Ethics approval
Informed consent was obtained from the patient.
References
- Tanaka H, Katsuragi S, Hasegawa J, et al. The most common causative
bacteria in maternal sepsis-related deaths in Japan were group A
Streptococcus: A nationwide survey. J Infect Chemother 2019;25:41-44.
- Svensson-Arvelund J, Ernerudh J, Buse E, et al. The Placenta in
Toxicology. Part II: Systemic and Local Immune Adaptations in
Pregnancy. Toxicol Pathol. 2014;42:327-338.
- Udagawa H. A concept of streptococcal toxic-shock syndrome. J Jpn Soc
Intensive Care Med. 2010;17:4-6. (in Japanese)
- Udagawa H, Oshio Y, Shimizu Y. Clinical Characteristics of
Streptococcal Toxic Shock Syndrome: Perinatal Type. ACTA OBST GYNAEC
JPN. 1999;51:1141-1149. (in Japanese)
- Japan Association of Obstetricians and Gynecologists.
https://www.jaog.or.jp/wp/wp-content/uploads/2020/11/botai_2019.pdf
. 2020:42-47. (in Japanese)
- Stevens DL, Bisno AL, Chambers HF, et al. Practice Guidelines for the
Diagnosis and Management of Skin and Soft-Tissue Infections. Clin
Infect Dis. 2005;41:1373-1406.
7) Stevens DL. The Flesh-Eating Bacterium: What’s
Next?. J Infect Dis. 1999;179;S366-S374
8) Parks T, Wilson C, Curtis N, et al. Polyspecific Intravenous
Immunoglobulin in Clindamycin-treated Patients With Streptococcal Toxic
Shock Syndrome: A Systematic Review and Meta-analysis. Clin Infect Dis.
2018:67;1434-1436.
9) Llewelyn M. Human Leukocyte Antigen Class II Haplotypes that Protect
against or Predispose to Streptococcal Toxic Shock. Clin Infect Dis.
2005:41;S445-S448.
10) Uchiyama T. Microbial Superantigens and Development of Infectious
Diseases by Them–The Antigens which Compel T Cells to Play as
Pathogenic Factors. KAGAKU TO SEIBUTSU. 2001:39;434-439. (in Japanese)
11) Linnér A, Darenberg J, Sjölin J, et al. Clinical Efficacy of
Polyspecific Intravenous Immunoglobulin Therapy in Patients With
Streptococcal Toxic Shock Syndrome: A Comparative Observational Study.
Clin Infect Dis. 2014:59;851-857.
12) Svensson-Arvelund J, Ernerudh J, Buse E, et al. The Placenta in
Toxicology. Part II: Systemic and Local Immune Adaptations in Pregnancy.
Toxicol Pathol. 2014;42:327-338.
13) Negi VS, Elluru S, Sibéril S, et al. Intravenous Immunoglobulin: An
Update on the Clinical Use and Mechanisms of Action. J Clin Immunol.
2007:27;233-245.
14) Shankar-Hari M, Spencer J, Sewell WA, et al. Bench-to-bedside
review: Immunoglobulin therapy for sepsis - biological plausibility from
a critical care perspective. Crit Care. 2012:16;206.
15) Miura M, Ayusawa M, Ito S, et al. The Guidelines on Acute Stage
Kawasaki Disease Treatment. Pediatric Cardiology and Cardiac Surgery.
2020;36(S1):S1.1-S1.29. (in Japanese)
16) Arai T, Yukioka T, Matsumoto T. Procalcitonin. Modern Media.
2006:52;384-388. (in Japanese)
17) Schuetz P, Albrich W, Mueller B. Procalcitonin for diagnosis of
infection and guide to antibiotic decisions: past, present and future.
BMC Med. 2011:9;107.
18 ) Nakamura N, Muto T, Masuda Y, et al. Procalcitonin as a Biomarker
of Unresponsiveness to Intravenous Immunoglobulin for Kawasaki Disease.
Pediatr Infect Dis J. 2020:39;857-861.
16)Nakamura N, Muto T, Masuda Y, et al. Procalcitonin as a Biomarker of
Unresponsiveness to Intravenous Immunoglobulin for Kawasaki Disease.
Pediatr Infect Dis J. 2020:39;857-861.
16) Nakamura N, Muto T, Masuda Y, et al. Procalcitonin as a Biomarker of
Unresponsiveness to Intravenous Immunoglobulin for Kawasaki Disease.
Pediatr Infect Dis J. 2020:39;857-861.