References
Abdalla, M., Hastings, A., Chadwick, D. R., Jones, D. L., Evans, C. D., Jones, M. B., . . . Smith, P. (2018). Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands. Agriculture Ecosystems & Environment, 253 , 62-81. https://doi.org/10.1016/j.agee.2017.10.023
An, H., & Li, G. (2015). Effects of grazing on carbon and nitrogen in plants and soils in a semiarid desert grassland, China. Journal of Arid Land, 7 (3), 341-349. https://doi.org/10.1007/s40333-014-0049-x
Bai, W., Fang, Y., Zhou, M., Xie, T., Li, L., & Zhang, W. H. (2015). Heavily intensified grazing reduces root production in an Inner Mongolia temperate steppe. Agriculture, Ecosystems & Environment, 200 , 143-150. https://doi.org/10.1016/j.agee.2014.11.015
Bork, E. W., Lyseng, M. P., Hewins, D. B., Carlyle, C. N., Chang, S. X., Willms, W. D., & Alexander, M. J. (2019). Herbage biomass and its relationship to soil carbon under long-term grazing in northern temperate grasslands. Canadian Journal of Plant Science, 99 (6), 905-916. https://doi.org/10.1139/cjps-2018-0251
Bossio, D. A., Cook-Patton, S. C., Ellis, P. W., Fargione, J., Sanderman, J., Smith, P., . . . Griscom, B. W. (2020). The role of soil carbon in natural climate solutions. Nature Sustainability, 3 (5), 391-398. https://doi.org/10.1038/s41893-020-0491-z
Chen, L. L., Wang, K. X., & Baoyin, T. (2021). Effects of grazing and mowing on vertical distribution of soil nutrients and their stoichiometry (C: N: P) in a semi-arid grassland of North China.Catena, 206 , 105507. https://doi.org/10.1016/j.catena.2021.105507
Contosta, A. R., Arndt, K. A., Campbell, E. E., Grandy, A. S., Perry, A., & Varner, R. K. (2021). Management intensive grazing on New England dairy farms enhances soil nitrogen stocks and elevates soil nitrous oxide emissions without increasing soil carbon. Agriculture, Ecosystems & Environment, 317 , 107471. https://doi.org/10.1016/j.agee.2021.107471
Cui, Y., Dong, Y., Liu, H., & Sun, Z. (2021). Short-term grazing exclusions reduced soil organic carbon but not bacterial diversity in the sagebrush desert, Northwest China. Global Ecology and Conservation, 31 , e01872. https://doi.org/10.1016/j.gecco.2021.e01872
Dai, L., Fu, R., Guo, X., Du, Y., Lin, L., Zhang, F., . . . Cao, G. (2021). Long-term grazing exclusion greatly improve carbon and nitrogen store in an alpine meadow on the northern Qinghai-Tibet Plateau.Catena, 197 , 104955. https://doi.org/10.1016/j.catena.2020.104955
Dai, L., Guo, X., Ke, X., Du, Y., Zhang, F., & Cao, G. (2021). The variation in soil water retention of alpine shrub meadow under different degrees of degradation on northeastern Qinghai-Tibetan plateau.Plant and Soil, 458 (1), 231-244. https://doi.org/10.1007/s11104-020-04522-3
Dai, L., Guo, X., Ke, X., Zhang, F., Li, Y., Peng, C., . . . Du, Y. (2019). Moderate grazing promotes the root biomass in Kobresia meadow on the northern Qinghai–Tibet Plateau. Ecology and Evolution, 9 (16), 9395-9406. https://doi.org/10.1002/ece3.5494
de Vries, F. T., Bloem, J., Quirk, H., Stevens, C. J., Bol, R., & Bardgett, R. D. (2012). Extensive management promotes plant and microbial nitrogen retention in temperate grassland. Plos One, 7 (12), e51201. https://doi.org/10.1371/journal.pone.0051201
Deng, L., Sweeney, S., & Shangguan, Z.-P. (2014). Grassland responses to grazing disturbance: plant diversity changes with grazing intensity in a desert steppe. Grass and Forage Science, 69 (3), 524-533. https://doi.org/10.1111/gfs.12065
Deng, L., Zhang, Z., & Shangguan, Z. (2014). Long-term fencing effects on plant diversity and soil properties in China. Soil and Tillage Research, 137 , 7-15. https://doi.org/10.1016/j.still.2013.11.002
