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1 | INTRODUCTION

1.1 | Previous works

Fractional calculus has been of great interest in the past few decades since it has been confirmed to be a powerful tool with
more accurate results in the mathematical modeling of many phenomena occurring in physics and engineering. This is due to
its wide application in various areas, particularly in control engineering, ™ physics,* economics® and image processing;® for
more detail, we can pay attention to previous studies. 8

The time-delay system refers to a kind of dynamic system whose current state is affected by the past state. In addition, time
delay not only makes the system more complex, instability and oscillation, but also makes it more difficult to derive the explicit
solution of the system. In recent years, the representation of solutions of the linear fractional delay differential equations (FDDEs)
has attracted many researchers since it is much more useful than the implicit solution. In the work of Li et al,!? the researchers
obtained an explicit formula for solutions of the Caputo-type linear FDDEs by adopting two parameters delayed matrix function
of M-L. Xiao et al'¥ derived the solution of linear delay system by means of conformable delayed exponential matrix. In the
work of Mahmudov,"? the author found construction of solutions of the linear Riemann-Liouville FDDEs of order 1 < 2a < 2
by applying delayed matrix functions of sine and cosine. For more results about the representation of solutions to the linear
FDDEs, one can refer to other works, 1017118

As we all know, the concept of controllability was first proposed by Kalman in 1960, and it soon became a basic concept
in modern control theory, which has been crucial to the development of control theory and engineering , and we are able to
discover lots of applications in robotics, optimal control of linear system, and flight control system. Up to now, controllability
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of fractional system is still one of the heated research topics. Due to controllability as a qualitative property of the dynamic
system, it is vital to discover the representation of its solution. In the work of Joice et al,*! the authors gave the representation of
solution by virtue of Laplace transform and considered controllability criteria for FDDEs. Recently, in the work of Li et al,*2 by
means of delayed matrix functions of M-L, the researchers sought the representation of solution and presented controllability
of the linear FDDEs. For more detail about controllability, we can pay attention to previous works, 232422120

In the real world, many practical systems affected by random disturbances from the external environment are usually modeled
as stochastic differential equations (SDEs). In many literatures, we can find that the noise process many researchers assume
in stochastic questions is the Wiener process. For instance, the relatively exact controllability of FSDS with Wiener noise was
discussed by adopting delayed matrix functions of sine and cosine in the work of wang et al.%Z In addition, for many other
researched results about stochastic systems with Wiener noise, one can see the papers.Z82% As a matter of fact, noise is not only
continuous like Wiener noise, but also has discontinuous fluctuations, such as sudden changes in some natural environments
(earthquakes, hurricanes, epidemics, etc.), which can be described as jumping process or more general Lévy noise. It is worth
mentioning that the authors considered the controllability of the fractional neutral stochastic system with Lévy noise, in the
work of Rajendran et al.*? In the work of Su et al,*!' approximate controllability of second order SDEs with Lévy process was
presented. However, there are few papers considering the controllability of FSDS with Lévy noise.

1.2 | Major contributions

Motivated by the articles mentioned above, we are concerned with relatively exact controllability of FSDS in this paper:

Dyt = Ay(t = 1)+ Bult) + Cu(t = (1)) + G(1. y(1). Yt = 7)) + At (1), y(t = 1) TGP
+ /[, 8, y(0), y(t = 7), 2) "D 1 €10, b],7 > 0, (1)
Y =),  1€[-7,0],

where CD(‘; ¥(+) is the Caputo derivative, 1 < 2a < 2, y(f) € R" and u(¢) € R” show state and control vectors, respectively.
A, B,C € R™" are any matrices, () > 0 is the time-varying delay, and u(r) = 0, for all 1 € [—§(0),0]. The functions
G :[0,b]xR"XR" - R", A : [0,b)] x R" X R" - R™ and g : [0,b] Xx R” x R" X Z — R”" are continuous. dN(t, z) =
N (dt, dz) = N(dt, dz) — v(dz)dt is a compensated Poisson random measure, where v( dz) and N( d¢, dz) show a o-finite
Lévy measure on (Z, B(Z)) and the Poisson random measure related to Poisson point process on Z € B(R"), respectively.
The initial function ¢ € C! ([-7,0],R"), and {w(s),s € [0, b]} denotes a standard d-dimensional Wiener process. The delay
function 6 : [0, b] — R is continuously differentiable.
Compared with some recent works, 2/223013113213313435136137

reflected in the following three aspects:

the major contributions and difficulties of this article are mainly

e (C)) In the literatures,2722313334 the literatures studied the controllability of dynamical systems without delay term in

control, but the system we study has the control delay which is a continuous function regarding the variable ¢. It is worth
remark that time varying term make it harder to construct controllability Grammain matrix. However we deal with the
time varying term using the time lead function in this paper.

e (C,) To the best of our information, there are few papers considering the controllability of FSDS with Lévy noise in lit-
erature. Compared with these works, 30323335137 the system we study not only has the state delay, but also has the stochastic
term with Lévy noise, so it is more generalized. The delay term and stochastic term make the proof of controllability more
complicated.

e (C;) In the study of various controllability of the nonlinear dynamical systems, many papers="“15¢ have adopted
a stronger Lipschitz condition. However, we adopt the weaker condition to study the controllability of the nonlinear
dynamical system in this article.

Arrangements for the rest of this article are outlined below. In Section 2, we establish some necessary results required for
the subsequent sections. In Section 3, by using the controllability Grammain matrix, the relatively exact controllability of linear
FSDS is obtained. In addition, by virtue of Banach contraction principle, the existence and uniqueness of nonlinear FSDS are
considered. Then, we demonstrate the relatively exact controllability result of the nonlinear FSDS. Finally, we give an example
to verify the correctness of our conclusion in Section 4.



