Burak Erman

and 1 more

This study focuses on investigating the effects of an oncogenic mutation (G12V) on the stability and interactions within the KRAS-RGL1 protein complex. The KRAS-RGL1 complex is of particular interest due to its relevance to KRAS-associated cancers and the potential for developing targeted drugs against the KRAS system. The stability of the complex and the allosteric effects of specific residues are examined to understand their roles as modulators of complex stability and function. Using molecular dynamics simulations, we calculate the mutual information, MI, between two neighboring residues at the interface of the KRAS-RGL1 complex, and employ the concept of interaction information, II, to measure the contribution of a third residue to the interaction between interface residue pairs. Negative II indicates synergy, where the presence of the third residue strengthens the interaction, while positive II suggests anti-cooperativity. Our findings reveal that MI serves as a dominant factor in determining the results, with the G12V mutation increasing the MI between interface residues, indicating enhanced correlations due to the formation of a more compact structure in the complex. Interestingly, although II plays a role in understanding three-body interactions and the impact of distant residues, it is not significant enough to outweigh the influence of MI in determining the overall stability of the complex. Nevertheless, II may nonetheless be a relevant factor to consider in future drug design efforts. This study provides valuable insights into the mechanisms of complex stability and function, highlighting the significance of three-body interactions and the impact of distant residues on the binding stability of the complex. Additionally, our findings demonstrate that constraining the fluctuations of a third residue consistently increases the stability of the G12V variant, making it challenging to weaken complex formation of the mutated species through allosteric manipulation. The novel perspective offered by this approach on protein dynamics, function, and allostery has potential implications for understanding and targeting other protein complexes involved in vital cellular processes. The results contribute to our understanding of the effects of oncogenic mutations on protein-protein interactions and provide a foundation for future therapeutic interventions in the context of KRAS-associated cancers and beyond.

Burak Erman

and 1 more

This paper aims to understand the binding strategies of a nanobody-protein pair by studying known complexes. Rigid body protein-ligand docking programs produce several complexes, called decoys, which are good candidates with high scores of shape complementarity, electrostatic interactions, desolvation, buried surface area, and Lennard-Jones potentials. It is not known which decoy represents the true structure. We studied thirty-seven nanobody-protein complexes from the Single Domain Antibody Database, sd-Ab DB, [http://www.sdab-db.ca/](http://www.sdab-db.ca/). For each structure, a large number of decoys are generated using the Fast Fourier Transform algorithm of the software ZDOCK. The decoys were ranked according to their target protein-nanobody interaction energies, calculated by using the Dreiding Force Field, with rank 1 having the lowest interaction energy. Out of thirty-six PDB structures, twenty-five true structures were predicted as rank 1. Eleven of the remaining structures required Ã…ngstrom size rigid body translations of the nanobody relative to the protein to match the given PDB structure. After the translation the Dreiding interaction (DI) energies of all complexes decreased and became rank 1. In one case, rigid body rotations as well as translations of the nanobody were required for matching the crystal structure. We used a Monte Carlo algorithm that randomly translates and rotates the nanobody of a decoy and calculates the DI energy. Results show that rigid body translations and the DI energy are sufficient for determining the correct binding location and pose of ZDOCK created decoys. A survey of the sd-Ab DB showed that each nanobody makes at least one salt bridge with its partner protein, indicating that salt bridge formation is an essential strategy in nanobody-protein recognition. Based on the analysis of the thirty-six crystal structures and evidence from existing literature, we propose a set of principles that could be used in the design of nanobodies.