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A convex regularized variable-forgetting-factor recursive least squares 
algorithm (CR-VFFRLS) is proposed for sparse system identification, in 

which the variable-forgetting-factor is deduced by minimizing the 

convex regularized cost function via the gradient descent method. It 

overcomes the drawback that the fast-tracking ability with the high 

steady-state error or the low steady-state error with slow tracking ability, 

which is ineluctable in the fixed forgetting-factor RLS algorithm. 

Simulation results demonstrate the superiorities of the proposed 

algorithm to the CR-RLS and VFFRLS algorithm. 

 

 

Introduction: In recent years, sparse system identification has gained 

considerable attention due to the real-world applications (e.g. digital TV 

transmission channel and the echo paths). At the same time, sparse-

aware adaptive algorithms have also been successfully developed, and 

achieved better performance than their traditional versions. The 

recursive least squares (RLS) algorithm is given much attention due to 

its convergence performance is superior to the least mean squares (LMS) 

algorithm in steady-state misalignment and convergence rate, at the 

expense of high computational complexity [1]. To further develop the 

convergence properties of the RLS algorithm in the sparse system 

identification scenario, the convex regularized RLS (CR-RLS) is 

suggested in [2], which adopts a general convex function of the system 

impulse response estimate in its cost function. However, the 

performance of RLS including tracking ability, steady-state 

misalignment, convergence speed and algorithm stability are governed 

by the forgetting-factor (FF). On the one hand, a large FF can make the 

algorithm achieve low steady-state misalignment and high algorithm 

stability. On the other hand, a small FF can make the algorithm obtain 

fast tracking ability and high convergence rate. Hence, a fixed FF must 

face a trade-off between the two hands. To solve the issue, a new 

control mechanism of the FF is presented to minimize mean squares 

error (MSE) by using the gradient of the MSE [3], but it comes up with 

numerical instability. Moreover, the robust variable-forgetting-factor 

RLS (VFF-RLS) is presented [4] by using the relationship between 

prior error and posterior error to adjust FF. The VFF-RLS provides a 

variable-forgetting-factor to meet the requirement of the two hands. 

However, it would face the problem that the estimation of the variance 

of the error signal and the observation noise are inaccurate, which 

degrades the performance of the VFF-RLS algorithm.  

Inspired by the scheme of variable-forgetting-factor, we develop a 

convex regularized variable-forgetting-factor recursive least squares 

(CR-VFFRLS) algorithm for sparse system identification. The 

derivation of VFF is to minimize the cost function of the CR-RLS 

algorithm by using the gradient descent method. The simulation results 

confirm the efficiency of the CR-VFFRLS algorithm. 

 

Conventional CR-RLS algorithm: Considering an unknown system 

whose input-output relationship is as follows 

 T

0( ) ( ) ( )d n n v n w x                                              (1) 

where 0w denotes the unknown system parameter vector, ( )d n is the 

desired signal, 
T( ) [ ( ) ( 1) ( 2), , ( 1)]n n n n n M    x x x x x  

represents the input signal of n-time, ( )v n  is the observation noise at 

time n. 

The CR-RLS algorithm is defined by the following relations 
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( )e n  denotes the prior error parameter of n-time, ( )nK  is the Kalman 

gain vector. ( )nP  represents the autocorrelation matrix of the input 

vector, (0,1)  is the fixed forgetting factor. 

T

1 2 3( ) [ ( ), ( ), ( ), , ( )]Mn n n n nw w w w w  is the estimation of the 

unknown parameter vector 
0w .    is a regularization parameter.   

( )f w is a general convex function. 

 

Proposed CR-VFFRLS algorithm: When the unknown system is sparse, 

using the prior knowledge of system sparsity can obviously improve the 

convergence performance of the algorithm. Hence, the variable-

forgetting-factor RLS algorithm for sparse system identification is 

proposed in the section. A constrained convex regularized cost function 

is defined as 
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  is a constant representing a compromise between the estimation 

error and the sparsity of the unknown system parameter. h  is the 

estimation of the unknown parameter vector 0w . 

Converting (6) into an unconstrained optimization problem by 

using the method of Lagrange multipliers, we can obtain 
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The partial derivatives for ( 1)n   is expressed as 
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where  
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Using the gradient descent method, the variable-forgetting-

factor is updated as 
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To guarantee the stability of the algorithm, the forgetting-factor 

should be bounded, in other words, it should be chosen in the range 

min max[ , ]  . min  could provide a fast-tracking ability and a fast 

convergence rate, and max could provide a low steady-state 

misalignment and high algorithm stability. 

Considering the simplicity of the algorithm, a convex relation with 

1-normL constraint is used.  

 
1

( )f h h                                         (13) 

The corresponding derivative is expressed as 
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sgn( )  denotes the sign function. 
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The VFF-CRRLS algorithm is summarized in Table 1. 

 

Table 1 Summary of VFF-CRRLS algorithm 
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Simulation results: To verify the convergence performance of the 

proposed VFF-CRRLS algorithm, computer simulation is tested for 

sparse system identification. The unknown sparse system parameter is 

defined as 
T

0

/4 1 /4 1 /4 1 /4 1

=[1,0,0, ,1,0,0, ,1,0,0, ,1,0,0, ]

M M M M   

w . The unknown 

system parameter suddenly changes to 
0w  at every 1/4 of the sum 

samples. The input signal ( )x n  is a zero-mean white Gaussian signal 

with variance 2 1x  . The background noise ( )v n  is a Gaussian signal 

with zero-mean and variance 2 1v  , in which the signal-to-noise ratio 

(SNR) is 20dB. The normalized mean-square-deviation (NMSD) is used 

to evaluate the performance of the algorithms, which is defined as 
22

10 0 02 2
NMSD 10log [ ( ) ]n h h h              (15) 

We set the parameters as: 0.995   for CR-RLS, 3K  , the 

forgetting-factor range [0.001,0.999999]  , 2   for VFF-RLS,  

=0.2  , 
-4=4 10  ,  the forgetting-factor range [0.8,0.999999] .  

Fig.2 shows the NMSD performance of the CR-RLS, VFF-RLS and 

the proposed CR-VFFRLS algorithm. As can be seen, the VFF-RLS 

algorithm has a better tracking-ability than the CR-RLS. The proposed 

CR-VFFRLS algorithm has the best performance in terms of tracking 

ability, steady-state error. The forgetting-factor curves of the two VFF 

algorithms are shown in Fig.1, obviously, the FF of the proposed CR-

VFFRLS stays at the minimum for more iterations when the unknown 

system changes. 

 

Conclusion: In the paper, a convex regularized variable-forgetting-

factor recursive least squares (CR-VFFRLS) algorithm has been 

proposed for sparse system identification. The derivation of VFF is 

based on minimizing the convex regularized cost function. To illustrate 

the properties of the CR-VFFRLS algorithm, the comparison between 

VFF-RLS and the proposed CR-VFFRLS algorithm in FF is studied. 

Simulation results show the advantages of the CR-VFFRLS algorithm. 

 

 
Fig.1 Comparison between VFF-RLS and CR-VFFRLS in FF. 

 

 
Fig.2 The NMSD learning curves of the CR-RLS, VFF-RLS and CR-

VFFRLS algorithm. 
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