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Pavement distress classification is a vital step for automatic pavement
inspection and maintenance. Recently, patch-based approaches have
achieved promising performances and thus extensive attention in this
field. However, these methods simply assume that all patches contribute
equally to the distress classification, leading to weakly discriminating
abilities of models. Moreover, their tedious processes also lead to a
low efficiency in inference. In this letter, we present a novel patch-
based pavement distress classification approach named Deep Patch Soft
Selective Learning (DPS?L), which addresses these issues. Similar to
other patch-based approaches, DPS?L partitions the pavement images
into patches and aggregates the patch features to accomplish the task.
To address the first issue, we introduce a succinct Soft Patch Feature
Selection Network (SPFSN) to assess the importance of each patch to
the distress classification with a score based on its feature. These scores
will be considered as patch-wise weights for feature aggregation. In
such a manner, the most discriminative patches are selected in a soft
way, and thereby benefit the final classification. To address the infer-
ence efficiency issue, knowledge distillation is leveraged to transfer the
classification knowledge from DPS’L to the image-based approaches,
such as EfficientNet-B3. This distilled model enables incorporating
both the advantages of patch-based approaches in classification perfor-
mance and the advantages of image-based approaches in inference effi-
ciency. Extensive experiments on a large-scale pavement image dataset
named CQU-BPDD demonstrate the superiority of our methods over
baselines regardless of performance or efficiency.

Introduction: Pavement distresses jeopardize road serviceability and
pose a serious threat to the public transportation system [1]. Detecting
and recognizing pavement distresses, referred to as Pavement Distress
Classification (PDC), is a core step in the pavement management sys-
tem for determining cost-effective maintenance and rehabilitation strate-
gies [2]. Automating this step will prominently reduce the costs of labor
and finance for pavement maintenance [3].

As a common and economical sensor, camera has been widely used
for inspecting pavement conditions. Many researchers have devoted
themselves to investigating PDC from the perspective of computer
vision [4-7]. The traditional methods often leverage image processing,
hand-crafted features, and conventional classifiers to classify pavement
distresses [8, 9] which relies heavily on expert knowledge and lacks uni-
versality [10]. Inspired by the remarkable advancement of deep learning,
many deep learning-based PDC methods have been proposed, which
consider PDC as a common image classification or object detection
task, and often directly apply advanced deep learning techniques, such
as Deep Convolutional Neural Network (DCNN) and faster R-CNN, as
attempted solutions [11, 12]. However, these methods neglect specific
characteristics inherent to this problem, such as high-resolution and low
distressed area ratio [13], which leads to unsatisfactory performances.

To better incorporate these characteristics of pavement images, patch-
based PDC methods have been developed recently [13, 14]. This sort of
method partitions the pavement images into patches first, and then lever-
ages CNN models to infer the patches labels for pavement distress clas-
sification. Since only image labels are available during model training,
the patch label inference is often conducted by a complicated iterative
optimization or weakly supervised learning process. For example, Tang
et al [13] present a patch-based pavement distress detector, which elab-
orates an Expectation-Maximization Inspired Patch Label Distillation
(EMIPLD) strategy to produce pseudo-labels for optimizing the model.
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Fig 1 The overview of the Deep Patch Soft Selective Learning (DPS?L)
model. As same as other patch-based approaches, DPS?L partitions the
pavement images into patches and extracts their features with CNN first.
Then, we elaborate a Soft Patch Feature Selection Network (SPFSN) to adap-
tively score each patch based on its feature for highlighting the discrimina-
tive patches while suppressing the negative influences from overabundant
non-distressed patches in feature aggregation. Finally, the scores are consid-
ered as weights to aggregate the patch features to a final one for accomplish-
ing the pavement distress classification. Moreover, the knowledge distillation
is employed in DPS*L for speeding up the classification via transferring the
classification knowledge learned by a patch-based approach, such as DPS*L,
to a more succinct image-based approach, such as EfficientNet-B3.

Huang et al [14] propose a novel patch-based pavement distress recogni-
tion approach, which optimizes patch label inference networks via intro-
ducing a sparsity constraint to the patch label predictions while aggre-
gating the patch label predictions with a comprehensive decision net-
work. The main drawback of the current patch-based pavement distress
classification methods is they consider each patch contributes equally to
the final classification. However, the low distressed area ratio of pave-
ment image implies that most patches contain no pavement distresses,
which can easily dilute the features of the distressed patches, and thereby
reduce the discriminating powers of models. Moreover, the patch-based
approaches involve more processes compared with image-based meth-
ods in the inference phase, which reduces the efficiency in practice.

