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Abstract

A spectral problem is considered in a domain Ω" that is the union of a domain Ω0
and a lot of thin trees situated "-periodically along some manifold on the boundary
ofΩ0. The trees have finite number of branching levels. The perturbed Robin bound-
ary condition )�u" + "�iki,mu" = 0 is given on the ith branching layer; {�i} are real
parameters. The asymptotic analysis of this problem is made as " → 0, i.e., when the
number of the thin trees infinitely increases and their thickness vanishes. In particu-
lar, the Hausdorff convergence of the spectrum to the spectrum of the corresponding
nonstandard homogenized spectral problem is proved, the leading terms of asymp-
totics are constructed, and the corresponding asymptotic estimates are justified for
the eigenvalues and eigenfunctions.
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1 INTRODUCTION

It is an interesting problem to study the behaviour of eigenvalues and eigenfunctions of spectral problems in perturbed domains,
since eigenvalues are among the most successful tools of applied mathematics, e.g, in quantum mechanics, vibration analy-
sis, magnetohydrodynamics, control theory and many other fields (see, e.g.,1,2,3). In addition, different unexpected phenomena
appear in the asymptotic behaviour of the spectrum.
In this article, we begin to study spectral problems in thick junctions of a new type, namely thick junctions with the branched

structure or thick fractal junctions. Such a thick junction is a union of some domain, which is called the junction’s body, and
a large number of thin trees situated "-periodically along some manifold on the boundary of the junction’s body. The trees has
finite number of branching levels. The small parameter " characterizes the distance between neighboring thin branches and also
their thickness. To simplify calculations, here we consider the case of a 2-D thick fractal junction (see Fig 1 ). For the first time
such domains were considered in the author’s paper4, where the asymptotic behavior of the solution to a semi-linear parabolic
problem was studied.
Various constructions of thick junction type are successfully used in nanotechnologies, microtechnique, modern engineering

constructions (microstrip radiator, efficient sensors (inertial, biological, chemical), micro-fractal constructions: fractal antennas,
fractal transistors, fractal heat radiators and so on). Many biological systems have such structures, e.g., root systems, nervous
systems, intestine linings. A fairly complete review on this topic is presented in the monograph5, where different asymptotic
methods and approaches developed intensively during the last two decades are discussed.
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In the recent article6, different applications of tree structures were shown and what mathematical issues related to trees are of
interest in different fields. In the present paper, the influence of a thick tree structure on the asymptotic behaviour of the spectrum
will be studied as the number of attached thin trees increases infinitely and their thickness vanishes.
The paper is organized as follows. After the statement of the problem in Sec. 2, the leading terms of asymptotic expansions for

the eigenfunctions are formally constructed in Sec. 3. The asymptotics consists of the outer expansions both in the junction’s body
and in each thin branches as well as the inner expansions in a neighborhood both of the joint zone and each branching levels. Then,
using the method of matched asymptotic expansions7, the corresponding non-standard homogenized spectral problem is derived
in subsection 3.4 and its spectrum is determined in Sec. 4 (the most remarkable thing in the spectrum structure is the presence of
gaps). Asymptotic approximations for the eigenfunctions are constructed in Sec. 5. Section 6 deals with the justification of the
asymptotics. For this we use a special approach and prove the Hausdorff convergence of the spectrum and asymptotic estimates
both for the eigenvalues and eigenfunctions. The central place in this approach is the construction of a special multi-sheeted
extension operator for the eigenfunctions (see Th.2). The main results are formulated in § 6.1. In Conclusion 7 the obtained
results are analyzed and research perspectives are considered. The results were reported at the conference8.

2 STATEMENT OF THE PROBLEM

LetΩ0 be a bounded domain inℝ2 with the Lipschitz boundary )Ω0 andΩ0 ⊂ {x ∶= (x1, x2) ∈ ℝ2 ∶ x2 > 0}. Let )Ω0 contain
the segment I0 = {x∶ x1 ∈ [0, a], x2 = 0}.We assume that there exists a positive number �0 such that

Ω0 ∩ {x∶ 0 < x2 < �0} = {x∶ x1 ∈ (0, a), x2 ∈ (0, �0)}.

Let a, l1, l2, l3 be positive numbers, ℎ0, ℎ1,1, ℎ1,2, ℎ2,1, ℎ2,2, ℎ2,3, ℎ2,4 be fixed numbers from the interval (0, 1) and

ℎ1,1 + ℎ1,2 < ℎ0, ℎ2,1 + ℎ2,2 < ℎ1,1, ℎ2,3 + ℎ2,4 < ℎ1,2.

Let us also introduce a small parameter " = a
N
, whereN is a large positive integer.

FIGURE 1 Thick junction Ω" with the branched structure

A model thick fractal junction Ω" (Fig. 1 ) consists of the junction’s body Ω0,

• a large number of the thin rods

G(0)j (") =
{

x∶
|

|

|

|

x1 − "(j +
1
2
)
|

|

|

|

<
"ℎ0
2
, x2 ∈ (−l1, 0]

}

, j ∈ {0, 1,… , N − 1},
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from the zero layer G(0)" ∶=
⋃N−1
j=0 G

(0)
j ("),

• a large number of the thin rods

G(1,m)j (") =
{

x∶ |

|

x1 − "(j + b1,m)|| <
"ℎ1,m
2

, x2 ∈
(

− (l2 + l1),−l1
]

}

, j ∈ {0, 1,… , N − 1},

from the first branching layer consisting of two classes G(1,m)" ∶=
⋃N−1
j=0 G

(1,m)
j ("), m ∈ {1, 2}, where

b1,1 =
1 − ℎ0 + ℎ1,1

2
, b1,2 =

1 + ℎ0 − ℎ1,2
2

, (1)

• and a large number of the thin rods

G(2,m)j (") =
{

x∶ |

|

x1 − "(j + b2,m)|| <
"ℎ2,m
2

, x2 ∈
(

− (l3 + l2 + l1),−(l2 + l1)
]

}

, j ∈ {0, 1,… , N − 1},

from the second branching layer consisting of four classes

G(2,m)" ∶=
⋃N−1

j=0
G(2,m)j ("), m ∈ {1, 2, 3, 4},

where

b2,1 =
1 − ℎ0 + ℎ2,1

2
, b2,2 =

1 − ℎ0 + 2ℎ1,1 − ℎ2,2
2

, b2,3 =
1 + ℎ0 − 2ℎ1,2 + ℎ2,3

2
, b2,4 =

1 + ℎ0 − ℎ2,4
2

. (2)

Thus, Ω" = Ω0
⋃

G(0)"
⋃

G(1)"
⋃

G(2)" , where

G(1)" =
⋃ 2

m=1
G(1,m)" , G(2)" =

⋃ 4

m=1
G(2,m)" .

The small parameter " characterizes the distance between neighboring thin branches and also their thickness. Precisely, each
branch (rod) G(i,m)j (") has small cross-section of size (") and constant height. In addition, at fixed j ∈ {0, 1,… , N − 1} the
branches G(0)j ("), {G

(1,m)
j (")}2m=1, {G

(2,m)
j (")}4m=1 form the tree with two branching levels at x2 = −l1 and x2 = −l1 − l2. These

trees are "-periodically distributed along the segment I0.
In Ω" we consider the following spectral problem:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

−Δxu" = �" u" in Ω",

−)�u" = "�i ki,m u" on Υ(i,m)" , i = 0, 1, 2,

)px1u
"
|x1=0 = )px1u

"
|x1=a, x2 ∈ [0, �0], p = 0, 1,

u" = 0 on Γ1,

)�u" = 0 on )Ω" ⧵ (Υ" ∪ Γ0 ∪ Γ1)

[u"]
|

|

|

x2=−
∑i
n=0 ln

=
[

)x2u
"]
|

|

|

x2=−
∑i
n=0 ln

= 0 on Q(i)
" , i = 0, 1, 2,

(3)

where )� is the outward normal derivative; the brackets in the last line denote the jump of the enclosed quantities; Υ(i,m)" is the
union of vertical boundaries of the thin rods G(i,m)" ,

Q(i)
" = G(i)" ∩

{

x ∈ ℝ2 ∶ x2 = −
i

∑

n=0
ln
}

, l0 = 0, i ∈ {0, 1, 2};

parameters {�i}2i=0 are greater or equal to 1; the constants {ki,m} are positive (k0,0 =∶ k0);

Γ0 ∶=
{

x ∶ x1 = 0, x2 ∈ [0, �0]
}
⋃

{

x ∶ x1 = a, x2 ∈ [0, �0]
}

,

Γ1 is a curve on )Ω0 ⧵ Γ0 and its length lΓ1 > 0,

Υ" = Υ(0)"
⋃

(

Υ(1,1)" ∪ Υ(1,2)"

)
⋃

(

Υ(2,1)" ∪… ∪ Υ(2,4)"

)

.

