References
Abdalla, M., Hastings, A., Chadwick, D. R., Jones, D. L., Evans, C. D.,
Jones, M. B., . . . Smith, P. (2018). Critical review of the impacts of
grazing intensity on soil organic carbon storage and other soil quality
indicators in extensively managed grasslands. Agriculture
Ecosystems & Environment, 253 , 62-81.
https://doi.org/10.1016/j.agee.2017.10.023
An, H., & Li, G. (2015). Effects of grazing on carbon and nitrogen in
plants and soils in a semiarid desert grassland, China. Journal of
Arid Land, 7 (3), 341-349. https://doi.org/10.1007/s40333-014-0049-x
Bai, W., Fang, Y., Zhou, M., Xie, T., Li, L., & Zhang, W. H. (2015).
Heavily
intensified grazing reduces root production in an Inner Mongolia
temperate steppe. Agriculture, Ecosystems & Environment, 200 ,
143-150. https://doi.org/10.1016/j.agee.2014.11.015
Bork, E. W., Lyseng, M. P., Hewins, D. B., Carlyle, C. N., Chang, S. X.,
Willms, W. D., & Alexander, M. J. (2019). Herbage biomass and its
relationship to soil carbon under long-term grazing in northern
temperate grasslands. Canadian Journal of Plant Science, 99 (6),
905-916. https://doi.org/10.1139/cjps-2018-0251
Bossio, D. A., Cook-Patton, S. C., Ellis, P. W., Fargione, J.,
Sanderman, J., Smith, P., . . . Griscom, B. W. (2020). The role of soil
carbon in natural climate solutions. Nature Sustainability, 3 (5),
391-398. https://doi.org/10.1038/s41893-020-0491-z
Chen, L. L., Wang, K. X., & Baoyin, T. (2021). Effects of grazing and
mowing on vertical distribution of soil nutrients and their
stoichiometry (C: N: P) in a semi-arid grassland of North China.Catena, 206 , 105507. https://doi.org/10.1016/j.catena.2021.105507
Contosta, A. R., Arndt, K. A., Campbell, E. E., Grandy, A. S., Perry,
A., & Varner, R. K. (2021). Management intensive grazing on New England
dairy farms enhances soil nitrogen stocks and elevates soil nitrous
oxide emissions without increasing soil carbon. Agriculture,
Ecosystems & Environment, 317 , 107471.
https://doi.org/10.1016/j.agee.2021.107471
Cui, Y., Dong, Y., Liu, H., & Sun, Z. (2021). Short-term grazing
exclusions reduced soil organic carbon but not bacterial diversity in
the sagebrush desert, Northwest China. Global Ecology and
Conservation, 31 , e01872. https://doi.org/10.1016/j.gecco.2021.e01872
Dai, L., Fu, R., Guo, X., Du, Y., Lin, L., Zhang, F., . . . Cao, G.
(2021). Long-term grazing exclusion greatly improve carbon and nitrogen
store in an alpine meadow on the northern Qinghai-Tibet Plateau.Catena, 197 , 104955. https://doi.org/10.1016/j.catena.2020.104955
Dai, L., Guo, X., Ke, X., Du, Y., Zhang, F., & Cao, G. (2021). The
variation in soil water retention of alpine shrub meadow under different
degrees of degradation on northeastern Qinghai-Tibetan plateau.Plant and Soil, 458 (1), 231-244.
https://doi.org/10.1007/s11104-020-04522-3
Dai, L., Guo, X., Ke, X., Zhang, F., Li, Y., Peng, C., . . . Du, Y.
(2019). Moderate grazing promotes the root biomass in Kobresia meadow on
the northern Qinghai–Tibet Plateau. Ecology and Evolution,
9 (16), 9395-9406. https://doi.org/10.1002/ece3.5494
de Vries, F. T., Bloem, J., Quirk, H., Stevens, C. J., Bol, R., &
Bardgett, R. D. (2012). Extensive management promotes plant and
microbial nitrogen retention in temperate grassland. Plos One,
7 (12), e51201. https://doi.org/10.1371/journal.pone.0051201
Deng, L., Sweeney, S., & Shangguan, Z.-P. (2014). Grassland responses
to grazing disturbance: plant diversity changes with grazing intensity
in a desert steppe. Grass and Forage Science, 69 (3), 524-533.
https://doi.org/10.1111/gfs.12065
Deng, L., Zhang, Z., & Shangguan, Z. (2014). Long-term fencing effects
on plant diversity and soil properties in China. Soil and Tillage
Research, 137 , 7-15. https://doi.org/10.1016/j.still.2013.11.002
Díaz, S., Lavorel, S., Mcintyre, S., Falczuk, V., Casanoves, F.,
Milchunas, D. G., . . . Noy-Meir, I. (2007).