HUANG AND LUO 3

2 | PRELIMINARY

For the sake of the smooth follow-up work, we give briefly the preparatory work in this section. Let {Q, &, P} be a complete
probability space with a filtration {‘G;r}»o satisfying the usual conditions (i.e. right continuous and &, containing all P-null sets);
E(-) denotes the expectation regarding the measure P; L, (Q, Fu, IR") denotes the Hilbert space of all #,-measurable square
integrable random variables with values in R"; ng ([0, b], R™) is the Hilbert space of all square integrable and %,-measurable
processes with values in R”. L(R”, R") denotes the space of all linear transformation. Furthermore, C ([(), bl, L, (Q,%,P, [R"))

shows the Banach space of all square integrable and & -adapted processes y(¢) with norm || - ||., where || yllé = sup E|y®]?>.
1€[0,b]
We consider the matrix norm

n n n
| All = max {2 lau | D lan]. s Y, |a,.,,|} .
i=1 i=1 i=1

For the initial value || (p||% = sup E|p®)|? andV,, = Lz‘g ([0, b], R™) denotes set of all admissible controls. Moreover, we let
te[—7,0]

ky = max{||o||, l¢'l|IZ}, where [|@]|lZ = sup Elle®)|% [l¢'llZ = sup E|¢'(t)]|*. Now, we introduce the time lead function
te[-7,0 te[-7,0]

r(t) : [0,b— 6(b)] — [0, b] such that r[t — 5(t)]]= t fort € [0, b].

Definition 1. (see Zhou et al®) The Riemann-Liouville fractional integral for f is described by
t
I°f (1) = 1 /(r -5 fs)ds, O0<a<l,
I'(a)
0
and the Caputo derivative for f is *D*f = I'=%f’, that is,
1
1
C na —a o/
Df(t)y = ——— [ (t— ds.
f@ F(l—a)/( $)"f(s)ds
0

Definition 2. (see Gorenflo et al'%) The M-L function is described by

o0
,wk

M = .
() ,Z() T(ka + f)
In particular, for § = 1,
b k
w
M, (@) =M, (w) = _
/; I'tka +1)

Definition 3. (see Li et al'¥) Delayed matrix function of M-L Z4" : R — R™" s described by

0, -0 <t< -1,
At* _ —
ZT =<1, ] T<t<0,
a _ o —(p— pa
I+A t +A2 (t—7) 4ot Ap(f (p—D)7) (p— 1)T <t<pr,pEN,

T(a+1) TQa+1) T(pa+l) °
where I and © show the identity and zero matrices, respectively.

Definition 4. (see Li et al'®) Delayed matrix function of M-L Zfﬁ: : R > R™" is described by

0, -0 <t < -1,
A _ )y @ _
Zf,a - I _F(Ol) ], " - e T<t S 0,
(T4 - 2= p t=(p=Dr)?*e~ _
I 0 + Ar(a+a) + A TGare + + A Toste) p-Dr<t<pr,peN.

Lemma 1. (see Li et al'®) For (p — 1)t <t < pr and p € N, we obtain
|z

Lemma 2. For (p — 1)t <t < pr and p € N, we have

| <M, 14l

At®
Zr,a

| <@+ M (Al + 2.
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Proof. For Vt € ((p — 1)z, pr], we can get the following

A (t + T)a 1 t2a—1 ) (t )3a—1 . ) (I _ (P _ 1),1.)(p+l)a—1
| Z"" - F( ) * ”A”F(a +a) Il I'Qa+ ) Al I'(pa + @)
(t + T)a 1 (t + T)Za—l 2(t + )3(1 1 o p(t + T)(p+1)a—l
- I(a) 114l IN'a + a) 14l I'Qa + a) * Al I'(pa + @)
_ ae1 1 (t+1)" ) o , +1) >
=+ 7) (F( Al s AP G s+ AP s

T'lka + a)
=(t + 1) 'M,, (Al + 7)%).

ak
<+t Y JAICE )
=0

Lemma 3. (see Li et al'3) Let £ € C([0, b], R™). A solution y(t) € C ([0, b], R") of the following system:

CDg y(1) = Ayt — 1) + f(1),t €[0,b),7 >0, f € C(0,b],R"),
y(®) = (), -7 <10,

can be represented as

0 t

¥t = Z4" p(—1) + / 72T g (ndr + / 72 f(nydr.

-7 0

3 | MAIN RESULTS
3.1 | Linear case

In this section, we investigate the following the linear stochastic delay control system:

CDL Y1) = Ay(t — 1)+ Bu() + Cu(t — (1) + A2
+/, 8tz “N(’ S 1e0,b,7 >0, 2)
(1) = (1), 1€ - T,O],

where A : [0,b] - R™d and g : [0, 5] X Z — R" are continuous. The corresponding deterministic system can be given by

CD" y(t) = Ay(t—1)+ Bu(t) + Cu(t —6())+ f(t), te€][0,b],7 >0, 3)
y =), 1€[-7,0l
By the Lemma 3] the solution of the delay system (3) can be represented as
0 t
w0 =72 p(-1) + / 7207 g (s)ds + / Z20=7=9" Bu(s)ds
- ’ “

t t

+ / 72T Cu(s — 5(s))ds + / 72T f(s)ds.

0 0
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Taking s — 6(s) = v and using the function r(r), we obtain s = r(s — (s)) = r(v). Then (@) can be represented as
0 t

w0 =Z2" p(-1) + / 720 g (s)ds + / Z207 Bu(s)ds

-7 0
1—5(t) t

v [ ziorausros s [ 20 foas

5(0) ) 0 . )
=Zf’a(p(—'r) + / Zf(’_"”a @' (s)ds + / <ng_7_s)“B + fo;"_’(s))a Cr'(s)) u(s)ds
“r 0 ’ ’
t t
+ / 72077 Bu(s)ds + / 72077 f(s)ds,
1=53(1) ‘ 0 ’
and substituting ¢ = b in (B) , we have
0 b—5(b)
y(b) =Z2" p(—71) + / 7207 ! (5)ds + / (fof—f—”“B + fox”‘f"(”)aCr’(s)> u(s)ds
“r 0 ’ ’
b b
+ / 279" Bu(s)ds + / 72T f(s)ds.
b—5(b) ’ 0 q
The definition of the control operator £, € L (L‘;’T ([0,6],R™), L, (Q, F, R")) can be given by
b—5(b) b
Cou= / (Zf(a”"‘s)“B + Z A=) Cr’(s)> u(s)ds + / 7AD" By(5)ds,
0 ’ ! b—8(b) 7
and its adjoint EZ L, (Q, F, IR") - Lz‘g ([0, b], R™) is defined as
o (z20 5+ Zﬁ;b_f_ra»“cw(s))*lz (z1F), tel0,b-58b),
| Bz {2 7, t € [b—6(b), bl,
where B* shows the transpose of B.
The definition of the linear controllability operator 1'[’; el (L2 (Q, F, IR") , L, (Q, F, IR")) can be given by
Hﬁ =L, Ly (-}
b—5(b)
_ / <Z;\}lb—r—3)"B 4 ZAb-erOF Cr’(s)> <Z£gb—f—s)"3 + Zf,flb"_r(“))“Cr'(S)y E{ |Z}ds
0 (6)
b
+ | 220 Bz E (| F ) ds,
b—5(b)
and the deterministic controllability Grammian matrix @f € L(R", R"):
b—5(b)
o = / (2209 B4+ 220" O (5)) (22059 B4+ 22T () ) ds
°, (7)