Remark 1. Hereafter we use the following shortening:

{x2 = −
∑i

n=0
ln} ∶= {x ∈ ℝ2 ∶ x2 = −

∑i

n=0
ln};
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also if the index i = 0, then the index m is absent and notation G(0,m)" means G(0)" and Υ(0,m)" =∶ Υ(0)" .

In the space

" ∶=
{

u ∈ H1(Ω")∶ u(0, x2) = u(a, x2), x2 ∈ [0, �0]; u|Γ1 = 0
}

,

where the restriction of a function to a part of the boundary is understood in the sense of the trace in the Sobolev space, we
introduce a new norm ‖ ⋅ ‖" generated by the scalar product

⟨u, v⟩" = ∫
Ω"

∇u ⋅ ∇v dx + "�0k0 ∫
Υ(0)"

u v dx2 +
2
∑

i=1
"�i

i+
⌊

i+2
2 ⌋

∑

m=1
ki,m ∫

Υ(i,m)"

u v dx2,

(here ⌊t⌋ is the integer part of a real number t), which is uniformly equivalent to the standard norm, i.e., there exist constants
C1 > 0, C2 > 0 and "0 such that for all " ∈ (0, "0) and v ∈ ":

C1‖v‖H1(Ω") ≤ ‖v‖" ≤ C2‖v‖H1(Ω"). (4)

The proof is similar to the proof of9, Lemma 1.

Definition 1. A number �" is called an eigenvalue of the problem (3) if there exists a function u" ∈ " ⧵ {0} such that

⟨u", '⟩" = �"
(

u", ')L2(Ω") ∀' ∈ ". (5)

The function u" is called an eigenfunction that corresponds to �".

The spectral problem (3) is equivalent to the spectral problem

A"u
" = 1

�"
u" in ",

where the operator A" ∶ " ←→ " is defined by the equality

⟨A"u, v⟩" =
(

u, v)L2(Ω") ∀ u, v ∈ ". (6)

It is easy to verify that the operator A" is self-adjoint, positive, and compact.
Thus, for each fixed value of " all eigenvalues of problem (3) can be ordered as follows

0 < �"1 < �
"
2 ≤… ≤ �"n ≤⋯→ +∞ as n→ +∞, (7)

where each eigenvalue is counted as many times as its multiplicity. The corresponding eigenfunctions {u"n}n∈ℕ, which belong to
", are orthonormalized as follows

(u"n, u
"
m)L2(Ω") = �n,m, {n, m} ∈ ℕ. (8)

The aim is to study the asymptotic behaviour of {�"n}n∈ℕ and {u"n}n∈ℕ as " → 0, i.e., when the number of attached thin trees
increases infinitely and their thickness vanishes.

Remark 2. It is clear that the thin rods from the zero layer G(0)" fill out the rectangle D0 = (0, a) × (−l1, 0) in the limit as
" tends to zero; thin rods from each of two classes G(1,1)" and G(1,2)" of the first branching layer fill out the rectangle D1 =
(0, a) ×

(

− l2 − l1,−l1
)

; and thin rods from each of four classes G(2,m)" , m ∈ {1, 2, 3, 4}, of the second branching layer fill out
the rectangle D2 = (0, a) ×

(

− l3 − l2 − l1,−l2 − l1
)

in the limit.
Of course, one can consider thick fractal junctions, in which thin rods from different classes have variable thickness and

different lengths, i.e., the length of the rods can differ both depending on the class from the same branching layer and in the
class itself (see, e.g.,5, where boundary-values problems were studied in thick multi-level junctions with different structures).



T.A. Mel’nyk 5

3 FORMAL ASYMPTOTIC EXPANSIONS

3.1 Estimates for eigenvalues
By virtue of the minimax principle for eigenvalues and the right inequality in (4), we deduce

�"n = min
E∈En

max
v∈E, v≠0

‖v‖2"
‖v‖2L2(Ω")

≤ C22 minE∈En
max

v∈E, v≠0

(

∫Ω" |∇v|
2 dx

∫Ω" v
2 dx

+ 1

)

≤ C22 max
0≠v∈n

∫Ω" |∇v|
2 dx

∫Ω" v
2 dx

+ C22 ≤ C22�n max0≠v∈n

∫D0
v2 dx

∫G(0)" v
2 dx

+ C22 ≤ C1(n). (9)

Here n is the n-dimensional subspace of",which is spanned on functions {�̂k}nk=1 such that �̂k = 0 inΩ" ⧵G
(0)
" and �̂k = �k

in G(0)" , where {�k}
n
k=1 are eigenfunctions of the Laplace operator in D0 with the Neumann conditions on the vertical sides of

D0 and the Dirichlet ones on the other parts.
Taking into account (8) and the left inequality in (4), we obtain from the integral identity (5) the lower estimates for the

eigenvalues:
�"n = �

"
n‖u

"
n‖
2
L2(Ω")

= ‖u"n‖
2
" ≥ C21‖u

"
n‖
2
H1(Ω")

≥ C21‖u
"
n‖
2
L2(Ω")

= C21 . (10)
Based on estimates (9) and (10), we seek the leading terms of the asymptotics for �"n in the form (hereafter the index n is

omitted)
�" ≈ �0 + "�1 +… (11)

3.2 Outer expansions
Asymptotic ansatzes for u"n (hereafter the index n is omitted) are as follows:

u"(x) ≈ v+0 (x) + "v
+
1 (x) +… in the junction’s body Ω0, (12)

and in each thin rod G(i,m)j (")

u"(x) ≈ v(i,m)0 (x) + "v(i,m)1 (x, x1
"
− j) + "2v(i,m)2 (x, x1

"
− j) +… (13)

Here i ∈ {0, 1, 2}; if i = 0, then m = 0; and m ∈ {1,… , i + ⌊

i+2
2
⌋} in the other cases; j ∈ {0,… , N − 1}. The asymptotic

series (12) and (13) are usually called outer expansions.
Substituting (12) and (11) in the equation of the problem (3), in the boundary conditions on )Ω0 and collecting coefficients

at "0, we get
⎧

⎪

⎪

⎨

⎪

⎪

⎩

−Δx v+0 (x) = �0 v+0 (x), x ∈ Ω0
)px1v

+
0 |x1=0 = )px1v

+
0 |x1=a, x2 ∈ [0, �0], p = 0, 1

v+0 = 0, x ∈ Γ1
)�v+0 = 0, x ∈ )Ω0 ⧵ (Γ0 ∪ Γ1 ∪ I0).