In this letter, we present a novel patch-based pavement distress clas-
sification approach named Deep Patch Soft Selective Learning (DPS’L)
to address these aforementioned issues. DPS?L is a succinct end-to-
end weakly supervised learning framework as shown in Figure 1. Like
other patch-based methods, it partitions pavement images into patches
and employs CNN to extract the feature of each patch individually at
first. Then, a Soft Patch Feature Selection Network (SPFSN) is intro-
duced to softly highlight the discriminative patches while suppressing
the overabundant trial patches by adaptively producing the nonnegative
weights for each patch based on its feature. Finally, the weighted features
of patches are aggregated to a final image-level feature for final classi-
fication. Moreover, we apply the knowledge distillation [15] to trans-
fer the classification knowledge learned from DPS?L to EfficientNet-
B3 for speeding up the inference time and consequently improving the
practicability of the model in real-world applications. We evaluate our
work on a large-scale Bituminous Pavement Disease Detection dataset
named CQU-BPDD [13], consisting of 60,059 high-resolution pave-
ment images that involve seven different diseases and normal pavement.
Extensive experiments demonstrate the superiority of DPS?L over other
patch-based approaches in both pavement distress detection and recog-
nition. The results also show that the prominent advantage of our knowl-
edge distilled variant in inference efficiency.

The main contributions can be summarized as follows,

* We propose a novel patch-based pavement distress classification
method named DPS?L, which can adaptively select the most dis-
criminative patches for softly achieving better label inference via
dynamically weighting the features of patches. Extensive results on
a large-scale dataset show that DPSL achieves better performances
over other patch-based methods in both pavement distress detection
and recognition tasks.

* We apply the knowledge distillation technique to transfer classifi-
cation knowledge from a patch-based method to an image-based
method, which can significantly speed up the inference step. To the
best of our knowledge, this is the first attempt to utilize knowledge
distillation for addressing pavement image analysis issues.
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Methodology: Let X = {xy, - ,x,}and Y = {y;, -+, yn} be the
collection of pavement images and their pavement labels, respectively.
y; € RE¥! is a C-dimensional one-hot vector whose j-th element y; i
indicates whether the pavement image belongs to the j-th category or not
where C is the number of categories. The pavement distress classifica-
tion task aims to derive a classifier F' (-) as a pavement distress detector
or a recognizer, to label the pavement image correctly, y; «— F (x;),
where Fcis € {Faer, Frec}- In this letter, we present a novel pavement
distress classification method named Deep Patch Soft Selective Learn-
ing (DPS?L) which consists of four core steps, namely Patch Collection,
Patch Encoding, Soft Patch Feature Selection, and Patch Aggregation,
coupled with an additional step named Knowledge Distillation.

Patch Collection: Similar to WSPLIN-IP [14], we adopt Image Pyra-
mid (IP) as our patch collection strategy, which assists the model in
exploiting the scale space of images. In our implementation, we con-
struct a three-layer image pyramid from top to down, and apply the
non-overlapped sliding window operation 7(-) to output a collection
of 300 x 300 patches for each pavement image x;,

;= L ={p! m
Pi {T(x’)}ze{o,m} {p,,...,pl}, M

where [ indicates which layer of the image pyramid is used and p}" is
the m-th patch of i-th pavement image. In our case, m = 12 (when [ =
2)+4 (whenl=1)+1 (whenl=0) =17.
Patch Encoding: Following many patch-based pavement distress clas-
sification approaches [13, 14], we use EfficientNet-B3 [16] for extract-
ing the CNN features of patches,

Zi =GAP (f (P:)) = [z

N

;Z[rﬂ] e RMXL, (2)

where f(-) is mapping function of EfficientNet-B3 while GAP(-)
denotes the global average pooling operation of each feature patch. Note,
the patch encoder is not just limited to EfficientNet-B3, and can be flex-
ibly replaced by any other CNN models.