+ / ZA(b—r—S)“BB* ZA*(b—T—S)“‘ ds.
7,0 7,0

b—6(b)
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Definition 5. (see Wang et al*”) The set A(t) = { y(1), u,} is called the complete state of the system (I)) at time t.

Definition 6. (see Wang et al“") For an arbitrary complete state A(f) and any y, € R”, the stochastic system (I)) is called
relatively controllable on [0,b] if there exists a control vector u(r) € R" such that the stochastic system (I)) has a solution y that
satisfies the initial condition y(¢) = ¢@(t),t € [—7,0] and y(b) = y,.

Definition 7. (see Klamka et al?Y) For an arbitrary initial state y,, the stochastic system (I)) is called relatively exactly
controllable on [0, b] if any y € L, (Q, Fys R”) can be exactly reached from y, at time b that is, if

R, (V) = Ly (2, %, R"),
where R, (V) = {y(b.u) € Ly (@, F R") : u() € Uy ).
Lemma 4. (see Mahmudov et al'™®) For Vy € L, (Q, %,,R"), 3¢(-) € LT ([0, b], R™“) such that

b

y=Ey+ / q(&)dw(&),
0
b

Iy =6/Ey+ / ©(§)a(§)dw(?).
0
Lemma 5. The controllability matrix (7 is nonsingular if and only if the system (3] is relatively controllable on [0, b].

Proof. Necessity: Suppose @’; is nonsingular, its inverse [@’; 17! is well defined. The control function u(¢) € R" is defined as

o (20" B+ 220" Cr () ) (041715, 1€ 0.5 =30,
u(t) = | |
B*Zﬁl(b_T_’)“ [@f]_lﬁ, t €[b—6(b),b],

®)

where f =y, — Z2 p(-1) - f_OT 740" g (s)d's — fob 720~ f(s)dss, and the vector y; € R" is chosen arbitrarily.
Letting ¢t = b in (3 and inserting (8) in (3)), one can derive
0
y(b) =Z2" p(—1) + / 74075 ! (5)ds

-7

b-5(b)

4 / (ZA(b—T—S)“ B+ Z’“”‘T"“”“Cr’(s)) (ZA(b—r—s)“ B+ ZA@—T—’(S))"Cr’(s))* (0] pds

0
b b
+ / ZM Y BBz (0] pds + / 2o f (s
b—5(b) 0
0 b
=Z?ba(p(—1’) + / Z;‘\(b—‘l‘—s)” (p’(s)ds + ®ﬁ[®£]_lﬁ + / Zﬁg—f—s)af(s)ds
> 0

=Y
Further, by the Lemma 3] the initial condition y(t) = ¢(t), t € [—7,0] holds. Hence, by the Definition [6] the system (3) is
relatively controllable.
Sufficiency: We prove our result by means of contradiction. Suppose that the Grammian matrix @’T’ is singular, and there exists
a nonzero state vector @ € R" such that

0=a"0"a
b—5(b)
*
_ / & (ZA(b—T—S) B 4 ZAb=t=r(s)) Cr’(s)) (ZA(b—T—S) B 4 zAb-t=r(s)) Cr’(s)) ads
T, T,a T, 0
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~% — A(b—1—5)" %7 A*(b—T—5)* ~
+ / alz, BB Z_, ads
b—6(b)
b—6(b)

= / [a* (Z;‘{f—f—s)“B + Zﬁfxb_T_’(s))“Cr’(s))] [a* <Zg;b-f-f>“3 + Zﬁ;b—f—’<s>>“Cr’(s))] ds
0

b
+ / |a°z20-+" B] [a220-" B| s
b—5(b)
b—5(b) ) b
- / a <Z;{§1”-T-X>”B+Zﬁgb—f—’<s>>”0r’(s))“ ds + / a*zﬁgb—f—5>“B”2ds,
0 b—6(b)

which implies that

@ (2207 B+ 220 Cr () ) = 0---0), Vs €10,6=3(),
g )
n—times 9)
~x 7 A(b—7—5)* (
a7\ B=(0---0), Vsel[b-2sb),bl.
’ N——

n—times

Since system @ is relatively controllable on [0, b], in light of the Deﬁnition@ there exists a control function u(#) that steers
the complete state to zero at time b, i.e.,
0 b—5(b)

y(b) =Z2" p(—7) + / 7207 gl (5)ds + / (Zﬁg"f“‘)nB+ZQ§"T"(S))HCr’(s)) Uug(s)ds
-7 0
b b (10)
+ / 720779 Bug(s)ds + / 720" f(s)ds

b—5(b) 0

where 0 shows the n-dimensional zero vector. Moreover, in light of the Definition |§|, there exists a control function u,(¢) that
drives the complete state to @ at time b, then

0 b—5(b)
w(b) =Z2" p(~1) + / 7207 g/ (s)ds + / (zfﬁf—f—”"B + ngb—f—’“”“c;»’(s)) u,(s)ds
-7 0
b b (an
+ / Z720779" Buy(s)ds + / 720" f(s)ds
b—56(b) 0
=a.
Combining the formula (T0) and (TTJ), one can get
b—6(b)
a= / (2207 B+ 2207 Cr(s) ) iy (5) = wo(0)ds
0

b
+ / 72079 B(u, (5) — ug()ds,
b=6(b)
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and multiply by a* on both sides of the above equation. We get
b—5(b)
a‘a= / a* (ng’_f_s)a B+ fof""(s»aCr’(s)) (uy(s) — uy())ds

0
b

+ / @z V" Buy (s) — ug(1))ds.
b—5(b)

We acquire a*a = 0, from the fact @), i.e., @ = 0. This is a contradiction to nonzero vector d. Thus, @2 is nonsingular. O

Theorem 1. The deterministic system (3) is relatively controllable on [0, 5] if and only if the stochastic system (2} is relatively
exactly controllable.