(14)

Now let us find limit relations in each rectangle Di, i ∈ {0, 1, 2} (see Remark 2). For this we fix indexes i, m and j. Using
Taylor series with respect to the variable x1 at the point x1 = "(j + bi,m) (points {bi,m} are defined in (1) and (2), b0,m = b0 =

1
2
)

and passing to the "fast" variable �1 = "−1x1, we rewrite (13) in the form

u" ≈ v(i,m)0

(

"(j + bi,m), x2
)

+ "V (i,m,j)
1 (�1, x2) + "V

(i,m,j)
2 (�1, x2) +… , (15)

where

V (i,m,j)
1 = v(i,m)1

(

"(j + bi,m), x2, �1 − j
)

+ (�1 − j − bi,m)
)v(i,m)0

)x1

(

"(j + bi,m), x2
)

,

V (i,m,j)
2 = v(i,m)2

(

"(j + bi,m), x2, �1 − j
)

+ (�1 − j − bi,m)
)v(i,m)1

)x1

(

"(j + bi,m), x2, �1 − j
)

+
(�1 − j − bi,m)2

2
)2v(i,m)0

)x21

(

"(j + bi,m), x2
)

.
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Substituting (15) into (3) instead of u" and taking into account the view of the Laplace operator in the variables �1 and x2
(Δ�1,x2 = "−2 )

2

)�21
+ )2

)x22
), the collection of coefficients of the same power of " gives one dimensional boundary value problems

with respect to �1 ∶
)2�1�1V

(i,m,j)
1 (�1, x2) = 0, �1 ∈ Iℎi,m(bi,m); )�1V

(i,m,j)
1 (bi,m ±

ℎi,m
2
, x2) = 0, (16)

where )�1 =
)
)�1
, )2�1�1 =

)2

)�21
and Iℎi,m(bi,m) =

(

bi,m −
ℎi,m
2
, bi,m +

ℎi,m
2

)

.

From (16) it follows that V (i,m,j)
1 is independent of �1. Since we look only for the first terms of the asymptotics, we can regard

that it is zero. Thus,
v(i,m)1

(

"(j + bi,m), x2, �1 − j
)

= −
(

�1 − j − bi,m
)

)x1v
(i,m)
0

(

"(j + bi,m), x2
)

. (17)
The problem for the function V (i,m,j)

2 is as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−)2�1�1V
(i,m,j)
2 =

(

)2x2x2v
(i,m)
0 (x) + �0v

(i,m)
0 (x)

)

|

|

|x1="(j+bi,m)
, �1 ∈ Iℎi,m(bi,m),

)�1V
(i,m,j)
2

(

�1, x2
)

|

|

|�1=bi,m±
ℎi,m
2

= ∓��i,1ki,mv
(i,m)
0 ("(j + bi,m), x2).

(18)

The solvability condition for (18) is given by the differential equation

−ℎi,m )2x2x2v
(i,m)
0 (x) + 2��i,1ki,mv

(i,m)
0 (x) = �0ℎi,m v

(i,m)
0 (x) (19)

with respect to variables x2 and at the fixed value of x1 = "(j + bi,m). Here ��i,1 is Kronecker’s symbols (recall that �i ≥ 1).
Since the points {x1 = "(j+bi,m)∶ j = 0,… , N−1} form the "-net in the interval (0, a),we can extend all equations obtained

above onN segments to the rectangle Di as "→ 0. Thus, we get one ordinary differential equation

−ℎ0 )2x2x2v
(0)
0 (x) + 2��0,1k0v

(0)
0 (x) = �0ℎ0v

(0)
0 (x) in D0; (20)

two differential equations (m ∈ {1, 2})

−ℎ1,m )2x2x2v
(1,m)
0 (x) + 2��1,1k1,mv

(1,m)
0 (x) = �0ℎ1,mv

(1,m)
0 (x) in D1; (21)

and four differential equations (m ∈ {1, 2, 3, 4})

−ℎ2,m )2x2x2v
(2,m)
0 (x) + 2��2,1k2,mv

(2,m)
0 (x) = �0ℎ2,mv

(2,m)
0 (x) in D2. (22)

Due to the Neumann condition on the bases

Q(3)
" = Ω" ∩ {x ∶ x2 = −(l1 + l2 + l3)},

we obtain the following boundary conditions for functions {v(2,m)0 } ∶

)x2v
(2,m)
0

(

x1,−(l1 + l2 + l3)
)

= 0, m = 1, 2, 3, 4. (23)

3.3 Construction of inner expansions
To find transmission conditions in the joint zone I0 and in each branching zones I1 = {x∶ x1 ∈ (0, a), x2 = −l1} and
I2 = {x∶ x1 ∈ (0, a), x2 = −(l1 + l2)}, we use the method of matched asymptotic expansions for the outer expansions (12),
(13) and inner ones in neighborhoods of I0, I1 and I2.

3.3.1 Inner expansion in a neighborhood of I0
In a neighborhood of the joint zone I0 we introduce the "rapid" coordinates � = (�1, �2), where �1 = "−1x1 and �2 = "−1x2.
Passing to " = 0, we see that the rod G(0)0 (") transforms into the semi-infinite strip

Π−ℎ0 =
(1
2
−
ℎ0
2
, 1
2
+
ℎ0
2
)

× (−∞, 0];

the domain Ω0 transforms into the first quadrant {� ∶ �1 > 0, �2 > 0}. Taking into account the periodic structure of Ω" in a
neighborhood of I0, we take the following cell of periodicity Π0 = Π−ℎ0 ∪ Π

+ (Fig. 2 ), where junction-layer problems will be
considered; here Π+ = (0, 1) × (0,+∞). Obviously, their solutions must be 1-periodic in �1, i.e.,

)p�1Z ⏐�1=0= )
p
�1
Z ⏐�1=1 on )Π+ ∩ {� ∶ �2 > 0}, p = 0, 1.
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FIGURE 2 Domain Π0

We propose the following ansatz for the inner asymptotic expansion in a neighborhood of
I0 ∩ Ω" ∶

u" ≈ v+0 (x1, 0) + "
(

Z (0)
1

( x
"

)

)x1v
+
0 (x1, 0) +Z

(0)
2

( x
"

)

)x2v
+
0 (x1, 0)

)

+… (24)

Substituting (24) in the differential equations of problem (3) and in the corresponding bound-
ary conditions, taking into account that the Laplace operator takes the following form "−2Δ� in
the coordinates � and collecting the coefficients of the same power of ", we arrive the following
junction-layer problems for the coefficients Z (0)

1 and Z (0)
2 :

−Δ� Z (0)
p (�) = 0, � ∈ Π0,

)�2Z
(0)
p (�1, 0) = 0, �1 ∈ (0, 1) ⧵

( 1
2
− ℎ0

2
, 1
2
− ℎ0

2

)

,
)�1Z

(0)
p (�) = −�p,1, � ∈ )Π−ℎ0 ∩ {� ∶ �2 < 0}, p = 1, 2.

(25)

The existence and themain asymptotic relations for solutions to problems (25) can be obtained
from general results about the asymptotic behavior of solutions to elliptic problems in domains
with different exits to infinity10,11. However, in some cases one can define more exactly the
asymptotic relations and detect other properties of solutions (see9, Lemma 4.1 and Corollary 4.1,12).
From those results it follows the proposition.

Proposition 1. There exist unique solutions Z (0)
1 , Z

(0)
2 ∈ H1

loc,�2
(Π0) to problems (25) respectively, which have the following

differentiable asymptotics

Z (0)
1 (�) =

⎧

⎪

⎨

⎪

⎩

(exp(−2��2)), �2 → +∞,
(

− �1 +
1
2

)

+ (exp(�ℎ−10 �2)), �2 → −∞,
(26)

Z (0)
2 (�) =

⎧

⎪

⎨

⎪

⎩

�2 + (exp(−2��2)), �2 → +∞,

�2
ℎ0
+ C2 + (exp(�ℎ−10 �2)), �2 → −∞,

(27)

Moreover, Z (0)
1 is odd in �1 and Z

(0)
2 is even in �1 with respect to

1
2
.