Plant trait responses to grazing –
a global synthesis. Global Change Biology, 13 (2), 313–341.
https://doi.org/10.1111/j.1365-2486.2006.01288.x
Dong, W., Wu, G. L., Zhu, Y. J., & Shi, Z. H. (2014).
Grazing exclusion effects on above-
and below-ground C and N pools of typical grassland on the Loess Plateau
(China). Catena, 123 , 113–120.
https://doi.org/10.1016/j.catena.2014.07.018
Eze, S., Palmer, S. M., & Chapman, P. J. (2018).
Soil organic carbon in grasslands:
effects of inorganic fertilizers, liming and grazing in different
climate settings. Journal of Environmental Management, 223 ,
74-84. https://doi.org/10.1016/j.jenvman.2018.06.013
Ferlan, M., Alberti, G., Eler, K., Batič, F., Peressotti, A., Miglietta,
F., . . . Vodnik, D. (2011). Comparing carbon fluxes between different
stages of secondary succession of a karst grassland. Agriculture,
Ecosystems & Environment, 140 (1), 199-207.
https://doi.org/10.1016/j.agee.2010.12.003
Feyisa, K., Beyene, S., Angassa, A., Said, M. Y., De Leeuw, J., Abebe,
A., & Megersa, B. (2017). Effects
of enclosure management on carbon sequestration, soil properties and
vegetation attributes in East African rangelands. Catena, 159 ,
9-19. https://doi.org/10.1016/j.catena.2017.08.002
Gai, X., Liu, H., Liu, J., Zhai, L., Yang, B., Wu, S., . . . Wang, H.
(2018). Long-term benefits of combining chemical fertilizer and manure
applications on crop yields and soil carbon and nitrogen stocks in North
China Plain. Agricultural Water Management, 208 , 384-392.
https://doi.org/10.1016/j.agwat.2018.07.002
Gao, Y. Z., Giese, M., Lin, S., Sattelmacher, B., Zhao, Y., & Brueck,
H. (2008). Belowground net primary productivity and biomass allocation
of a grassland in Inner Mongolia is affected by grazing intensity.Plant and Soil, 307 (1-2), 41-50.
https://doi.org/10.1007/s11104-008-9579-3
Gebregergs, T., Tessema, Z. K., Solomon, N., & Birhane, E. (2019).
Carbon sequestration and soil restoration potential of grazing lands
under exclosure management in a semi-arid environment of northern
Ethiopia. Ecology and Evolution, 9 (11), 6468-6479.
https://doi.org/10.1002/ece3.5223
Ghorbani, A., Dadjou, F., Moameri, M., Fekri, A., Andalibi, L., Biswas,
A., . . . Sharifi, J. (2021). Effect of grazing exclusion on soil and
vegetation characteristics in desert steppe rangelands: a case study
from north-western Iran. Arid Land Research and Management,
35 (2), 213-229. https://doi.org/10.1080/15324982.2020.1850542
Ghosh, A., Mahanta, S. K., Manna, M. C., Singh, S., Bhattacharyya, R.,
Tyagi, V. C., . . . Rokde, S. N. (2022). Long-term grazing mediates soil
crganic carbon dynamics by reorienting enzyme activities and elemental
stoichiometry in semi-arid tropical inceptisol. Journal of Soil
Science and Plant Nutrition . https://doi.org/10.1007/s42729-021-00742-3
Gong, J. R., Wang, Y. H., Liu, M., Huang, Y. M., Yan, X., Zhang, Z. Y.,
& Zhang, W. (2014). Effects of land use on soil respiration in the
temperate steppe of Inner Mongolia, China. Soil & Tillage
Research, 144 , 20-31. https://doi.org/10.1016/j.still.2014.06.002
Hafner, S., Unteregelsbacher, S., Seeber, E., Lena, B., Xu, X., Li, X.,
. . . Kuzyakov, Y. (2012). Effect of
grazing on carbon stocks and assimilate partitioning in a Tibetan
montane pasture revealed by 13CO2pulse labeling. Global Change Biology, 18 (2), 528-538.
https://doi.org/10.1111/j.1365-2486.2011.02557.x
Huang, Q., Cai, Y., & Xing, X. (2008).
