References
Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., &
Yamaguchi-Shinozaki, K. (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2
(MYB) function as transcriptional activators in abscisic acid
signaling. The Plant cell , 15, 63–78.
Annicchiarico, P., Nazzicari, N., Li, X., Wei, Y., Pecetti, L., &
Brummer, E.C. (2015) Accuracy of genomic selection for alfalfa biomass
yield in different reference populations. BMC genomics , 16, 1020.
Biazzi, E., Nazzicari, N., Pecetti, L., Brummer, E.C., Palmonari, A.,
Tava, A. et al. (2017) Genome-wide association mapping and genomic
selection for alfalfa (Medicago sativa ) forage quality
traits. PloS one , 12, e0169234.
Brookbank, B.P., Patel, J., Gazzarrini, S., & Nambara, E. (2021) Role
of basal ABA in plant growth and development. Genes , 12, 1936.
Chen, K., Li, G.J., Bressan, R.A., Song, C.P., Zhu, J.K., & Zhao, Y.
(2020) Abscisic acid dynamics, signaling, and functions in
plants. Journal of integrative plant biology , 62, 25–54.
Dittrich, M., Mueller, H.M., Bauer, H., Peirats-Llobet, M., Rodriguez,
P.L., Geilfus, C.M. et al. (2019) The role of Arabidopsis ABA receptors
from the PYR/PYL/RCAR family in stomatal acclimation and closure signal
integration. Nature plants , 5, 1002–1011.
Dong, T., Park, Y., & Hwang, I. (2015) Abscisic acid: biosynthesis,
inactivation, homoeostasis and signalling. Essays in
biochemistry , 58, 29–48.
Frey, A., Effroy, D., Lefebvre, V., Seo, M., Perreau, F., Berger, A. et
al. (2012) Epoxycarotenoid cleavage by NCED5 fine-tunes ABA accumulation
and affects seed dormancy and drought tolerance with other NCED family
members. The Plant journal , 70, 501–512.
Gonzalez-Guzman, M., Pizzio, G.A., Antoni, R., Vera-Sirera, F., Merilo,
E., Bassel, G.W. et al. (2012) Arabidopsis PYR/PYL/RCAR receptors play a
major role in quantitative regulation of stomatal aperture and
transcriptional response to abscisic acid. The Plant cell , 24,
2483–2496.
Gou, J., Debnath, S., Sun, L., Flanagan, A., Tang, Y., Jiang, Q. et al.
(2018) From model to crop: functional characterization of SPL8 inM. truncatula led to genetic improvement of biomass yield and
abiotic stress tolerance in alfalfa. Plant biotechnology
journal , 16, 951–962.
Han, Y., Watanabe, S., Shimada, H., & Sakamoto, A. (2020) Dynamics of
the leaf endoplasmic reticulum modulate β-glucosidase-mediated
stress-activated ABA production from its glucosyl ester. Journal
of experimental botany , 71, 2058–2071.
Hao, G.P., Zhang, X.H., Wang, Y.Q., Wu, Z.Y., & Huang, C.L. (2009)
Nucleotide variation in the NCED3 region of Arabidopsis thalianaand its association study with abscisic acid content under drought
stress. Journal of integrative plant biology , 51, 175–183.
Hua, Z.M., Yang, X., & Fromm, M.E. (2006). Activation of the NaCl- and
drought-induced RD29A and RD29B promoters by constitutively active
Arabidopsis MAPKK or MAPK proteins. Plant, cell &
environment , 29, 1761–1770.
Huang, Y., Jiao, Y., Xie, N., Guo, Y., Zhang, F., Xiang, Z. et al.
(2019) OsNCED5 , a 9-cis-epoxycarotenoid dioxygenase gene,
regulates salt and water stress tolerance and leaf senescence in
rice. Plant science , 287, 110188.