Recall that a functionZ belongs to the Sobolev spaceH1
loc,�2

(Π0) if for everyR > 0 the functionZ ∈ H1(Π0∩{� ∶ |�2| < R}).

3.3.2 Inner expansion in a neighborhood of the first branching zone I1

FIGURE 3 Domain Π1

In a neighborhood of I1 we introduce the "rapid" coordinates � = (�1, �2),where �1 = "−1x1 and
�2 = "−1(x2+ l1). Passing to " = 0 , we see that the rod G

(0)
0 (") transforms into the semi-infinite

strip

Π+ℎ0 =
(1
2
−
ℎ0
2
, 1
2
+
ℎ0
2

)

× (0,+∞)

and rods G(1,m)0 ("), m ∈ {1, 2}, transform into the semi-infinite strips

Π−1,m =
(

b1,m −
ℎ1,m
2

, b1,m +
ℎ1,m
2

)

× (−∞, 0], m ∈ {1, 2},

respectively. Considering the periodic structure of Ω" in a neighborhood of I1, we take the
following cell of periodicity Π1 = Π+ℎ0 ∪Π

−
1,1 ∪Π

−
1,2 (Fig. 3 ), where branch-layer problems will

be considered.
The ansatz for the inner asymptotic expansion in a neighborhood of I1 ∩

(

G(0)" ∪ G(1)"
)

is as
follows:

u"(x) ≈ v(0)0 (x1,−l1) + "
(

Z (1)
1

( x1
"
, x2+l1

"

)

)x1v
(0)
0 (x1,−l1)

+
{

�1(x1) Ξ
(1)
1

( x1
"
, x2+l1

"

)

+ (1 − �1(x1)) Ξ
(1)
2

( x1
"
, x2+l1

"

)

}

)x2v
(0)
0 (x1,−l1)

)

+… (28)
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Substituting (28) in the corresponding differential equation of the problem (3) and boundary conditions, we arrive branch-layer
problems for the functions Z (1)

1 , Ξ
(1)
1 , Ξ

(1)
2 . So, the functions Ξ

(1)
1 and Ξ(1)2 are solution to the following homogeneous problem

{

−Δ� Ξ(�) = 0, � ∈ Π1,
)�Ξ(�) = 0, � ∈ Π1.

(29)

Again using approach mentioned above (see also13), we conclude.

Proposition 2. There exist two solutions Ξ1, Ξ2 ∈ H1
loc,�2

(Π1) of the problem (29), which have the following differentiable
asymptotics:

Ξ1(�) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�2 + 
(

exp(− ��2
ℎ0
)
)

, �2 → +∞, � ∈ Π+ℎ0 ,
ℎ0
ℎ1,1

�2 + C
(1)
1 + 

(

exp( ��2
ℎ1,1
)
)

, �2 → −∞, � ∈ Π−1,1,

C (1)2 + 
(

exp( ��2
ℎ1,2
)
)

, �2 → −∞, � ∈ Π−1,2,

(30)

Ξ2(�) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�2 + 
(

exp(− ��2
ℎ0
)
)

, �2 → +∞, � ∈ Π+ℎ0 ,

C (2)1 + 
(

exp( ��2
ℎ1,1
)
)

, �2 → −∞, � ∈ Π−1,1,
ℎ0
ℎ1,2

�2 + C
(2)
2 + 

(

exp( ��2
ℎ1,2
)
)

, �2 → −∞, � ∈ Π−1,2,

(31)

where C (1)1 , C
(1)
2 , C

(2)
1 , C

(2)
2 are some fixed constants.

Any another solution to the homogeneous problem (29), which has polynomial grow at infinity, can be presented as a linear
combination c0 + c1Ξ1 + c2Ξ2.

The function Z (1)
1 is a solution to the following problem:

−Δ� Z(�) = 0, � ∈ Π1,
)�1Z(�) = −1, � ∈ )∥Π1,

)�2Z(�1, 0) = 0, (�1, 0) ∈ )Π1 ⧵ )∥Π1,
(32)

where )∥Π1 is the union of the vertical sides of )Π1.

Proposition 3. There exists the unique solution Z ∈ H1
loc,�2

(Π0) to problems (32), which has the following differentiable
asymptotics:

Z(�) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−�1 +
1
2
+ 

(

exp(− ��2
ℎ0
)
)

, �2 → +∞, � ∈ Π+ℎ0 ,

−�1 + b1,1 + C1 + 
(

exp( ��2
ℎ1,1
)
)

, �2 → −∞, � ∈ Π−1,1,

−�1 + b1,2 + C2 + 
(

exp( ��2
ℎ1,2
)
)

, �2 → −∞, � ∈ Π−1,2,

(33)

where C1, C2 are some fixed constants.

Thus, we set Ξ(1)1 = Ξ1, Ξ
(1)
2 = Ξ2 and Z

(1)
1 = Z.

3.3.3 Inner expansion in a neighborhood of the second branching zone I2
In a neighborhood of I2 we introduce the "rapid" coordinates � = (�1, �2), where �1 = "−1x1 and �2 = "−1(x2 + l1 + l2). Passing
to " = 0, we see that the rods G(1,m)0 ("), m ∈ {1, 2}, transform into the semi-infinite strips

Π+1,m =
(

b1,m −
ℎ1,m
2

, b1,m +
ℎ1,m
2

)

× (0,+∞), m ∈ {1, 2},

respectively, and the rods G(2,m)0 ("), m ∈ {1, 2, 3, 4}, transform into the semi-infinite strips

Π−2,m =
(

b2,m −
ℎ2,m
2

, b2,m +
ℎ2,m
2

)

× (−∞, 0], m ∈ {1, 2, 3, 4},

respectively.
In view of the periodic structure of Ω" in a neighborhood of I2, we take the following two cells of periodicity

Π(1)2 = Π+1,1 ∪ Π
−
2,1 ∪ Π

−
2,2 and Π(2)2 = Π+1,2 ∪ Π

−
2,3 ∪ Π

−
2,4,
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where branch-layer problems will be considered.
Now we propose the following two inner asymptotic expansions in a neighborhood of I2 ∩

(

G(1)" ∪G(2)"
)

, namely the first one
is as follows:

u"(x) ≈ v(1,1)0 (x1,−l1 − l2) + "
(

Z (2,1)
1

( x1
"
, x2+l1+l2

"

)

)x1v
(1,1)
0 (x1,−l1 − l2)

+
{

�2,1(x1) Ξ
(2,1)
1

( x1
"
, x2+l1+l2

"

)

+ (1 − �2,1(x1)) Ξ
(2,1)
2

( x1
"
, x2+l1+l2

"

)

}

)x2v
(1,1)
0 (x1,−l1 − l2)

)

+… (34)

in a neighborhood of I2 ∩
(

G(1,1)"
⋃

(
⋃2
m=1G

(2,m)
"

)

)

, and the second one

u"(x) ≈ v(1,2)0 (x1,−l1 − l2) + "
(

Z (2,2)
1

( x1
"
, x2+l1+l2

"

)

)x1v
(1,2)
0 (x1,−l1 − l2)

+
{

�2,2(x1) Ξ
(2,2)
1

( x1
"
, x2+l1+l2

"

)

+ (1 − �2,2(x1)) Ξ
(2,2)
2

( x1
"
, x2+l1+l2

"

)

}

)x2v
(1,2)
0 (x1,−l1 − l2)

)

+… (35)

in a neighborhood of I2 ∩
(

G(1,2)"
⋃

(
⋃4
m=3G

(2,m)
"

)

)

.