Proof. Necessity: From the Lemma [3] the system (3) is relatively controllable, and then one can obtain the controllability
Grammian matrix G)’; (&) is strictly positive definite and nonsingular for V& € [0, b]. Thus, for y € R”, there exist some 4 > 0
such that

(©2(&)y.y) 2 AllyI*. ¢ €10.5].
By the Lemmald] we establish the following formula
b

y=Ey+ / q(&)dw(&),
0
b

Iy = ©7Ey + / ©(£)q(&)dw(?).
0
To express E(I12y, ) in terms of (°Ey, Ey), one can get

b b

E(I1y,y) =E <®’;Ey+ / O (&)g(&)dw(é),Ey + / q(é)dw(§)>

0 0

b
—(0’Ey.Ey) +E / (@ (©)a(8). q())de
0

b
>AE||y|I* + AE / llq(&)l1*dé
0

>AE||ylI%,

which implies that the operator le’ is strictly positive definite and [H’T’ 17! is bounded. Further, a control function u(t) € U, =
Lz‘g ([0, b], R") is defined as

o (Zfilb_r_t)aB + folb—r—r(z))'lcr,(t)y E {[Hf]_lﬂ | 9,1} , t€[0,b—68(b)], (12)
u(t) = ’ '
B*zﬁ’;(b—r—t)"E {[Hg]—lﬂ | 971} , te[b—46(b),b],

where
0

B =y, —Z p(-1) - / 72077 gl (5)ds

b b

- / Z28" K(s)duo(s) - / z; / &(s, )N (ds, dz),
0 0 z
and vector y; € R" is chosen arbitrarily.
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By the Lemma[3] the solution of (Z) can be given by
0

y(0) =Z2" p(=7) + / 22 gl (s)ds

-7

t=6(t) t
+ / (209" B+ 2240 (5) ) u(s)ds + / ZA Bu(s)ds (13)

0 1—8(t)
t t

+ / z;{g—f—”“Z(s)dw(s) + / Z;‘f;—f—”“ / 2(s, 2)N(ds, dz).
0 0 z
Substituting ¢ = b in (I3) and inserting (I2) in (I3), one can obtain
0

y(b) =Z2" p(=7) + / 207 g (s)ds

-7

b—5(b)
+ / (220" B+ 220 Cr() ) (Z29 B4+ Z20 O CF () B {1 A 7} ds

+ / z20 = gz YR {1 F ) ds

b-5(b)
b b

+/fox”"‘s)aZ(s)dw(s)+/foxb_r_s)a/§(S, z)N(ds, dz)
0 0 z

0
=7 p(-1) + / 7207 ! (s)ds + T2 (1] B

-7

b b

+ / Z2O==9" A(s)du(s) + / VA / g(s, 2)N(ds, dz)
0 0 z
=yl'

Further, by the Lemma the initial condition y(t) = ¢(1), t € [—7,0] holds. Thus (@) is relatively exactly controllable on
[0, b] by the Definition
Sufficiency: By Lemma in order to prove that the system (3) is relatively controllable, one just prove @i is positive definite.
The proof is similar to the proof of Lemmal[3] so it is omitted. O

Next, we will give the result about the minimum energy control.

Lemma 6. Suppose that the linear stochastic system (2)) is relatively exactly controllable on [0, b]. Hence, for any target y, €
L, (2, %,,R"), any A, g, the control

o (fof"")"B + Zf;b—f—r<f>>“0r’(t)) E{[1'8| %), tel0,b-s0b),
uO = ’ ’
L s R NURVIEAY t & b 8(b). bl.

(14)

where
0

p=y = 2" p(-1) - / z}0 g/ (s)ds

-7
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5 b
_/Zﬁ;b"_s)aZ(s)dw(s)—/Zf,f,b_f_s)a/§(S,Z)N(d5,dz)’
0 0 z

transfers the system (2)) from y, to y, at time b. In addition, among all the admissible controls u,,(f) driving y, to y, at time b,
the control function u,(f) minimizes the integral performance index J(u) = E fob [lu(®)||?dzr.

Proof. Since the stochastic linear system (2)) is relatively exactly controllable on [0, b], the linear controllability operator H’T’ is
invertible and its inverse [I1°]™' € L (L2 (Q F,,R"), L, (Q Fs R")) . Substituting the control u(¢) into (I3) at time b and
using Lemma 3] we can obtain
0
W) =2 p(—7) + / Z}07 gl (s)ds

-7
b—6(b) b

+ / (Z’:g’"‘””B+fox”""(“))uCr’(s)> uo(s)ds + / 720779 By (s)ds

0 b—6(b)
b b
+ / 7269 R (s)dw(s) + / ZAb=T=s" / g(s, 2)N(ds, dz)
0 0 z
0
=72 p(-7) + / 7407 (s)ds
b—6(b)
N / < ZAG B 4 A C,/(s)> <Zj§f-f-S>"B + Zf;”_f"(”)aCr’(S)> E{[I’]"'p | %} ds 15)
0

b
+ / Z) " BB 2 E I B 7} ds

b—6(b)
5 b
+/fof‘f‘s)"Z(s)dw(s)+/Zfib_r_s)“/E(S’ 2)N(ds, dz)
0 0 z

0
=7 p(-1) + / z207 ! (s)ds + T2 [T1] ' B

-7
b

b
+ / ZA= 0" A (s)dw(s) + / VAl / g(s, 2)N(ds, dz)
0 0 z
=1
and y(t) = @), t € [-7,0].
To show that the control function u,(¢) is optimal for J, we assume the control u,(¢t) € V.t € [0, b] drives y, to y, at time
b and y(¢) = @(?), t € [—7,0]. Hence, one can get