Rocky Desertification,
Antidesertification, and Sustainable Development in the Karst Mountain
Region of Southwest China. Ambio, 37 (5), 390-392.
https://doi.org/10.1579/08-s-493.1
Huangfu, J., Mao, F., & Lu, X. (2012).
Analysis of grassland resources in
southwest China. Acta Prataculturae Sinica, 21 (01), 75-82.
Husain, M., Geelani, S. N., & Bhat, G. M. (2021).
Effect of grazing on carbon stock
and biomass production in temperate grassland of Kashmir, India.Range Management and Agroforestry, 42 (1), 1-6.
Kaiser, J. (2000). Climate change. Panel estimates possible carbon
’sinks’. Science, 288 (5468), 942-943
https://doi.org/10.1126/science.288.5468.942
Kiær, L. P., Weisbach, A. N., & Weiner, J. (2013). Root and shoot
competition: a meta-analysis. Journal of Ecology, 101 (5),
1298-1312. https://doi.org/10.1111/1365-2745.12129
Kumar, M., Kundu, D. K., Ghorai, A. K., Mitra, S., & Singh, S. R.
(2018). Carbon and nitrogen mineralization kinetics as influenced by
diversified cropping systems and residue incorporation in Inceptisols of
eastern Indo-Gangetic Plain. Soil & Tillage Research, 178 ,
108-117. https://doi.org/10.1016/j.still.2017.12.025
Leu, S., Ben-Eli, M., & Mor-Mussery, A. (2021). Effects of grazing
control on ecosystem recovery, biological productivity gains, and soil
carbon sequestration in long-term degraded loess farmlands in the
Northern Negev, Israel. Land Degradation & Development, 32 (8),
2580-2594. https://doi.org/10.1002/ldr.3923
Li, W., Cao, W., Wang, J., Li, X., Xu, C., & Shi, S. (2017). Effects of
grazing regime on vegetation structure, productivity, soil quality,
carbon and nitrogen storage of alpine meadow on the Qinghai-Tibetan
Plateau. Ecological Engineering, 98 , 123-133.
https://doi.org/10.1016/j.ecoleng.2016.10.026
Li, W., Huang, H. Z., Zhang, Z. N., & Wu, G. L. (2011). Effects of
grazing on the soil properties and C and N storage in relation to
biomass allocation in an alpine meadow. Journal of Soil Science
and Plant Nutrition, 11 (4), 27-39.
https://doi.org/10.4067/s0718-95162011000400003
Li, Y., Zhou, X., Brandle, J. R., Zhang, T., Chen, Y., & Han, J.
(2012). Temporal progress in improving carbon and nitrogen storage by
grazing exclosure practice in a degraded land area of China’s Horqin
Sandy Grassland. Agriculture, Ecosystems & Environment, 159 ,
55-61. https://doi.org/10.1016/j.agee.2012.06.024
Louhaichi, M., Ghassali, F., Salkini, A. K., & Petersen, S. L. (2012).
Effect of sheep grazing on rangeland plant communities: Case study of
landscape depressions within Syrian arid steppes. Journal of Arid
Environments, 79 , 101-106.
https://doi.org/10.1016/j.jaridenv.2011.11.024
Lu, X., Yan, Y., Sun, J., Zhang, X., Chen, Y., Wang, X., & Cheng, G.
(2015). Carbon, nitrogen, and phosphorus storage in alpine grassland
ecosystems of Tibet: effects of grazing exclusion. Ecology and
Evolution, 5 (19), 4492-4504. https://doi.org/10.1002/ece3.1732
Mipam, T. D., Chen, S., Liu, J., Miehe, G., & Tian, L. (2021).
Short-term yak-grazing alters plant-soil stoichiometric relations in an
alpine meadow on the eastern Tibetan Plateau. Plant and Soil,
458 (1), 125-137. https://doi.org/10.1007/s11104-019-04401-6
Mipam, T. D., Zhong, L. L., Liu, J. Q., Miehe, G., & Tian, L. M.
