1): p. 34.
50. Geller, J., et al., Redesign of PCR primers for mitochondrial
cytochrome c oxidase subunit I for marine invertebrates and application
in all-taxa biotic surveys. Mol Ecol Resour, 2013. 13 (5): p.
851-61.
51. Gibson, J.F., et al., Large-Scale Biomonitoring of Remote and
Threatened Ecosystems via High-Throughput Sequencing. PLOS ONE, 2015.10 (10): p. e0138432.