0 b—5(b)
W(b) =274 p(—1) + / ZAG= o (5)ds + / (Z207 B+ Z2" € () )y (5)ds
-7 0
b b b (16)
+ / Z720779" Bu,(s)ds + / z;{;b—f—”“x(s)dw(sn / Vgl / 2(s, z)N(ds,dz)
b—6(b) 0 0 z
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Combining the formula (T3) and (T6), one can obtain

b—56(b) b
/ (Z;{g’—f—”"B + Z;‘g—f—’“))"Cr’(s)) (uy(s) — up(s))ds + / Z;{ff—f—”“B(ul(s) — uy(s))ds
0 b—6(b)
Therefore
b—56(b)
0=E < / (z;{jf*”% + z;{gb—f—'<s>)“Cr’(s)) (u,(5) — ug(s))ds
0
b
+ / 720779 Buy (s) — up(s)ds, E {[T2] '8 | %b}>
b—5(b)
b—56(b)
=E < / (Z207" B + Z20= Cr(5) ) a1y (5) = wp(9)ds, E {[T121' 5 | %}>
0
b
+E < / 72077 Buy (s) — up(s))ds, E {2171 | 9,,}>
—5(b)
b—56(b)
-E / <(u1(s) — uy(5)), (Zj{ff‘f'”“B 4 Z A Cr’(s)> E {5 | 9@}> ds
0
b
+E / <(u1(s) —uy(s)), B Z2 P E {[I] 1B | Z}) ds
b—5(b)
b—56(b) b
=E / (@ () = ug(s)), up(s)) ds + E / ((uy (s) — up(s)), ug(s)) ds
0 b=6(b)
b
=E/ ((uy(8) — up(s)), uy(s)) ds.
0
Thus,

b
E/ ((uy(s) = up(s)), up(s)) ds = 0.
0

Further, one can obtain

b b
E / luy (O] =E / Cu (1) = ug0) + 101,y (1) — tlr) + (1) i
0 0
b b b
=E / lluy (1) — uo(@)||*dt + E / llug(0)|I*d? + 2E / (uy () = ug(1), ug(t)) dt
0 0 0
b b
_E / ity () — ()| + E / RGIET
0 0

b
SE / g (1)t
0

Thus, the control u,(?) € U, is optimal for J. O
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3.2 | Nonlinear case

Before stating the main result, we first give the following hypotheses:

e (H,) The functions G € C([0,b] x R" X R",R") , A € C([0,b] X R" x R",R™) and g € C([0,b] X R" x R" X Z,R"),
and there exist L (1), L5(?), L,(t) € L7 ([0, b], IR+) and y > 1 such that

-

1G(t, @y, v)) = G(t, 03, v)II* < L@ (|lo) — o, |I” + |lv; = wylI*), 1 € [0,b], @), 0, v, v, € R";
- (i)

[|A®, @y, v)) — A(t, a)z,v2)||2 < L,®(ow; — co2||2 + v, — v2)||2),t € [0,b], w;, @y, v, v, € R,
- (iii)

/ ”g(t’ wla Vla Z) - g(’? w2’ V27Z)”2U(dz) S Lg(t)(”wl - CU2||2 + ”VI - V2||2)7t S [0’ b]a w17w2’ Vl’ V2 S Rn'
z

o (H,) Setk; = [|©2]I k, = ||[T1]""]|* and

1 a\2 a—
K =8b7 (M, (4Nl + 7)) (b+ )
X (O LGl 1y qoprrey T 1Lall rqoprrey + 1Ll 1y o)) + 3k ky) < 1.

o (H3) Set M, = sup [|G(t,0,0)|I, M, = sup [|A®,0,0)[>, M5 = sup [, [1g(,0,0,2)[Iv(dz).
1€[0,6] 1€[0,b] 1€[0,b]

Now we give the solution of (I)) with the form:
0

y(0) =72 (=) + / Z2T g (5)ds

-7

1=5(1) t
+ / <Z;{§;—f—s>“3+Z;{g—f—'@)"Cr’(s)) u,(s)ds + / 72077 Bu,(s)ds
Or r t—5(1) (17)

+ / 720G (s, y(s), y(s — )ds + / 22T (s, y(s), y(s — 7))du(s)
0

0
t
+ / Zf’fx’_"”" / g(s, y(s), y(s — 7), z) N (ds, dz).
0 4

Further, a control function uy(t) can be formulated by

(z;{g’—f—f)“B + zg;b—f—r<f>>“Cr’(t)) E{I’I"'§| %}, 1€[0.b-50b),

uy(t) = . .
B*Zf,a(b_r_t) E {[H’T’]_lﬂ | 971} , te[b—0o(b),b],

(18)

where
0

B =y, —Z" p(-1) - / 72077 gl (5)ds

b

Z2E=9" G(s, y(s), y(s — 7))ds — / 2207 A(s, (s), y(s — 7))dw(s)
0

Zaviuin / g(s, ¥(5). y(s — ), 2)N(ds, dz),

z
and the vector y; € R” is chosen arbitrarily.

/
/
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Inserting (I8) in (I7), one can get that the control function u,(¢) drives y, to the desired vector y, at time b. Furthermore,
we introduce the Banach space A :=C ([—7:, bl, L, (Q,%,P, R”)) with norm ||y||§ = sup E|y(#)||> < oo. Using the control
te[-t.b]

function, the operator ® : A — A is described by

0
(@y)(1) =Z2" p(=7) + / Z27 g (s)ds

-7

1—5(t) t
A(t—t—5)" A(t=1=r(8))* (0 At—7—5)"
+ / <Zm s B+ZT’EI S Cr (s))uy(s)ds+ / erx 7" Bu,(s)ds
0 1=6(1)
t 1
+ / 72T G (s, y(s), y(s — T))ds + / 72T AGs, y(s), (s — T))dw(s)

0 0
t

+ / zy / g(s, (), (s = 7), )N (ds, d2),
0 z
and it follows from the Lemma[6] that if the operator ® has a fixed point, thus the stochastic system (I) has a solution y(r)
regarding uy(-) € V,,, and (®y)(b) = y(b) = y,, () = @(1), t € [—7,0], namely, the stochastic system (I)) is relatively exactly
controllable.
In what follows, we derive the relatively exact controllability result for system (I)) by virtue of fixed point theorem.