Coefficients Z (2,1)
1 (�), Ξ(2,1)1 (�), Ξ(2,1)2 (�)

(

� ∈ Π(1)2
)

in (34) and coefficients Z (2,2)
1 (�), Ξ(2,2)1 (�), Ξ(2,2)2 (�)

(

� ∈ Π(2)2
)

in (35) are
solutions to branch-layer problems, which 1-periodic extended along the coordinate axis O�1 ; the functions �2,1 and �2,2 will be
defined from matching conditions.
Namely,Z (2,1)

1 andZ (2,2)
1 are solutions to the problem (32) in Π(1)2 and Π(2)2 respectively. Applying results of Proposition 3, we

can state that there exist unique solutions with the following differentiable asymptotics:

Z (2,1)
1 (�) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−�1 + b1,1 + 
(

exp(− ��2
ℎ1,1
)
)

, �2 → +∞, � ∈ Π+1,1,

−�1 + b2,1 + C
(3)
1 + 

(

exp( ��2
ℎ2,1
)
)

, �2 → −∞, � ∈ Π−2,1,

−�1 + b2,2 + C
(3)
2 + 

(

exp( ��2
ℎ2,2
)
)

, �2 → −∞, � ∈ Π−2,2,

(36)

Z (2,2)
1 (�) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−�1 + b1,2 + 
(

exp(− ��2
ℎ1,2
)
)

, �2 → +∞, � ∈ Π+1,2,

−�1 + b2,3 + C
(4)
1 + 

(

exp( ��2
ℎ2,3
)
)

, �2 → −∞, � ∈ Π−2,3,

−�1 + b2,4 + C
(4)
2 + 

(

exp( ��2
ℎ2,4
)
)

, �2 → −∞, � ∈ Π−2,4.

(37)

Functions Ξ(2,1)1 ,Ξ(2,1)2 and Ξ(2,2)1 ,Ξ(2,2)2 are solutions to the problem (29) in Π(1)2 and Π(2)2 respectively. From Proposition 2 it
follows that they have the corresponding differentiable asymptotics (30) and (31).

3.4 Homogenized problem
To complete the formal asymptotic constructions and obtain transmission conditions for the coefficients of the outer asymptotic
expansions

v+0 , v
(0)
0 , v

(1,1)
0 , v(1,2)0 , v(2,1)0 , v(2,2)0 , v(2,3)0 , v(2,4)0 ,

we should match the corresponding outer asymptotic expansions with the inner ones, namely, the asymptotics of the leading
terms of outer expansions (12) and (13) as x2 → ±

∑m
p=0 lp, m ∈ {0, 1, 2}, have to coincide with the corresponding asymptotics

of the inner expansions (24), (28), (34) and (35) as �2 → ±∞, respectively.
By making similar steps as in4, Sec. 4, we come to the following transmission conditions:

v+0 = v
(0)
0 , )x2v

+
0 = ℎ0 )x2v

(0)
0 on I0; (38)

v(0)0 = v(1,1)0 = v(1,1)0 , ℎ0 )x2v
(0)
0 = ℎ1,1 )x2v

(1,1)
0 + ℎ1,2 )x2v

(1,2)
0 on I1; (39)

v(1,1)0 = v(2,1)0 = v(2,2)0 , ℎ1,1 )x2v
(1,1)
0 = ℎ2,1 )x2v

(2,1)
0 + ℎ2,2 )x2v

(2,2)
0 on I2; (40)
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v(1,2)0 = v(2,3)0 = v(2,4)0 , ℎ1,2 )x2v
(1,2)
0 = ℎ2,3 )x2v

(2,3)
0 + ℎ2,4)x2v

(2,4)
0 on I2. (41)

Relations (14), (20)-(23), (38)-(41) form homogenized spectral problem for problem (3) and an eigenfunction of this problem
is a multi-sheeted function

v(2,1)0
↗

v(1,1)0
↗ ↘

v(2,2)0
v+0 ←→ v(0)0

v(2,3)0
↘ ↗

v(1,2)0
↘

v(2,4)0
I0 I1 I2

Ω0 D0 D1 D2

In addition, functions �1 in (28), �2,1 in (34), and �2,2 in (35) are defined as follows:

�1(x1) =
ℎ1,1 )x2v

(1,1)
0 (x1,−l1)

ℎ1,1 )x2v
(1,1)
0 (x1,−l1) + ℎ1,2 )x2v

(1,2)
0 (x1,−l1)

, (42)

�2,1(x1) =
ℎ2,1 )x2v

(2,1)
0 (x1,−(l1 + l2))

ℎ2,1 )x2v
(2,1)
0 (x1,−(l1 + l2)) + ℎ2,2 )x2v

(2,2)
0 (x1,−(l1 + l2))

, (43)

�2,2(x1) =
ℎ2,3 )x2v

(2,3)
0 (x1,−(l1 + l2))

ℎ2,3 )x2v
(2,3)
0 (x1,−(l1 + l2)) + ℎ2,4 )x2v

(2,4)
0 (x1,−(l1 + l2))

. (44)

for x1 ∈ (0, a).

4 THE SPECTRUM STRUCTURE OF THE HOMOGENIZED PROBLEM

In order to avoid technical and huge calculations, we will consider the case when i ∈ {0, 1} and �i > 1, while making remarks
and comments for the other cases.
Let us first introduce an anisotropic Sobolev space H0 of multi-sheeted functions. A multi-sheeted function

' ∶=
(

'+, '(0),
{

'(1,m)
}2
m=1

)

=

⎧

⎪

⎨

⎪

⎩

'+(x), x ∈ Ω0,
'(0)(x), x ∈ D0,
'(1,m)(x), x ∈ D1, m ∈ {1, 2},

(45)

belongs to H0 if
'+ ∈ H1

♯ (Ω0; Γ1) ∶= {v ∈ H
1(Ω0)∶ v(0, x2) = v(a, x2), x2 ∈ [0, �0]; v|Γ1 = 0},

'(0) ∈ L2(D0), {'(1,m)}2m=1 ⊂ L
2(D1), there exist weak derivatives )x2'

(0) ∈ L2(D0), {)x2'
(1,m)}2m=1 ⊂ L

2(D1), and

'+|I0 = '
(0)
|I0 , '(0)|I1 = '

(1,1)
|I1 = '

(1,2)
|I1 .

The space H0 is continuously and densely embedded in a Hilbert space V0 of multi-sheeted functions whose components
belong to L2-spaces, i.e., ' ∈ V0 if '+ ∈ L2(Ω0), '(0) ∈ L2(D0), {'(1,m)}2m=1 ⊂ L2(D1). Scalar products in these spaces are
defined as follows:

(', )V0 ∶= ('
+,  +)L2(Ω0) + ℎ0('

(0),  (0))L2(D0) +
2
∑

m=1
ℎ1,m('(1,m),  (1,m))L2(D1), (46)
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(', )H0
∶= (∇'+,∇ +)L2(Ω0) + ℎ0()x2'

(0), )x2 
(0))L2(D0) +

2
∑

m=1
ℎ1,m()x2'

(1,m), )x2 
(1,m))L2(D1). (47)

If i ∈ {0, 1, 2}, then the corresponding summands appear in these scalar products, and if some �i0 = 1, then terms

2

i0+
⌊

i0+2
2

⌋

∑

m=1
ki0,m('

(i0,m),  (i0,m))L2(Di0
)

appear in (⋅, ⋅)H0
.

Definition 2. A number � is called an eigenvalue of the homogenized spectral problem if there exists a function v ∈ H0 ⧵ {0}
such that

(v, )H0
= � (v, )V0 ∀ ∈ H0. (48)

The function v is called an eigenfunction that corresponds to �.

Define the operator A0 ∶ H0 ←→ H0 by the equality

(A0', )H0
= (', )V0 ∀ ', ∈ H0. (49)

Then the homogenized spectral problem is equivalent to the spectral problem

A0v = �−1 v in H0.

It is easy to verify that A0 is self-adjoint, positive, continuous, but non-compact and the spectrum �(A0) belongs to (c0,+∞),
where c0 > 0.