(2019). Productive overcompensation of alpine meadows in response to yak
grazing in the eastern Qinghai-Tibet Plateau. Frontiers in Plant
Science, 10 . https://doi.org/10.3389/fpls.2019.00925
Mosier, S., Apfelbaum, S., Byck, P., Calderon, F., Teague, R., Thompson,
R., & Cotrufo, M. F. (2021). Adaptive multi-paddock grazing enhances
soil carbon and nitrogen stocks and stabilization through mineral
association in southeastern U.S. grazing lands. Journal of
environmental management, 288 , 112409.
https://doi.org/10.1016/j.jenvman.2021.112409
Niu, D., Hall, S. J., Fu, H., Kang, J., Qin, Y., & Elser, J. J. (2011).
Grazing exclusion alters ecosystem carbon pools in Alxa desert steppe.New Zealand Journal of Agricultural Research, 54 (3), 127-142.
https://doi.org/10.1080/00288233.2011.576683
Oenema, O., Oudendag, D., & Velthof, G. L. (2007).
Nutrient losses from manure
management in the European Union. Livestock Science, 112 (3),
261-272. https://doi.org/10.1016/j.livsci.2007.09.007
Reeder, J. D., Schuman, G. E., Morgan, J. A., & Lecain, D. R. (2004).
Response of organic and inorganic
carbon and nitrogen to long-term grazing of the shortgrass steppe.Environmental Management, 33 (4), 485-495.
https://doi.org/10.1007/s00267-003-9106-5
Schönbach, P., Wan, H., Gierus, M., Bai, Y., Müller, K., Lin, L., . . .
Taube, F. (2011). Grassland responses to grazing: effects of grazing
intensity and management system in an Inner Mongolian steppe ecosystem.Plant and Soil, 340 (1), 103-115.
https://doi.org/10.1007/s11104-010-0366-6
Snyman, H. A. (2005). Rangeland
degradation in a semi-arid South Africa—I: influence on seasonal root
distribution, root/shoot ratios and water-use efficiency. Journal
of Arid Environments, 60 (3), 457-481.
https://doi.org/10.1016/j.jaridenv.2004.06.006
Su, J., & Xu, F. (2021). Root, not aboveground litter, controls soil
carbon storage under grazing exclusion across grasslands worldwide.Land Degradation & Development, 32 (11), 3326-3337.
https://doi.org/10.1002/ldr.4008
Sun, D. S., Wesche, K., Chen, D. D., Zhang, S. H., Wu, G. L., Du, G. Z.,
& Comerford, N. B. (2011). Grazing depresses soil carbon storage
through changing plant biomass and composition in a Tibetan alpine
meadow. Plant Soil and Environment, 57 (6), 271-278.
https://doi.org/10.17221/7/2011-pse
Sun, H. (2014). Study on
Herbage Nutrients and Botanical Heterogeneity Formation of Grass+White
Clover Grassland in Guizhou Plateau (Master Thesis Master ), Lanzhou
University, Master Thesis. Available from Cnki
Sun, J., Wang, X., Cheng, G., Wu, J., Hong, J., & Niu, S. (2014).
Effects of Grazing Regimes on Plant
Traits and Soil Nutrients in an Alpine Steppe, Northern Tibetan Plateau.PloS one, 9 (9), e108821.
https://doi.org/10.1371/journal.pone.0108821
Throop, H. L., Munson, S., Hornslein, N., & McClaran, M. P. (2022).
Shrub influence on soil carbon and nitrogen in a semi-arid grassland is
mediated by precipitation and largely insensitive to livestock grazing.Arid Land Research and Management, 36 (1), 27-46.
https://doi.org/10.1080/15324982.2021.1952660
Vaieretti, M. V., Conti, G., Poca, M., Kowaljow, E., Gorne, L., Bertone,
G., . . . Perez-Harguindeguy, N. (2021). Plant and soil carbon stocks in
grassland patches maintained by extensive grazing in the highlands of
central Argentina. Austral Ecology, 46 (3), 374-386.
https://doi.org/10.1111/aec.12992
Vivanco, L., & Austin, A. T. (2006). Intrinsic effects of species on
leaf litter and root decomposition: a comparison of temperate grasses
from North and South America. Oecologia, 150 (1), 97-107.