Theorem 2. If the hypotheses (H1)-(H3) hold and the stochastic system (2)) is relatively exactly controllable. Thus, the
stochastic system () is relatively exactly controllable.

Proof. In order to prove that the system (IJ) is relatively exactly controllable, we divide our proof into the following two steps.
Step 1. We show that @ maps A into itself.
ForVy € A and ¢t € [0, b]. According to Jensen’s inequality, one can get the following:

0
E|[(@y)D)|I* =E ||Z2" p(-7) + / 72077 gl (5)ds

-7
1=6(1) t

" / (224757 B4 220 € (5) )y s + / 220 By (s)ds
0 1—=6(1)
t t

" / ZA0 G5, y(5), (s — T + / ZA05 A, y(5), (s = T)duls)

0
2

0
t
+ / Y / g(s, y(s), ¥(s — 7), )N (ds, dz)
0

V4

0 2

<6E ||Z;_"“cp(—r)||2+6E / ZA" o (s)ds

—7T

2 . 2

+6E || [ 72077 G(s, y(s), (s — 7))ds|| + 6E / 22T (s, y(s), y(s — 7))dw(s)

—

0
2

0
t
+6E /Zﬁg"_s)a/g(s,y(s),y(s—r), z)N(ds, dz)
0

z
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t—6(t) t

+6E / <Zf§"‘s)aB + ZAer Cr'(s)> u,(s)ds + / 7209 By (s)ds

0 1=6(n)

With the aid of the Lemmal[I] we have

=~

. 2
ezt oo
<6 (M, (I14115)" E llp(-)II”
By the Lemmal[l] one can obtain

0 2
J, =6E /Zf(’_r_s)aqo'(s)ds

—T

<67 (M, (114116)E ||/t

where ¢'(n) = II[laX @' (s).

As for the thlrd term, by employing Holder’s inequality, (H1), (H3) and the Lemma[2] we have the following:

' 2

J =6E / ZA0= G(s, y(s). (s — T)ds
0

t
<6b / |24 ’
- T,a
0
t
<12b / (A ’
— 7,0

<12b/“ZA(’ s
2
/ Lids| Iyl

<24b / |z2smr
0

+ 12b2M1(b + 722 (M, (IAll(b + 7))’

ol . 2
<24b o (b+ 1) (M, , (1AIIB + ) Lol Loy V117
+ 12 M, (b + 722 (M, , (141l + 7)),

E [|G(s, y(5), y(s — D)||* ds

/o, 1/y

where 1/o+ 1/y = 1,0,y > 1.
By virtue of the Holder’s inequality, (H1), (H3), Lemma 2] and Itd’s isometry, we have

2

b
J, <6E /Zf,ff"‘s)"A(s, y(s), y(s — 7))dw(s)
0

b
2
_ A(b—7—5)*
=6 / |z E
0

IAGs, ¥(s), y(s — 2)II* ds

t
E /G5, 56). s - 2)) = G(5.0.0)[P ds + 12b / |zzeor

" LaGEY)I? + (s = DIP)ds + 125 / |ze-or

2 2
E||G(s,0,0)]" ds
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b
<12 / |0 ?
0

A(b—7—5)"
ZT,a

E1AG. 505066 = 0) - A 0.0 ds + 12 [ (2807
0

2
<12 M,ds

2 o
LyEYS)I + l1y(s = DI ds + 12 / |za¢-e=
0

1o , 1/y

0
b
20
A(b—r—5)" v 2
<24 /“Zm TS ds /LA(S)ds Iyl
0 0

+ 126My (b + 722 (M, (| All(b + 7))%)°

1 . )2
<24b7 (b + )% (M, (1Al +2)*) I Lol 1 osyn V112
+126My (b + 7% (M, (I AlI(b +7))%)”.

By means of the Holder’s inequality, (H1), (H3), the Lemma[2]and Itds isometry, one can obtain
2

b
Js <6E / zyy / g(s, ¥(s), ¥(s = 7), )N (ds, dz)

z

0
b
; 2
—6E / 72077 g5, 9650, 965 = 1, 2)|| wedz)ds

z
b
< 12E / ZA(b T—5)%
0

b
/ llg(s,0,0, 2)|I* v(dz)ds

+12E / |zad=eer ’
0 VA

/ llg(s, ¥(s), ¥(s — 7). 2) - &(s,0,0, 2)||* v(dz)ds
z

b
<\ 2 —r—§)% 2
<12 / ||Z;{§f—f—” L OEys)I* + lly(s — DlIPds + 12 / Hzﬁg’ II” M,ds
0 0
b /o b 1/y
2

<24 / |Za¢== | as / Li(sds| Iyl

0 0

+ 126M;(b + 722 (M, (| All(b + 7))’

. a— a\2
<24be(b+ 1) (M, (IAIIb + 2)) LMl oy IV 117
+ 126M;(b + 722 (M, (1Al + 7))’ .

Using the Jensen’s inequality, we get

b—6(b) b
Jg <6E / (220777 B+ 220 €1 (s) )y (5)ds + / 720" By (5)ds

b—5(b)

0
b—5(b)
- A(b-7—s5)" Ab==r())* (1! A(b-r—5)" Ab=1=r)* oty by-1
=6E / (Z20 B+ 220 Cp(s) ) (2007 B4+ 220 O () E {11
0
b 2

+ / ZA”’ )" pB* ZA G R0 B | F, ) ds

b—6(b)

2 2
1ACs, 0,0)]|” ds

F/TS} ds



16 | HUANG AND LUO

0
<IOLIPNITT 2 [E || + B | 22 o) + B / Z2 g (5)ds

b 2 2

b
+E / 22079 G5, y(5), y(s = D)ds| +E / ZA7 A5, y(5), ¥(s = D)du(s)
0

0
2

b
+E / Vipa / g(s, y(s), (s — 7), 2)N(ds, dz)
0

zZ

<36k Ky [E | [ + (M, (14159)” Ello(=0lI> + > (M, (1A1159)” E[|'on)]
£4b7 (b4 17 (M, (IANG + 7)) L 1o I3 + 252 M, (b + 272 (M., (1Al + 2)°)
+4be b+ 177 (M o (IAIG + 7)) 1Ll o IVIE +26Ma(b+ 077 (M, (IANIG +2)7)°
4B (5 + 12 (M, (LANG + 7)) 1Ll o I3 + 25M(b + 77 (M, (1Al b+ r))“)Q] :