4.1 Reducing to a spectral problem for an operator-function
Solving ordinary differential equations (20), (21), and taking into account the Neumann condition at x2 = −l1 − l2, we get

v(0)0 (x) = B
(0) cos

(√

�0 (x2 + l1)
)

+ C (0) sin
(√

�0 (x2 + l1)
)

, (50)

v(1,m)0 (x) = B1,m

cos
(
√

�0 l1
)

cos
(
√

�0 l2
) cos

(√

�0 (x2 + l1 + l2)
)

, m = 1, 2. (51)

Gradually substituting representations (50) and (51) in the transmission conditions (38) and (39), we find constants
B(0), C (0), B1,1, B1,2 and arrive at the relation

)x2v
+
0 (x1, 0) = −ℎ0

√

�0
sin

√

�0l1 cos
√

�0l2 + � cos
√

�0l1 sin
√

�0l2
cos

√

�0l1 cos
√

�0l2 − � sin
√

�0l1 sin
√

�0l2
v+0 (x1, 0) (52)

for any x1 ∈ (0, a). Here � =
ℎ1,1+ℎ1,2

ℎ0
< 1.

Relations (14) and (52) form the resulting spectral problem in the junction’s bodyΩ0 with the spectral parameter �0 occurring
both in the differential equation and in the boundary condition on I0.

Remark 3. In the case i ∈ {0, 1, 2} the condition on I0 is more complicated, namely,

)x2v
+
0 (x1, 0) = −'(

√

�)v+0 (x1, 0),

where

'(�) = �ℎ0
tan

(

� l1
)

+ � tan
(

� l2
)

+ ℎ2,1+…+ℎ2,4
ℎ0

tan
(

� l3
)

− ℎ2,1+ℎ2,2
ℎ1,1

tan
(

� l1
)

tan
(

� l2
)

tan
(

� l3
)

1 − � tan
(

� l1
)

tan
(

� l2
)

− ℎ2,1+ℎ2,2
ℎ1,1

tan
(

� l3
)

tan
(

� l2
)

− ℎ2,1+…+ℎ2,4
ℎ0

tan
(

� l1
)

tan
(

� l3
)

,

for the case ℎ2,1+ℎ2,2
ℎ1,1

= ℎ2,3+ℎ2,4
ℎ1,2

.

Remark 4. In the case i ∈ {0, 1} and �0 = 1, �1 > 1 the condition on I0 is as follows

)x2v
+
0 (x1, 0) = −g(�)v

+
0 (x1, 0),
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where

g(�) = ℎ0

√

�0 −
2k0
ℎ0
tan

(√

�0 −
2k0
ℎ0
l1
)

+ �
√

�0 tan
(

√

�0 l2
)

1 − � tan
(√

�0 −
2k0
ℎ0
l1
)

tan
(

√

�0 l2
)

.

Multiplying the differential equation in (14) with an arbitrary function  ∈ H1
♯ (Ω0; Γ1) and then integrating by parts over Ω0

with regards to (52), the resulting spectral problem is reduced to the spectral problem

L(�)v+0 = 0 in H1
♯ (Ω0; Γ1), � ∈ [c0,+∞),

for the following operator-function
L(�) ∶= � A1 + ℎ0

√

� f (
√

�) A2 − I, (53)
where � = ℎ1,1+ℎ1,2

ℎ0
, I is the identity operator inH1

♯ (Ω0; Γ1),

f (�) ∶=
sin�l1 cos�l2 + � cos�l1 sin�l2
cos�l1 cos�l2 − � sin�l1 sin�l2

, (54)

A1, A2 are self-adjoint, compact operators inH1
♯ (Ω0; Γ1) such that

(A1', )H1
♯ (Ω0;Γ1)

= ∫
Ω0

'(x)  (x) dx, (A2', )H1
♯ (Ω0;Γ1)

= ∫
I0

'(x1, 0)  (x1, 0) dx1 ∀', ∈ H1
♯ (Ω0; Γ1).

FIGURE 4 The graph of the function f for � = 1
2
, l1 = 2, l2 = 1

It is easy to verify that f ′(�)

f ′(�) =
(l1 + �l2)(cos2 �l1 cos2 �l2 + sin

2 �l1 cos2 �l2) + �(l2 + �l1)(sin
2 �l1 sin

2 �l2 + cos2 �l1 sin
2 �l2)

(cos�l1 cos�l2 − � sin�l1 sin�l2)2
> 0

for all � ∈ ℝ ⧵ {�∶ tan(�l1) tan(�l2) = �−1}. The graph of this function resembles the graph of the tangent (see Fig. 4 made
by Maple).
Theorems on existence and concentration of the spectrum for self-adjoint discontinuous operator functions like (53) and the

minimax principles for eigenvalues were proved in14. These results yield the following theorem.

Theorem 1. The spectrum of the operator-functionL contains normal eigenvalues and also the left accumulation points {pk}k∈ℕ
that are roots of the transcendental equation

tan
(√

� l1
)

tan
(√

� l2
)

=
ℎ0

ℎ1,1 + ℎ1,2
.

These points divide the eigenvalues into the sequences

0 < �(1)1 ≤… ≤ �(1)n ≤…→ p1 as n → +∞, (55)
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pk < �
(k+1)
1 ≤… ≤ �(k+1)n ≤…→ pk+1 as n → +∞. (56)

µ

0 

n 
(1)

p 
1

µn 
(2) µn 

(3)

p 
2

p 
3

FIGURE 5 The spectrum structure of the operator-function L

Recall that an eigenvalue is called normal if it has finite multiplicity and the corresponding eigenvectors have no Jordan chains.
In the cases considered in Remarks 3 and 4 the spectrum structure of the corresponding operator-function is the same.

5 ASYMPTOTIC APPROXIMATIONS FOR THE EIGENFUNCTIONS

Let �0 be an eigenvalue of the homogenized problem. Consider the corresponding multi-sheeted eigenfunction

v0(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

v+0 (x), x ∈ Ω0,

v(0)0 (x), x ∈ D0,

v(1,m)0 (x), x ∈ D1, m ∈ {1, 2},

from H0. With the help of v0, the junction-layer solutions Z (0)
1 and Z (0)

2 (see Proposition 1), the branch-layer solutions
{

Z (1)
1 ,Ξ

(1)
1 ,Ξ

(1)
2

}

(see Propositions 2, 3) in a neighborhood of the first branching zone I1 we construct the approximation function

R"(x) = v+0 (x) + "�0(x2)
(0)
+
( x
"
, x1

)

, x ∈ Ω0; (57)

R" = v
(0)
0 (x) + "

(

Y0(
x1
"
) )x1v

(0)
0 (x) + �0(x2)

(0)
−
( x
"
, x1

)

+ �1(x2) (1)( x1
"
, x2+l1

"
, x1

)

)

, x ∈ G(0)" ; (58)

R" = v
(1,m)
0 (x) + "

(

Y1,m(
x1
"
) )x1v

(1,m)
0 (x) + �1(x2)

(1)
1,m

( x1
"
, x2+l1

"
, x1

)

)

, x ∈ G(1,m)" , m ∈ {1, 2}; (59)

where �0 is a smooth cutoff function such that �0(x2) = 1 for |x2| ≤ �0∕2, and �0(x2) = 0 for |x2| ≥ �0 (�0 is sufficiently small
number); �1(x2) ∶= �0(x2 + l1);

 (0)
+
(

�, x1
)

=
2
∑

i=1

(

Z (0)
i (�) − �i,2 �2

)

)xiv
+
0 (x1, 0), � = x

"
,

where �i,2 is the Kronecker delta; Y0(�1) = −�1 +
1
2
+ ⌊�1⌋;

 (0)
− (�, x1

)

=
(

Z (0)
1 (�) − Y0(�1)

)

)x1v
+
0 (x1, 0) +

(

Z (0)
2 (�) −

�2
ℎ0

)

)x2v
+
0 (x1, 0), � = x

"
;

 (1)(�, x1
)

=
(

Z (1)
1 (�) − Y0(�1)

)

)x1v
(0)
0 (x1,−l1)

+
(

�1(x1)Ξ
(1)
1 (�) + (1 − �1(x1))(Ξ

(1)
2 (�) − �2)

)

)x2v
(0)
0 (x1,−l1), �1 =

x1
"
, �2 =

x2+l1
"
;

Y1,m(�1) = −�1 + b1,m + ⌊�1⌋, m ∈ {1, 2}, and

 (1)
1,m(�, x1

)

=
(

Z (1)
1 (�) − Y1,m(�1)

)

)x1v
(0)
0 (x1,−l1)

+
(

�1(x1)
(

Ξ(1)1 (�) − �1,m
ℎ0
ℎ1,1
�2
)

+ (1 − �1(x1))
(

Ξ(1)2 (�) − �2,m
ℎ0
ℎ1,2
�2
)

)

)x2v
(0)
0 (x1,−l1), �1 =

x1
"
, �2 =

x2+l1
"
.