Jiang, S.C., Mei, C., Liang, S., Yu, Y.T., Lu, K., Wu, Z. et al. (2015)
Crucial roles of the pentatricopeptide repeat protein SOAR1 inArabidopsis response to drought, salt and cold
stresses. Plant molecular biology , 88, 369–385.
Jiang, S.C., Mei, C., Wang, X.F., & Zhang, D.P. (2014) A hub for ABA
signaling to the nucleus: significance of a cytosolic and nuclear
dual-localized PPR protein SOAR1 acting downstream of Mg-chelatase H
subunit. Plant signaling & behavior , 9, e972899.
Jin, D., Wu, M., Li, B., Bücker, B., Keil, P., Zhang, S. et al. (2018)
The COP9 Signalosome regulates seed germination by facilitating protein
degradation of RGL2 and ABI5. PLoS genetics , 14, e1007237.
Ju, Y.L., Yue, X.F., Min, Z., Wang, X.H., Fang, Y.L., & Zhang, J.X.
(2020) VvNAC17, a novel stress-responsive grapevine (Vitis
vinifera L.) NAC transcription factor, increases sensitivity to
abscisic acid and enhances salinity, freezing, and drought tolerance in
transgenic Arabidopsis . Plant physiology and biochemistry :
PPB , 146, 98–111.
Kim, H., Song, E., Kim, Y., Choi, E., Hwang, J., & Lee, J.H. (2021)
Loss-of-function of ARABIDOPSIS F-BOX PROTEIN HYPERSENSITIVE TO ABA 1
enhances drought tolerance and delays germination. Physiologia
plantarum , 173, 2376–2389.
Lee, K.H., Piao, H.L., Kim, H.Y., Choi, S.M., Jiang, F., Hartung, W. et
al. (2006) Activation of glucosidase via stress-induced polymerization
rapidly increases active pools of abscisic acid. Cell , 126,
1109–1120.
Lefebvre, V., North, H., Frey, A., Sotta, B., Seo, M., Okamoto, M. et
al. (2006) Functional analysis of Arabidopsis NCED6 andNCED9 genes indicates that ABA synthesized in the endosperm is
involved in the induction of seed dormancy. The Plant
journal , 45, 309–319.
Lim, C.W., Baek, W., Jung, J., Kim, J.H., & Lee, S.C. (2015) Function
of ABA in stomatal defense against biotic and drought
stresses. International journal of molecular sciences , 16,
15251–15270.
Liu, Y., Li, D., Yan, J., Wang, K., Luo, H., & Zhang, W. (2019)
MiR319-mediated ethylene biosynthesis, signalling and salt stress
response in switchgrass. Plant biotechnology journal , 17,
2370–2383.
Ma, Y., Cao, J., He, J., Chen, Q., Li, X., & Yang, Y. (2018) Molecular
mechanism for the regulation of ABA homeostasis during plant development
and stress responses. International journal of molecular
sciences , 19, 3643.
McKersie, B.D., Bowley, S.R., Harjanto, E., & Leprince, O. (1996)
Water-deficit tolerance and field performance of transgenic alfalfa
overexpressing superoxide dismutase. Plant physiology , 111,
1177–1181.
Mei, C., Jiang, S.C., Lu, Y.F., Wu, F.Q., Yu, Y.T., Liang, S. et al.
(2014) Arabidopsis pentatricopeptide repeat protein SOAR1 plays a
critical role in abscisic acid signalling. Journal of experimental
botany , 65, 5317–5330.
Miao, C., Xiao, L., Hua, K., Zou, C., Zhao, Y., Bressan, R.A. et al.
(2018) Mutations in a subfamily of abscisic acid receptor genes promote
rice growth and productivity. Proceedings of the National Academy
of Sciences of the United States of America , 115, 6058–6063.
Miao, J., Li, X., Li, X., Tan, W., You, A., Wu, S. et al. (2020)OsPP2C09 , a negative regulatory factor in abscisic acid
signalling, plays an essential role in balancing plant growth and
drought tolerance in rice. The New phytologist , 227, 1417–1433.