Hence, we have

E(@y)OI* <J) + , + T3+ I+ Js + T
<6 (M, (141169)” Ello(=0)1? + 62> (M, (141169)” E[|¢'®)]|*
+24b°% (b + 022 (M., (14116 + %) 1L | 1 oaen 1112
+ 125 M, (b + 722 (M, , (1 All(b + 7))%)
+24b5 (b + 022 (M, (NG + ) 1Ll o I
+126M,(b + 722 (M, (| All(b + 7))’
+24b7 (b + 772 (M, (1ANG + 7)) 1L o 19112
+ 126M5(b + 722 (M, (| Allb + 7))%)°
436k, K [E [l |[*+ (M, (14159)° E Nl + 2 (M, (14159)°E [}/ o)
F4b T (b + 027 (M, (LANG + 7)) 1L oy IV + 2620, (b + 7727 (M, (14Nl + )7’
+4bo(b+ 772 (Mo, (1A +2)) 1Ll osy e IVIE +26Ma(b + 272 (M, (1AN6 + ")’
45 b+ 772 (Mo (AN + 7)) L oanan I + 26My(b + 277 (M, (14NN + 0))’]
<36k, kE ||y, ||” + 6 (M, (1 A115%)° k(1 + 6k, k) + 62> (M, ([ Al16%) ks (1 + 6k, k)
+12b(b + 7)**7* (M, (1Al (b + r))“)2 (bM, + M, + M3)(1 + 6k, k,)

1 oa— a\2
+24be(b+ 1) (M, (AN + 2)*)” GBI LG rqosms + 1Lallrqosnas + 1Ll rgosa)
X (1 + 6k ky) [|y]I7 -
From above it follows that there exists a constant C > 0 such that
E@»)OI* < + IylI2).

Therefore ® maps A into A.
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Step 2. We show that @ is a contraction mapping. For Vx, y € A and ¢ € [0, b], by adopting the Jensen’s inequality, one can
get

t 2
E[|(@x)(1) = (@y)(1)]|* <4E / Z27T (G5, x(5), x(s = 7)) = G(s, ¥(5), ¥(s — 7)1 ds
0 t ,
+4E / 22T [As, X(5), x(s = 7)) = A(s, ¥(5), y(s — 7))] dw(s)
0
' 2
+4E / ™ / [8(s, X(5), x(s = 7), 2) = g(5, (), (s = 7), 2)] N(ds, dz)
0 z
t=6(1)
+4E / (Zﬁg"‘s)aB + 720 e r'(s)) [1,(s) — u,(s)] ds
0
P 2

+ / ng"‘s)aB [ux(s) — uy(s)] ds
1=5(1)

By virtue of Holder’s inequality, the Lemma[2]and (H1), it is easy to obtain

t 2

I, =4E / Zf’g_f_s)a [G(s, x(5), x(s — 1)) — G(s, ¥(5), y(s — 7))] ds
0

t
<4b / |z24mr
0
1
<4b / |

0
t
<8b / |z2g-r
0

otl o )2
<8b ¢ (b+ 1) (M, (1A + 7)) I Lgll Loy, X = Y7

2
E [|G(s, x(5), x(s — 7)) = G(s, y(5), (s — D))||* ds

112
Z3 | LoEX() = I + llx(s = 1) = ys = D)l )ds

1/o t 1/y

2
“ds / Ly)ds|  sup Ellx() =yl

te[—1.,b
0

By means of the Holder’s inequality, (H1), Lemma [Z]and It6’s isometry, one can obtain

2

b
I, <4E / Z207 [AGs, X(s), x(s = 7)) = ACs, ¥(5), (s — 7)1 dw(s)
0

b

- Alt=r=s)"
- [ |z
0
b
<4/“ZA([7—T—S)II
- 7,0

0
b
58/|
0

’ E [|AGs, x(s), x(s — 7)) — A(s, ¥(5), y(s — 0)||* ds

* La()E(Ix(s) = ()12 + [Ix(s = 7) = y(s — DP)ds

1/e b 1/y

2
“ds / Li(s)ds|  sup E|lx(0) -y
2 te[—1,b]

A(b—1—s5)"
Z‘[ (14
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1 oa— a2
<8be(b+ 1) (M, (1A + 2)%) " I Lall Loy 1% = Y11

By applying Hélder’s inequality, (H1), Lemma [2]and Itd’s isometry, one can get

b
I3 <4E / ze / [8(s,x(), (5 = 7), 2) — (s, ¥(5), ¥(5 — 7), 2)] N(ds,dz)
0

z
b
=4/ / [ 2207 B lgts, x(52, x5 = 2.2 = 85, 959, 565 = 0, 2P w(d2)ds
0 z
b

4 / |za0-=

b

<4/“ZA([7—T—S)” 2
0

b /0 b 1/y

/ * ds / wds| - swp Blx) -0l

te[—1,b
0 0

1 2
<8bv(b+ )" (M, o (IAIIb + 2)%) I LIl oy 1% = VI -

/E llg(s, x(s), x(s = 7), 2) — &(s, ¥(5), y(s — ), 2)|I” v(dz)ds

L (OE(|x(s) = y&II* + lIx(s — ) = y(s — 7)[|*)ds

I/\

One can apply the Jensen’s inequality to derive that

b—6(b)

I, <4E / (Zfs’”_s)ﬂ B+ foxb_f_’(s))“Cr’(s)) [ux(s) - uy(s)] ds
0
, 2
+ / foxb_f_s)aB [ux(s) - uy(s)] ds
b—5(b)

2

b
<12||@°|P (M2~ |1* | E / 7207 [G (s, x(5), X(s — 7)) = G(s, ¥(s), (s — 7))] ds
0