Soft Patch Feature Selection: A key design element of DPS?L is its
Soft Patch Feature Selection Network (SPFSN) for highlighting the dis-
criminative patches while suppressing the overabundant trivial patches
by adaptively producing the nonnegative weights for each patch based
on its feature. Specifically, we simply use a two fully connected layers
with the activation function of Gaussian Error Linear Units (GELU) to
implement the SPFSN. Let W, € R % and W, € R¥*! be the weights
of these two fully connected layers respectively. The patch scoring pro-
cedure can be mathematically represented as follows,

V; = softmax(GELU (Z; W;) W>) = [vl-l; vy vf”] e R,
3
where softmax(-) is a softmax layer, V; encodes the importance scores
of all patches collected from the i-th pavement image, and v} € (0, 1) is
its ¢-th element indicates the importance of the 7-th patch for classifying
the i-th pavement image. These generated scores are used as weights for
aggregating features in the next step, and then the patch feature selection
can be conducted in a soft way.
Patch Aggregation and Image Classification: We aggregate the fea-
tures of patches in a same image via combining the features of patches
weighted by their corresponding scores, and then employ a classification
network (or head) for obtaining the predicted label of image,

$; = softmax (H (V] Z;)) € REXL, 4)

where ¥; is the predicted label of the i-th image, and H (-) is the map-
ping function of classification head. Cross-entropy is used to measure
the discrepancy of the predicted label and the ground truth. Thereby,
the optimal DPS”L model can be obtained via addressing the following
programming problem,

1 n
F = {f, Wi, W5, H} « argmin —— "y log 3. 5)
n
i=1

Once all these mapping functions and parameters are learned, we can
use them to infer the pavement distress label of any pavement image.
Knowledge Distillation: In order to incorporate the advantage of
image-based approach in the inference speed, the recently popular
Knowledge Distillation (KD) [15] is introduced to transfer the classi-
fication knowledge learned from our model (the teacher model) to a

2

Table 1. The pavement distress detection performances of different
methods. T — S indicates distillation of classification knowledge
from the model T to the model S. | indicates that the larger value
means the better performance. The bold is the best performance.

Detectors(DET) AUC T P@R=95% T Throughput (imgs/s) T
HOG+PCA+SVM [9] 77.7% 28.4% -
LBP+PCA+SVM [17] 82.4% 30.3% -
ResNet-50 [18] 90.5% 35.3% -
VGG-19 [19] 94.2% 45.0% -
Inception-v3 [20] 93.3% 42.3% -
Effi-B3 [16] 95.4% 51.1% 91
IOPLIN [13] 97.4% 67.0% 55
DPS2L 97.9% 72.3% 42
DPS’L — Effi-B3 96.9% 67.3% 91
DPS2L — DPS2L 97.9% 74.6% 42

Table 2. Comparison on pavement distress recognition.

Recognizers(REC) Top-1 1T Fi 7 Throughput (imgs/s) T
RGB + RF [21] 30.5% - -
HOG + SVM [9] 31.8% - -
ResNet-50 [18] 71.2% 61.5% -
VGG-16 [19] 74.6% 65.0% -
Inception-v3 [20] 77.6% 69.8% -
Effi-B3 [16] 78.6% 70.3% 91
WSPLIN-IP [14] 83.7% 73.0% 49
DPS’L 83.7% 75.4% 42
DPS2L — Effi-B3 81.6% 73.7% 91
DPS’L — DPS’L 84.0% 76.1% 42

simpler image-based student model. Let S; and Sy be the logits of the
teacher and the student models respectively. Following [15], we employ
the Kullback-Leibler divergence KL (-, -) to measure the consistency of
the classification knowledge between the teacher and the student models,

Ly = KL (softmax (Ss/17) , softmax (S;/17)) , 6)

where 77 is the tunable temperature for the distillation, and here we
empirically fix it to 5. The KD loss will be used as a regularization for
aiding the student model to acquire the classification knowledge learned
by the teacher model.

Experimental Results and Discussion: A large-scale bituminous pave-
ment distress dataset named CQU-BPDD [13] is used for evaluation.
This dataset involves seven different types of distress along with the nor-
mal pavement images with unbalanced quantity. The pavement images
in this dataset are all acquired by the professional pavement inspec-
tion vehicle in the wild. Its training set contains 5,140 distressed pave-
ment images involving all distresses and 5,000 normal pavement images,
while its testing set has 11589 diseased pavement images and 38330 nor-
mal pavement images. We evaluate our methods on two pavement dis-
tress classification tasks, namely pavement distress detection, and pave-
ment distress recognition. We follow the experimental settings of [13]
and [14] for implementing the pavement distress detection and recog-
nition respectively. Note, we only use the coarse-grained label (dis-
tress and non-distress) in the pavement distress detection task. Follow-
ing the conventions, we adopt Area Under Curve (AUC) as the com-
prehensive evaluation metric in the detection task. Since people always
pay more attention to the distressed samples over the normal ones, we
also employ P@R=95% as another metric, which indicates the preci-
sion when the corresponding recall is equal to 95%. About the pavement
distress recognition, we apply Top-1 accuracy and Marco F| score to
measure the recognition performances. Due to inherent data distribution
imbalance, F can better reflect the discriminating powers of different
models. Moreover, throughput is applied to evaluate the efficiency of
the model in inference. A larger throughput means more images can be
processed by the model in a second.