Muhammad Aslam, M., Waseem, M., Jakada, B.H., Okal, E.J., Lei, Z.,
Saqib, H. et al. (2022) Mechanisms of abscisic acid-mediated drought
stress responses in plants. International journal of molecular
sciences , 23, 1084.
Nakashima, K., Fujita, Y., Kanamori, N., Katagiri, T., Umezawa, T.,
Kidokoro, S. et al. (2009) Three Arabidopsis SnRK2 protein kinases,
SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA
signaling are essential for the control of seed development and
dormancy. Plant & cell physiology , 50, 1345–1363.
Okamoto, M., Kuwahara, A., Seo, M., Kushiro, T., Asami, T., Hirai, N. et
al. (2006) CYP707A1 and CYP707A2, which encode abscisic acid
8’-hydroxylases, are indispensable for proper control of seed dormancy
and germination in Arabidopsis. Plant physiology , 141, 97–107.
Ondzighi-Assoume, C.A., Chakraborty, S., & Harris, J.M. (2016)
Environmental nitrate stimulates abscisic acid accumulation in
Arabidopsis root tips by releasing it from inactive stores. The
Plant cell , 28, 729–745.
Pan, W., Lin, B., Yang, X., Liu, L., Xia, R., Li, J. et al. (2020) The
UBC27-AIRP3 ubiquitination complex modulates ABA signaling by promoting
the degradation of ABI1 in Arabidopsis. Proceedings of the
National Academy of Sciences of the United States of America , 117,
27694–27702.
Pedrosa, A.M., Cidade, L.C., Martins, C.P., Macedo, A.F., Neves, D.M.,
Gomes, F.P. et al. (2017) Effect of overexpression of citrus
9-cis-epoxycarotenoid dioxygenase 3 (CsNCED 3) on the
physiological response to drought stress in transgenic
tobacco. Genetics and molecular research , 16, 16019292.
Phillips, K., & Ludidi, N. (2017) Drought and exogenous abscisic acid
alter hydrogen peroxide accumulation and differentially regulate the
expression of two maize RD22-like genes. Scientific reports , 7,
8821.
Priest, D.M., Ambrose, S.J., Vaistij, F.E., Elias, L., Higgins, G.S.,
Ross, A.R. et al. (2006) Use of the glucosyltransferase UGT71B6 to
disturb abscisic acid homeostasis in Arabidopsis
thaliana . The Plant journal , 46, 492–502.
Qu, L., Sun, M., Li, X., He, R., Zhong, M., Luo, D. et al. (2020) The
Arabidopsis F-box protein FOF2 regulates ABA-mediated seed germination
and drought tolerance. Plant science , 301, 110643.
Ronald P. (2011) Plant genetics, sustainable agriculture and global food
security. Genetics , 188, 11–20.
Shi, S., Nan, L., & Kevin, S. (2017) The current status, problems, and
prospects of Alfalfa (Medicago sativa L.) breeding in China.Agronomy , 7, 1.
Singer, S.D., Hannoufa, A., & Acharya, S. (2018) Molecular improvement
of alfalfa for enhanced productivity and adaptability in a changing
environment. Plant, cell & environment , 41, 1955–1971.
Tan, W., Zhang, D., Zhou, H., Zheng, T., Yin, Y., & Lin, H. (2018)
Transcription factor HAT1 is a substrate of SnRK2.3 kinase and
negatively regulates ABA synthesis and signaling in Arabidopsis
responding to drought. PLoS genetics , 14, e1007336.
Tang, L., Cai, H., Ji, W., Luo, X., Wang, Z., Wu, J. et al. (2013)
Overexpression of GsZFP1 enhances salt and drought tolerance in
transgenic alfalfa (Medicago sativa L.). Plant physiology
and biochemistry , 71, 22–30.