Díaz, S., Lavorel, S., Mcintyre, S., Falczuk, V., Casanoves, F., Milchunas, D. G., . . . Noy-Meir, I. (2007). Plant trait responses to grazing – a global synthesis. Global Change Biology, 13 (2), 313–341. https://doi.org/10.1111/j.1365-2486.2006.01288.x
Dong, W., Wu, G. L., Zhu, Y. J., & Shi, Z. H. (2014). Grazing exclusion effects on above- and below-ground C and N pools of typical grassland on the Loess Plateau (China). Catena, 123 , 113–120. https://doi.org/10.1016/j.catena.2014.07.018
Eze, S., Palmer, S. M., & Chapman, P. J. (2018). Soil organic carbon in grasslands: effects of inorganic fertilizers, liming and grazing in different climate settings. Journal of Environmental Management, 223 , 74-84. https://doi.org/10.1016/j.jenvman.2018.06.013
Ferlan, M., Alberti, G., Eler, K., Batič, F., Peressotti, A., Miglietta, F., . . . Vodnik, D. (2011). Comparing carbon fluxes between different stages of secondary succession of a karst grassland. Agriculture, Ecosystems & Environment, 140 (1), 199-207. https://doi.org/10.1016/j.agee.2010.12.003
Feyisa, K., Beyene, S., Angassa, A., Said, M. Y., De Leeuw, J., Abebe, A., & Megersa, B. (2017). Effects of enclosure management on carbon sequestration, soil properties and vegetation attributes in East African rangelands. Catena, 159 , 9-19. https://doi.org/10.1016/j.catena.2017.08.002
Gai, X., Liu, H., Liu, J., Zhai, L., Yang, B., Wu, S., . . . Wang, H. (2018). Long-term benefits of combining chemical fertilizer and manure applications on crop yields and soil carbon and nitrogen stocks in North China Plain. Agricultural Water Management, 208 , 384-392. https://doi.org/10.1016/j.agwat.2018.07.002
Gao, Y. Z., Giese, M., Lin, S., Sattelmacher, B., Zhao, Y., & Brueck, H. (2008). Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity.Plant and Soil, 307 (1-2), 41-50. https://doi.org/10.1007/s11104-008-9579-3
Gebregergs, T., Tessema, Z. K., Solomon, N., & Birhane, E. (2019). Carbon sequestration and soil restoration potential of grazing lands under exclosure management in a semi-arid environment of northern Ethiopia. Ecology and Evolution, 9 (11), 6468-6479. https://doi.org/10.1002/ece3.5223
Ghorbani, A., Dadjou, F., Moameri, M., Fekri, A., Andalibi, L., Biswas, A., . . . Sharifi, J. (2021). Effect of grazing exclusion on soil and vegetation characteristics in desert steppe rangelands: a case study from north-western Iran. Arid Land Research and Management, 35 (2), 213-229. https://doi.org/10.1080/15324982.2020.1850542
Ghosh, A., Mahanta, S. K., Manna, M. C., Singh, S., Bhattacharyya, R., Tyagi, V. C., . . . Rokde, S. N. (2022). Long-term grazing mediates soil crganic carbon dynamics by reorienting enzyme activities and elemental stoichiometry in semi-arid tropical inceptisol. Journal of Soil Science and Plant Nutrition . https://doi.org/10.1007/s42729-021-00742-3
Gong, J. R., Wang, Y. H., Liu, M., Huang, Y. M., Yan, X., Zhang, Z. Y., & Zhang, W. (2014). Effects of land use on soil respiration in the temperate steppe of Inner Mongolia, China. Soil & Tillage Research, 144 , 20-31. https://doi.org/10.1016/j.still.2014.06.002
Hafner, S., Unteregelsbacher, S., Seeber, E., Lena, B., Xu, X., Li, X., . . . Kuzyakov, Y. (2012). Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan montane pasture revealed by 13CO2pulse labeling. Global Change Biology, 18 (2), 528-538. https://doi.org/10.1111/j.1365-2486.2011.02557.x
Huang, Q., Cai, Y., & Xing, X. (2008). Rocky Desertification, Antidesertification, and Sustainable Development in the Karst Mountain Region of Southwest China. Ambio, 37 (5), 390-392. https://doi.org/10.1579/08-s-493.1
Huangfu, J., Mao, F., & Lu, X. (2012). Analysis of grassland resources in southwest China. Acta Prataculturae Sinica, 21 (01), 75-82.