https://doi.org/10.1007/s00442-006-0495-z
Wilson, C. H., Strickland, M. S., Hutchings, J. A., Bianchi, T. S., &
Flory, S. L. (2018). Grazing enhances belowground carbon allocation,
microbial biomass, and soil carbon in a subtropical grassland.Global Change Biology, 24 (7), 2997-3009.
https://doi.org/10.1111/gcb.14070
Wu, X., Wang, Y., & Sun, S. (2021). Long-term fencing decreases plant
diversity and soil organic carbon concentration of the Zoige alpine
meadows on the eastern Tibetan plateau. Plant and Soil, 458 (1),
191-200. https://doi.org/10.1007/s11104-019-04373-7
Xiong, D. P., Shi, P. L., Sun, Y. L., Wu, J. S., & Zhang, X. Z. (2014).
Effects of grazing exclusion on plant productivity and soil carbon,
nitrogen storage in alpine meadows in northern Tibet, China.Chinese Geographical Science, 24 (4), 488-498.
https://doi.org/10.1007/s11769-014-0697-y
Xu, L., He, N., & Yu, G. (2019).
Nitrogen storage in China’s
terrestrial ecosystems. Science of the Total Environment, 709 ,
136201. https://doi.org/10.1016/j.scitotenv.2019.136201
Yan, L., Li, Y., Wang, L., Zhang, X., Wang, J., Wu, H., . . . Kang, X.
(2020). Grazing significantly increases root shoot ratio but decreases
soil organic carbon in Qinghai-Tibetan Plateau grasslands: A
hierarchical meta-analysis. Land Degradation & Development,
31 (16), 2369-2378. https://doi.org/10.1002/ldr.3606
Yang, X., Wang, B., & An, S. (2021). Root derived C rather than root
biomass contributes to the soil organic carbon sequestration in
grassland soils with different fencing years. Plant and Soil,
469 (1), 161-172. https://doi.org/10.1007/s11104-021-05144-z
Yu, L., Chen, Y., Sun, W., & Huang, Y. (2019). Effects of grazing
exclusion on soil carbon dynamics in alpine grasslands of the Tibetan
Plateau. Geoderma, 353 , 133-143.
https://doi.org/10.1016/j.geoderma.2019.06.036
Yu, L., Sun, W., & Huang, Y. (2021). Grazing exclusion enhances plant
and topsoil carbon stocks in arid and semiarid grasslands.Agriculture Ecosystems & Environment, 320 , 107605.
https://doi.org/10.1016/j.agee.2021.107605
Yuan, Z.-Q., & Jiang, X.-J. (2021). Vegetation and soil covariation,
not grazing exclusion, control soil organic carbon and nitrogen in
density fractions of alpine meadows in a Tibetan permafrost region.Catena, 196 , 104832. https://doi.org/10.1016/j.catena.2020.104832
Zhang, B., Thomas, B. W., Beck, R., Willms, W. D., Zhao, M., & Hao, X.
(2018). Slope position regulates response of carbon and nitrogen stocks
to cattle grazing on rough fescue grassland. Journal of Soils and
Sediments, 18 (11), 3228-3234. https://doi.org/10.1007/s11368-018-1992-5
Zhou, G., Zhou, X., He, Y., Shao, J., Hu, Z., Liu, R., . . .
Hosseinibai, S. (2017). Grazing intensity significantly affects
belowground carbon and nitrogen cycling in grassland ecosystems: a
meta-analysis. Global Change Biology, 23 (3), 1167-1179.
https://doi.org/10.1111/gcb.13431
Zhou, Y., Ding, Y., Li, H., Xu, X., Li, Y., Zhang, W., & Lin, H.
(2020). The effects of short-term grazing on plant and soil carbon and
nitrogen isotope composition in a temperate grassland. Journal of
Arid Environments, 179 , 104198.
https://doi.org/10.1016/j.jaridenv.2020.104198
Zhu, A., Liu, H., Wang, Y., Sun, H., & Han, G. (2021). Grazing
intensity changed the activities of nitrogen assimilation related
enzymes in desert Steppe Plants. Bmc Plant Biology, 21 (1), 436.
https://doi.org/10.1186/s12870-021-03205-0