Pavement Distress Detection: Table 1 shows the pavement distress
detection performances of our method in comparison with some clas-
sical shallow learning [8, 9, 17], deep learning [16, 18-20] and patch-
based approaches [13, 14]. Three conclusions can be summarized from
results. The first one is that DPS?L outperforms all baselines in AUC and
P@R=95%. For example, DPS?L gets 0.5% more AUC and 5.3% more
P@R=95% respectively but consumes around 20% more time for infer-
ence in comparison with IOPLIN, which is both the runner-up method
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Fig 2 The visualization examples of the features and the patch scores pro-
duced by our method. We employ CAM for feature visualization and the base-
line is EfficientNet-B3 [16] here. The red box indicates the distressed area.

Table 3. The ablation study of DPS*L.

Method DET (P@R=95%) REC (F})
Effi-B3 [16] 51.1% 70.3%
DPS2L w/o SPFSN 67.4% 71.7%
DPS2L 72.3% 75.4%
DPS2L — DPSZL 74.6% 76.1%

and also a patch-based method. The second one is that the deep learning-
based approaches outperform the shallow learning-based approaches,
while the patch-based approach also consistently performs better than
the image-based approaches. The third conclusion is to apply knowl-
edge distillation to transfer the classification knowledge from DPS’L
to a more efficient image-based approach enables significantly speed-
ing up the inference. For example, the knowledge distillation speeds up
the inference efficiency of DPSL by a factor of 1.7 times. Meanwhile,
the model can obtain a similar classification performance as IOPLIN.
Another interesting phenomenon is that performing knowledge distilla-
tion to DPS2L itself can also further boost the classification performance
(+ 2.3% in P@R=95%). We attribute this to the fact that the knowledge
distillation can be a regularization to alleviate the overfitting problem.
Pavement Distress Recognition: Table 2 records the pavement distress
recognition performances of different methods. Similar conclusions as
the ones in pavement distress detection can be summarized according
to the results. The sample distribution of over categories is imbalanced
within the CQU-BPDD dataset. In such a manner, the top-1 accuracy
cannot decently reflect the real recognition abilities of models, since it is
always biased toward the classification result of categories, which have
more samples. F score is a more fair classification evaluation metric.
The results show that DPSL gets 2.4% more performance gains in F|
while attaining the same efficiency in inference over WSPLIN-IP, which
is the runner-up recognition model and also a patch-based approach.
Ablation Study: Table 3 reports the performances of DPS?L under
different settings across different pavement distress classification tasks.
EfficientNet-B3 [16] is the baseline of our method. The results of the first
two rows validate that the patch-based method is often more discrimina-
tive than the simple image-based approach. The results of the second and
third rows verify the importance of soft patch feature selection in pave-
ment distress classification. The SPFSN improves the performances of
DPS?L by 4.9% in P@R=95%, and 3.7% in F| respectively. The results
of the last row indicate the performance of DPSL can be further boosted
via self-distillation.

Visualization: Figure 2 visualizes the learned patch scores and the
Class Activation Map (CAM) of a given pavement image. The results
visually validate that DPS?L enables adaptively generating the patch
scores to well highlight the most discriminative patches, and more accu-
rately capturing the features of the distressed area over the baseline.

Conclusion: In this letter, we present a novel patch-based approach
named DPS?L for pavement distress classification. DPS’L partitions the
pavement image into patches, and then employs a Soft Patch Feature
Selection Network (SPFSN) to score every patch based on its feature
for highlighting the discriminative patches while suppressing the triv-
ial patches. Finally, the produced scores are considered as weights to
aggregate the patch features for accomplishing the classification task.
Moreover, we apply knowledge distillation to transfer the classification
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knowledge from DPS?L to EfficientNet-B3 for speeding up the infer-
ence. Extensive experimental results on CQU-BPDD validate the effec-
tiveness of DPS?L and its variants.
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