Husain, M., Geelani, S. N., & Bhat, G. M. (2021). Effect of grazing on carbon stock and biomass production in temperate grassland of Kashmir, India.Range Management and Agroforestry, 42 (1), 1-6.
Kaiser, J. (2000). Climate change. Panel estimates possible carbon ’sinks’. Science, 288 (5468), 942-943 https://doi.org/10.1126/science.288.5468.942
Kiær, L. P., Weisbach, A. N., & Weiner, J. (2013). Root and shoot competition: a meta-analysis. Journal of Ecology, 101 (5), 1298-1312. https://doi.org/10.1111/1365-2745.12129
Kumar, M., Kundu, D. K., Ghorai, A. K., Mitra, S., & Singh, S. R. (2018). Carbon and nitrogen mineralization kinetics as influenced by diversified cropping systems and residue incorporation in Inceptisols of eastern Indo-Gangetic Plain. Soil & Tillage Research, 178 , 108-117. https://doi.org/10.1016/j.still.2017.12.025
Leu, S., Ben-Eli, M., & Mor-Mussery, A. (2021). Effects of grazing control on ecosystem recovery, biological productivity gains, and soil carbon sequestration in long-term degraded loess farmlands in the Northern Negev, Israel. Land Degradation & Development, 32 (8), 2580-2594. https://doi.org/10.1002/ldr.3923
Li, W., Cao, W., Wang, J., Li, X., Xu, C., & Shi, S. (2017). Effects of grazing regime on vegetation structure, productivity, soil quality, carbon and nitrogen storage of alpine meadow on the Qinghai-Tibetan Plateau. Ecological Engineering, 98 , 123-133. https://doi.org/10.1016/j.ecoleng.2016.10.026
Li, W., Huang, H. Z., Zhang, Z. N., & Wu, G. L. (2011). Effects of grazing on the soil properties and C and N storage in relation to biomass allocation in an alpine meadow. Journal of Soil Science and Plant Nutrition, 11 (4), 27-39. https://doi.org/10.4067/s0718-95162011000400003
Li, Y., Zhou, X., Brandle, J. R., Zhang, T., Chen, Y., & Han, J. (2012). Temporal progress in improving carbon and nitrogen storage by grazing exclosure practice in a degraded land area of China’s Horqin Sandy Grassland. Agriculture, Ecosystems & Environment, 159 , 55-61. https://doi.org/10.1016/j.agee.2012.06.024
Louhaichi, M., Ghassali, F., Salkini, A. K., & Petersen, S. L. (2012). Effect of sheep grazing on rangeland plant communities: Case study of landscape depressions within Syrian arid steppes. Journal of Arid Environments, 79 , 101-106. https://doi.org/10.1016/j.jaridenv.2011.11.024
Lu, X., Yan, Y., Sun, J., Zhang, X., Chen, Y., Wang, X., & Cheng, G. (2015). Carbon, nitrogen, and phosphorus storage in alpine grassland ecosystems of Tibet: effects of grazing exclusion. Ecology and Evolution, 5 (19), 4492-4504. https://doi.org/10.1002/ece3.1732
Mipam, T. D., Chen, S., Liu, J., Miehe, G., & Tian, L. (2021). Short-term yak-grazing alters plant-soil stoichiometric relations in an alpine meadow on the eastern Tibetan Plateau. Plant and Soil, 458 (1), 125-137. https://doi.org/10.1007/s11104-019-04401-6
Mipam, T. D., Zhong, L. L., Liu, J. Q., Miehe, G., & Tian, L. M. (2019). Productive overcompensation of alpine meadows in response to yak grazing in the eastern Qinghai-Tibet Plateau. Frontiers in Plant Science, 10 . https://doi.org/10.3389/fpls.2019.00925