Umezawa, T., Okamoto, M., Kushiro, T., Nambara, E., Oono, Y., Seki, M.
et al. (2006) CYP707A3, a major ABA 8’-hydroxylase involved in
dehydration and rehydration response in Arabidopsis
thaliana . The Plant journal : for cell and molecular
biology , 46, 171–182.
Wang, Z., Su, G., Li, M., Ke, Q., Kim, S. Y., Li, H. et al. (2016).
Overexpressing Arabidopsis ABF3 increases tolerance to multiple
abiotic stresses and reduces leaf size in alfalfa. Plant
physiology and biochemistry : PPB , 109, 199–208.
Yang, W., Liu, X.D., Chi, X.J., Wu, C.A., Li, Y.Z., Song, L.L. et al.
(2011) Dwarf apple MbDREB1 enhances plant tolerance to low
temperature, drought, and salt stress via both ABA-dependent and
ABA-independent pathways. Planta , 233, 219–229.
Yang, Y., Al-Baidhani, H., Harris, J., Riboni, M., Li, Y., Mazonka, I.
et al. (2020) DREB/CBF expression in wheat and barley using the
stress-inducible promoters of HD-Zip I genes: impact on plant
development, stress tolerance and yield. Plant biotechnology
journal , 18, 829–844.
Ying, S., Zhang, D.F., Fu, J., Shi, Y.S., Song, Y.C., Wang, T.Y. et al.
(2012) Cloning and characterization of a maize bZIP transcription
factor, ZmbZIP72, confers drought and salt tolerance in transgenic
Arabidopsis. Planta , 235, 253–266.
Yue, Y., Zhang, M., Zhang, J., Duan, L., & Li, Z. (2011). Arabidopsis
LOS5/ABA3 overexpression in transgenic tobacco (Nicotiana tabacumcv. Xanthi-nc) results in enhanced drought tolerance. Plant
science , 181, 405–411.
Zhang, J.Y., Broeckling, C.D., Blancaflor, E.B., Sledge, M.K., Sumner,
L.W., & Wang, Z.Y. (2005) Overexpression of WXP1 , a putativeMedicago truncatula AP2 domain-containing transcription factor
gene, increases cuticular wax accumulation and enhances drought
tolerance in transgenic alfalfa (Medicago sativa ). The
Plant journal , 42, 689–707.
Zhang, Q., Kong, X., Yu, Q., Ding, Y., Li, X., & Yang, Y. (2019)
Responses of PYR/PYL/RCAR ABA receptors to contrasting stresses, heat
and cold in Arabidopsis. Plant signaling & behavior , 14,
1670596.
Zhang, W.J., & Wang, T. (2015) Enhanced salt tolerance of alfalfa
(Medicago sativa ) by rstB gene transformation. Plant
science , 234, 110–118.
Zhang, Z., Wang, Y., Chang, L., Zhang, T., An, J., Liu, Y. et al. (2016)MsZEP , a novel zeaxanthin epoxidase gene from alfalfa
(Medicago sativa ), confers drought and salt tolerance in
transgenic tobacco. Plant cell reports , 35, 439–453.
Zhao, Y., Chan, Z., Gao, J., Xing, L., Cao, M., Yu, C. et al. (2016) ABA
receptor PYL9 promotes drought resistance and leaf
senescence. Proceedings of the National Academy of Sciences of the
United States of America , 113, 1949–1954.
Zhao, Y., Zhang, Z., Gao, J., Wang, P., Hu, T., Wang, Z. et al. (2018)
Arabidopsis duodecuple mutant of PYL ABA receptors reveals PYL
repression of ABA-independent SnRK2 activity. Cell reports , 23,
3340–3351.
Zhong, R., Wang, Y., Gai, R., Xi, D., Mao, C., & Ming, F. (2020) Rice
SnRK protein kinase OsSAPK8 acts as a positive regulator in abiotic
stress responses. Plant science , 292, 110373.