Due to (38) and (39), the jumps
[

R"
]

|Q(i)"
= 0, i = 0, 1. This means that the approximation function R" belongs to ".
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Substituting R" and �0 in problem (3) instead of u" and �", respectively, calculating residuals with regard to Propositions 1,
2, 3 and relations (14), (20), (21), (23) (38), (39), we obtain

⟨R", '⟩" − �0
(

R", ')L2(Ω") = l"(') ∀' ∈ ", (60)

where the linear functional l" on the space" and l" is the sum of the integrals of the residues that the approximation function
R" leaves after substitution into the integral identity. Its norm is estimated similar as in4, Sec. 6. As a result, with the help of the
operator A" ∶ " ←→ " defined in (6), we get from (60) the inequality

‖R" − �0A"R"‖" ≤ C(%)
(

"1−% +
1
∑

i=0
"�i−1+��i,1

)

, (61)

where % is an arbitrary positive number and ��i,1 is the Kronecker delta.
From Vishik-Lyusternik lemma15 and inequalities (61) and (10) it follows that for any n ∈ ℕ there exist positive constants �

and "0 such that for all values of " ∈ (0, "0)
0 < C21 ≤ �n(") ≤ p1 − �, (62)

where p1 is the first point of the essential spectrum of the operator-function L (see Theorem 1).

6 JUSTIFICATION OF THE ASYMPTOTICS AND ASYMPTOTIC ESTIMATES

To justify the asymptotic expansions constructed above, we use the scheme suggested in16 to study the asymptotic behaviour
of eigenvalues and eigenvectors of a family of abstract operators. For the convenience of readers, the conditions of this scheme
are written here specifically for the problems and homogenized spectral problem.
In our case, the family of operators is {A" ∶ " → "}">0, where the operator A" defined by the formula (6) and corresponds

to the problem (3).
Let N( 1

�
,A0) denote the proper subspace corresponding to the eigenvalue 1

�
of the operator A0 ∶ H0 → H0 defined in

(49) and let
{(

u"n, �
"
n

)}

">0 denote a sequence whose components are the eigenfunction u"n (‖u
"
n‖" = 1) and the corresponding

characteristic number of A". Here, " ∶= L2(Ω").
To clarify these conditions, the following diagram is proposed:

"
I"

←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ "

P"
⏐⏐⏐
↓

↑⏐⏐⏐
S"

Z0
I0

←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ V0
Here Z0 is a subspace of H0, in which each component of a multi-sheeted function ' ∈ Z0 belongs to the corresponding H1-
Sobolev space; the operators I" ∶ " → " and I0 ∶ Z0 → V0 are identical imbedding operators. Obviously, these operators are
compact.
There are five conditionsC1 –C5 in this scheme. The first one is verified in Sec. 5 and it means that for each eigenvalue of the

operator A0 one can construct an approximation function such that this pair is, respectively, an almost eigenvalue and an almost
eigenfunction of the operator A", i.e., the inequality (61) holds.

Condition C2. There exists a linear operator S" ∶ Z0 → " such that

‖S"u‖"
≤ c1‖u‖Z0 , ∀u ∈ Z0,

where the constant c1 is independent of " and u.

Condition C3. There exists a linear operator P" ∶ " → Z0 such that

∀ n ∈ ℕ ∃ c2 > 0 ∃ "0 > 0 ∀" ∈ (0, "0) ∶ ‖P"u"n‖H0
≤ c2 ‖u

"
n‖"

.

Conditions C2 and C3 are connecting conditions between the spaces " and Z0. The operator S" ∶ Z0 → " associates any
multi-sheeted function' ∈ Z0 (see (45)) with a function S"' that is equal to'+ inΩ0, to'(0)|G(0)" , to'

(1,1)
|G(1,1)"

and to'(1,2)|G(1,2)"
,

where '(i,m)|G(i,m)"
is the restriction of '(i,m) on G(i,m)" . It is easy to see that the operator S" is uniformly bounded with respect to

". Thus, condition C2 is satisfied.
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For functions defined in thick junctions, there is no extension operator uniformly bounded with respect to " in H1-Sobolev
spaces (see12). Nevertheless, it was shown in12 that for eigenfunctions of spectral problems in thick junctions one can construct
a special extension which is bounded uniformly in " on every eigenfunction. In our case, we construct a special multi-sheeted
extension and prove the following theorem.

Theorem 2. There exists a linear operator P" ∶ " → Z0, where P" =
(

P (0)" , P (1,1)" , P (1,2)"

)

and

P (0)" ∶ H1(G(0)" ) → H1(D0), P (1,m)" ∶ H1(G(1,m)" ) → H1(D1), m ∈ {1, 2},

such that for any eigenfunction u"n of problem (3) condition C3 is satisfied.

Proof. 1. Let ��0 be a smooth cut-off function such that ��0(x2) = 0 for x2 ≥ �0, and ��0(x2) = 1 for x2 ≤ �0
2
, where �0 is

defined at the beginning of Section 2.
Let u"n (‖u

"
n‖" = 1) be an eigenfunction of problem (3). Then the function v"n = ��0u

"
n is the solution to the following problem:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

−Δxv"n = f "n (x) + �
"
n v

"
n in Ω0,�0 ,

−Δxv"n = �"n v
"
n in G(0)" ∪ G(1)" ,

−)�v"n = "�i ki,m v"n on Υ(i,m)" , i = 0, 1,

)px1v
"
n|x1=0 = )px1v

"
n|x1=a, x2 ∈ [0, �0], p = 0, 1,

v"n = 0 on Γ�0 ,

)�v"n = 0 on )Ω",�0 ⧵ (Υ" ∪ Γ0 ∪ Γ�0).

(63)

Here Ω0,�0 = (0, a) × (0, �0), Γ�0 = {x∶ x1 ∈ (0, a), x2 = �0}, f "n = 2� ′
�0
)x2u

"
n + � ′′

�0
u"n, supp(� ′�0) ⊂ [0, a] × ( �0

2
, �0). To

simplify formulas, the conjugation conditions on Q(i)
" , i ∈ {0, 1}, are not written hereinafter.