Mosier, S., Apfelbaum, S., Byck, P., Calderon, F., Teague, R., Thompson, R., & Cotrufo, M. F. (2021). Adaptive multi-paddock grazing enhances soil carbon and nitrogen stocks and stabilization through mineral association in southeastern U.S. grazing lands. Journal of environmental management, 288 , 112409. https://doi.org/10.1016/j.jenvman.2021.112409
Niu, D., Hall, S. J., Fu, H., Kang, J., Qin, Y., & Elser, J. J. (2011). Grazing exclusion alters ecosystem carbon pools in Alxa desert steppe.New Zealand Journal of Agricultural Research, 54 (3), 127-142. https://doi.org/10.1080/00288233.2011.576683
Oenema, O., Oudendag, D., & Velthof, G. L. (2007). Nutrient losses from manure management in the European Union. Livestock Science, 112 (3), 261-272. https://doi.org/10.1016/j.livsci.2007.09.007
Reeder, J. D., Schuman, G. E., Morgan, J. A., & Lecain, D. R. (2004). Response of organic and inorganic carbon and nitrogen to long-term grazing of the shortgrass steppe.Environmental Management, 33 (4), 485-495. https://doi.org/10.1007/s00267-003-9106-5
Schönbach, P., Wan, H., Gierus, M., Bai, Y., Müller, K., Lin, L., . . . Taube, F. (2011). Grassland responses to grazing: effects of grazing intensity and management system in an Inner Mongolian steppe ecosystem.Plant and Soil, 340 (1), 103-115. https://doi.org/10.1007/s11104-010-0366-6
Snyman, H. A. (2005). Rangeland degradation in a semi-arid South Africa—I: influence on seasonal root distribution, root/shoot ratios and water-use efficiency. Journal of Arid Environments, 60 (3), 457-481. https://doi.org/10.1016/j.jaridenv.2004.06.006
Su, J., & Xu, F. (2021). Root, not aboveground litter, controls soil carbon storage under grazing exclusion across grasslands worldwide.Land Degradation & Development, 32 (11), 3326-3337. https://doi.org/10.1002/ldr.4008
Sun, D. S., Wesche, K., Chen, D. D., Zhang, S. H., Wu, G. L., Du, G. Z., & Comerford, N. B. (2011). Grazing depresses soil carbon storage through changing plant biomass and composition in a Tibetan alpine meadow. Plant Soil and Environment, 57 (6), 271-278. https://doi.org/10.17221/7/2011-pse
Sun, H. (2014). Study on Herbage Nutrients and Botanical Heterogeneity Formation of Grass+White Clover Grassland in Guizhou Plateau (Master Thesis Master ), Lanzhou University, Master Thesis. Available from Cnki
Sun, J., Wang, X., Cheng, G., Wu, J., Hong, J., & Niu, S. (2014). Effects of Grazing Regimes on Plant Traits and Soil Nutrients in an Alpine Steppe, Northern Tibetan Plateau.PloS one, 9 (9), e108821. https://doi.org/10.1371/journal.pone.0108821
Throop, H. L., Munson, S., Hornslein, N., & McClaran, M. P. (2022). Shrub influence on soil carbon and nitrogen in a semi-arid grassland is mediated by precipitation and largely insensitive to livestock grazing.Arid Land Research and Management, 36 (1), 27-46. https://doi.org/10.1080/15324982.2021.1952660
Vaieretti, M. V., Conti, G., Poca, M., Kowaljow, E., Gorne, L., Bertone, G., . . . Perez-Harguindeguy, N. (2021). Plant and soil carbon stocks in grassland patches maintained by extensive grazing in the highlands of central Argentina. Austral Ecology, 46 (3), 374-386. https://doi.org/10.1111/aec.12992
Vivanco, L., & Austin, A. T. (2006). Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from North and South America. Oecologia, 150 (1), 97-107. https://doi.org/10.1007/s00442-006-0495-z