2

b
+E / 72207 [A(s, X(s), x(s — 7)) = A(s, ¥(s), (s — 7)1 dw(s)
0

b
+E / Z’W’ T8 / g(s, x(s), x(s — 1), z) — g(s, ¥(s), y(s — 7), 2)] N(ds, dz)
0

Z
<12k, Ky |26 b+ 772 (M, (IANIG +2)) ML goa I = I

+2b0 (b + 02 (M, (1AI5 + ) 1Ll oz 1% = VI
+ 260 (b 022 (Mo (AN + 2)) I oy I = 212]

From the results of I, — I,, we get following:

E[(@x)(1) — (@)1 <I) + I, + I, + 1,
<86 (b+ 1722 (M, (AN + ) 1Ll opaen I1x = VI
+ 8bs (b + 1722 (M., (NAING + ) 1L sl o 1% = VI
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+8b0 (b + 172 (M., (A5 + 7)) 1Ll s osree, 1 = VI

12k, [26% b+ 2772 (M, (1A + 7)) Lo I = VI
+ 2b§(b + )22 (Ma,a (AN + T))a>2 LAl L qo,prm) 1 — yllﬁ

+ 2605+ 072 (Mo (AN + D)) 1Ll o 15 = YIE]

=8bi (b + 77 (M, (|1 All(b + 1))%)

2
X (b“LG”Ly([o,b],Rﬂ + ||LA||U([0,b],R+) + ||Lg||Lr([0,b],R+))(1 + 3k ko) |l x — J’”C
2
=K [|x = yll¢

Since K < 1 by (H2), @ is a contraction mapping. Therefore, it has an unique fixed point y € A with u,(-) € U, which is the
solution of (]I[) and it satisfies initial function y(t) = @(¢), t € [—7, 0]. Therefore, the stochastic system (]D is relatively exactly
controllable. [

4 | EXAMPLE

Let us consider the following specified nonlinear FSDS:

EDYOy(1) = Ay(t — 0.5) + Bu(r) + Cu(r — 1/2) + G(t, y(1), y(t = 0.5)) + A(t, y(1), (1 — 0.5))%
+ [, 8t y(), y(t = 0.5), )2 1 € [0, 1], (19)
y =@, 1e€[=05,0]

where y(t) = (y,(1), y,(®))T.

. 02 0 20 10
In the matrix form, we have A = <0.4 0.6>’B_ <02>,C_ <0 1>,

e"S 1 (y, (1) + yy(t = 0.5))

"B (y,(1) + y,(1 = 0.5))
(%77 —0.3te %) (y,(t) + y,(t = 0.5)) t

At y(t — 0. = = .
(&, Y(0), (1 = 0.5)) < (5T — 031 (yy(1) + 1,1 — 05)) )PP =\ 21

The controllability Grammian matrix of linear system corresponding of system (19) is

G, y(),y(t—-0.5) = < > , g(t, (@), y(t — 05)) . < zt > ’

Z, COS ¥,

0.5
o A(0.5-5)%6 A(0.5-25)" A(0.5-5)%6 A0.5-25)06 \*
©s = / (Zo.s,o.e B+ ZZ0.5,0.6 C) <ZO.5,0.6 B+ 2ZO.5,0.6 C) ds

0

1
_ )06 () & \0:
+/ZA(0.5 $° p g7 AT 055 4 0

0.5,0.6 0.5,0.6
0.5
0.25
_ / ( ZA(O.S—S)“ B 4 27/05-29" C) ( ZA(O.S—S)U'5 B+ ZZA(O.S—ZS)% C)* ds
0.5.0.6 0.5,0.6 0.5.0.6 0.5.0.6
0
0.5

A0.5—5)00 A(0.5-25)" A(0.5—5)00 A(05-25)06 \*
+ / (Zo.s,o.a B+Q’ZO.S,0.6 C> <ZO.5,0.6 B +Q’ZO.5,0.6 C) ds

0
+ / 05,0.6 05,0.6

25
1
)06 () 5 106
ZA(O.S s) BB*ZA (0.5-s) ds.
0.5
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The delayed matrix function of Mittag-Leffler is

o, —o0 <t < =05,
—0.4
e = Iwﬁ(;—’;)), -0.5<1<0,
’ (0.5+l:)70'4 tU.Z
I 06 +Ar<1.2>’ 0<t<0.5.

By calculation, one can derive the controllability Grammian matrix

1 _ (221072 1.8401
057\ 1.8401 235164 )°

and its inverse

o) 1 = 00455 —0.0036
o5t =\ —0.0036 0.0428 /-

We can see that (9(1)'5 is positive definite, so the corresponding linear system of stochastic system (I9) is relatively exactly
controllable on [0,1]. Therefore, we get

22.1072y% + 1.8401y?
! = 1 2 ) > 2
(@0s53-7) ( 184012 + 23.5164y2 ) = A1

where 0 < A < 1.8401, and one can obtain k, = 0.5434. Letting 0 = y = 2. It is easy to see that G, A and g satisfy the
hypotheses of Theorem [2] Therefore, the nonlinear FSDS (19) is relatively exactly controllable on [0,1].

S | CONCLUSIONS

In this paper, the main purpose is to investigate the relatively exact controllability of FSDS driven by Lévy noise via delayed
matrix functions of M-L. By applying the controllability Grammian matrix, we obtain the relatively exact controllability of linear
FSDS. In addition, by adopting the fixed point theorem, the existence and uniqueness of nonlinear FSDS are discussed. Various
inequality scaling techniques, such as Holder’s inequality, Jensen’s inequality and It6’s isometry, are used in the derivation.
Further, the relatively exact controllability of nonlinear FSDS is established. Finally, the theoretical results are supported through
an example.

Our future research topic will focus on fractional fuzzy impulsive stochastic system and will explore to derive the controllabil-
ity of the addressed system. Compared with fractional impulsive stochastic system without fuzzy environment, the controllability
of fractional fuzzy impulsive stochastic system is relatively new. At the same time, we will also face many difficulties, such as
how to investigate the controllability of fractional system in the fuzzy space, how to give the control function in the fuzzy space,
how to study fractional system with impulses in the fuzzy space, and how to deal with stochastic term driven by Liu process in
the fuzzy space.
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