Wilson, C. H., Strickland, M. S., Hutchings, J. A., Bianchi, T. S., & Flory, S. L. (2018). Grazing enhances belowground carbon allocation, microbial biomass, and soil carbon in a subtropical grassland.Global Change Biology, 24 (7), 2997-3009. https://doi.org/10.1111/gcb.14070
Wu, X., Wang, Y., & Sun, S. (2021). Long-term fencing decreases plant diversity and soil organic carbon concentration of the Zoige alpine meadows on the eastern Tibetan plateau. Plant and Soil, 458 (1), 191-200. https://doi.org/10.1007/s11104-019-04373-7
Xiong, D. P., Shi, P. L., Sun, Y. L., Wu, J. S., & Zhang, X. Z. (2014). Effects of grazing exclusion on plant productivity and soil carbon, nitrogen storage in alpine meadows in northern Tibet, China.Chinese Geographical Science, 24 (4), 488-498. https://doi.org/10.1007/s11769-014-0697-y
Xu, L., He, N., & Yu, G. (2019). Nitrogen storage in China’s terrestrial ecosystems. Science of the Total Environment, 709 , 136201. https://doi.org/10.1016/j.scitotenv.2019.136201
Yan, L., Li, Y., Wang, L., Zhang, X., Wang, J., Wu, H., . . . Kang, X. (2020). Grazing significantly increases root shoot ratio but decreases soil organic carbon in Qinghai-Tibetan Plateau grasslands: A hierarchical meta-analysis. Land Degradation & Development, 31 (16), 2369-2378. https://doi.org/10.1002/ldr.3606
Yang, X., Wang, B., & An, S. (2021). Root derived C rather than root biomass contributes to the soil organic carbon sequestration in grassland soils with different fencing years. Plant and Soil, 469 (1), 161-172. https://doi.org/10.1007/s11104-021-05144-z
Yu, L., Chen, Y., Sun, W., & Huang, Y. (2019). Effects of grazing exclusion on soil carbon dynamics in alpine grasslands of the Tibetan Plateau. Geoderma, 353 , 133-143. https://doi.org/10.1016/j.geoderma.2019.06.036
Yu, L., Sun, W., & Huang, Y. (2021). Grazing exclusion enhances plant and topsoil carbon stocks in arid and semiarid grasslands.Agriculture Ecosystems & Environment, 320 , 107605. https://doi.org/10.1016/j.agee.2021.107605
Yuan, Z.-Q., & Jiang, X.-J. (2021). Vegetation and soil covariation, not grazing exclusion, control soil organic carbon and nitrogen in density fractions of alpine meadows in a Tibetan permafrost region.Catena, 196 , 104832. https://doi.org/10.1016/j.catena.2020.104832
Zhang, B., Thomas, B. W., Beck, R., Willms, W. D., Zhao, M., & Hao, X. (2018). Slope position regulates response of carbon and nitrogen stocks to cattle grazing on rough fescue grassland. Journal of Soils and Sediments, 18 (11), 3228-3234. https://doi.org/10.1007/s11368-018-1992-5
Zhou, G., Zhou, X., He, Y., Shao, J., Hu, Z., Liu, R., . . . Hosseinibai, S. (2017). Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis. Global Change Biology, 23 (3), 1167-1179. https://doi.org/10.1111/gcb.13431
Zhou, Y., Ding, Y., Li, H., Xu, X., Li, Y., Zhang, W., & Lin, H. (2020). The effects of short-term grazing on plant and soil carbon and nitrogen isotope composition in a temperate grassland. Journal of Arid Environments, 179 , 104198. https://doi.org/10.1016/j.jaridenv.2020.104198
Zhu, A., Liu, H., Wang, Y., Sun, H., & Han, G. (2021). Grazing intensity changed the activities of nitrogen assimilation related enzymes in desert Steppe Plants. Bmc Plant Biology, 21 (1), 436. https://doi.org/10.1186/s12870-021-03205-0