Since the problem (63) is invariant with respect to shifts by " along the axis Ox1, the function (the index n is omitted)

V "(x) = "−1(v"(x + "ē1) − v"(x) ), ( ē1 = (1, 0) ) , (64)

that is a−periodic in x1, satisfies the following relations

−ΔxV " = "−1
(

f "(x + "ē1) − f "(x)
)

+ �" V " in Ω0,�0 ,

−ΔxV " = �" V " in G(0)" ∪ G(1)" ,

−)�V " = "�i ki,m V " on Υ(i,m)" , i = 0, 1,

)px1V
"
|x1=0 = )px1V

"
|x1=a, x2 ∈ [0, �0], p = 0, 1,

V " = 0 on Γ�0 ,

)�V " = 0 on )Ω",�0 ⧵ (Υ" ∪ Γ0 ∪ Γ�0),

whence, multiplying the differential equations by V " and integrating by parts, we get

‖∇V "
‖

2
L2(Ω",�0 )

≤ �"‖V "
‖

2
L2(Ω",�0 )

+ "−1 ∫
Ω0,�0

(f "(x + "ē1) − f "(x))V " dx, (65)

where Ω",�0 is the interior of the union Ω0,�0 ∪ G
(0)
" ∪ G(1)" .
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Let us estimate the right-hand side of (65). Using the Cauchy-Bunyakovsky inequality and changing the order of integration,
we derive the inequality

∫
Ω0,�0

(V ")2 dx = "−2
�0

∫
0

a

∫
0

|

|

|

|

|

|

|

x1+"

∫
x1

)tv
"(t, x2) dt

|

|

|

|

|

|

|

2

dx1dx2

≤ "−1
�0

∫
0

a

∫
0

x1+"

∫
x1

|

|

)tv
"(t, x2)||

2 dtdx1dx2 =

�0

∫
0

a

∫
0

|

|

)tv
"(t, x2)||

2 dtdx2 ≤ ‖)x1u
"
n‖
2
L2(Ω0)

. (66)

Due to (9) the second summand the right-hand side of (65) is estimated with the value

‖"−1(f "(x + "ē1) − f "(x))‖L2(Ω0,�0 ) ⋅ ‖V"‖L2(Ω0,�0 ) ≤ ‖)x1f
"
‖L2(Ω0,�0 )

‖)x1u
"
n‖L2(Ω0)

≤ c1
(

‖u"n‖H1(Ω0) + ‖(��0)
′)2x1x2u

"
n‖L2(Ω0,�0 )‖

)

‖)x1u
"
n‖L2(Ω0) ≤ c2‖u

"
n‖
2
H1(Ω0)

. (67)

Here, in order to estimate the mixed second-order derivative, we have used so-called the second energy inequality for elliptic
operators in the domain (0, a)×( �0

2
, �0), i.e., the a-priori estimate ‖u‖2H2(Ω) ≤ c(‖Δu‖2L2(Ω)+‖u‖

2
L2(Ω)) (see e.g.

17) with a suitable
cut-off function.
Now it remains to estimate L2-norm of V " in each thin rod of the thick fractal junction Ω". For this we represent V " on the

rod G(i,m)j (") in the following form:

V "(x) = '(i,m)j (x2) + U
(i,m)
j (x), x ∈ G(i,m)j ("), (68)

∫
z(i,m)j (")

U (i,m)
j (x) dx1 = 0,

where z (i,m)j (") is the cross-section of the rod G(i,m)j (").We will regard that U (i,m)
j vanishes outside of G(i,m)j (").

Integrating the differential equation for V " in G(i,m)j (") over the cross-section z (i,m)j ("), we get

)2x2x2'
(i,m)
j (x2) + �"n '

(i,m)
j (x2) = 0. (69)

Substituting the representation (68) in the Neumann conditions on the lower bases of the rods G(1)" and integrating over their
cross-sections, we find that for each j ∈ {0, 1,… , N − 1}

)x2'
(1,m)
j

|

|

|x2=−l2−l1
= 0, m ∈ {1, 2}; (70)

similarly, we get
'(0)j (−l1) = '

(1,1)
j (−l1) = '

(1,2)
j (−l1). (71)

Substituting (68) in the second conjugation conditions on Q(1)
" and in the Neumann conditions on the other parts of the lower

bases of the rods G(0)" and integrating over their cross-sections, we find that for each j ∈ {0, 1,… , N − 1}

ℎ1,1)x2'
(0)
j (−l1) +

)
)x2

(

∫
z(1,1)j (")

U (0)
j (x) dx1

)

|

|

|x2=−l1
= ℎ1,1)x2'

(1,1)
j (−l1),

ℎ1,2)x2'
(0)
j (−l1) +

)
)x2

(

∫
z(1,2)j (")

U (0)
j (x) dx1

)

|

|

|x2=−l1
= ℎ1,2)x2'

(1,2)
j (−l1),

(ℎ0 − ℎ1,1 − ℎ1,2))x2'
(0)
j (−l1) +

)
)x2

(

∫
z(0)j (")⧵(z

(1,1)
j (") ∪z(1,2)j ("))

U (0)
j (x) dx1

)

|

|

|x2=−l1
= 0.

Summing these equalities, we obtain

ℎ0 )x2'
(0)
j
|

|

|x2=−l1
= ℎ1,1 )x2'

(1,1)
j

|

|

|x2=−l1
+ ℎ1,2 )x2'

(1,2)
j

|

|

|x2=−l1
. (72)
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Taking (62) into account, it follows from (69) and (70) that

'(1,m)j (x2) =
B1,mj

cos
(√

�"n l1
)

cos
(√

�"n l2
)
cos

(√

�"n (x2 + l1 + l2)
)

(73)

for m ∈ {1, 2}; here x2 ∈ (−l2 − l1,−l1). A general solution of (69) for i = 0 is given by the representation

'(0)j (x2) = B
(0)
j cos

(√

�"n (x2 + l1)
)

+ C (0)j sin
(√

�"n (x2 + l1)
)

, x2 ∈ (−l1, 0). (74)

Gradually substituting (73) and (74) in (71) and (72), we find

B1,mj = cos
(

√

�"n l1
)

B(0)j , m ∈ {1, 2}, C (0)j = −
ℎ1,1 + ℎ1,2

ℎ0
tan

(

√

�"n l2
)

B(0)j . (75)

From the equality V "(x1, 0+) = V "(x1, 0−) and (68) it follows that

B(0)j cos
(

√

�"n l1
)

(

1 −
ℎ1,1 + ℎ1,2

ℎ0
tan

(

√

�"n l2
)

tan
(

√

�"n l1
)

)

= 1
"ℎ0 ∫

z(0)j (")

V "(x1, 0) dx1. (76)

Taking into account (62), (75) - (76), we deduce that for each j ∈ {0, 1,… , N − 1} and m ∈ {1, 2}

‖'(i,m)j ‖

2
L2(G(i,m)j ("))

≤ c(n) ∫
z(0)j (")

(

V "(x1, 0)
)2 dx1.

Using the Poincaré inequality, we get

‖U (i,m)
j ‖

2
L2(G(i,m)j ("))

≤ c1"
2
‖)x1U

(i,m)
j ‖

2
L2(G(i,m)j ("))

= c1"2‖)x1V
"
‖

2
L2(G(i,m)j ("))

.

Therefore,

‖V "
‖

2
L2(G(0)" ∪G

(1)
" )

≤ c2(n)∫
I0

(

V "(x1, 0)
)2 dx1 + 2c1"2‖)x1V

"
‖

2
L2(G(0)" ∪G

(1)
" )

≤ c3(n)
(

�‖∇V "
‖L2(Ω0,�0 )

+ 2
�
‖V "

‖L2(Ω0,�0 )
+ "2‖)x1V

"
‖

2
L2(G(0)" ∪G

(1)
" )

)

(� > 0). (77)

Choosing � and " small enough, we obtain from (65), (66), (67) and (77)

‖∇V "
‖L2(Ω",�0 )

≤ c4(n)‖u"n‖H1(Ω0) ≤ c5(n). (78)

This inequality means that the eigenfunctions have no strong variation of values on the corresponding branches of neighbouring
trees.
2. The construction of a multi-sheeted extension will be carried out in several steps. First, similarly as in12, §4, we construct

the extension P (0)" ∶ H1(G(0)" ) → H1(D0) such that

‖P (0)" u"n‖H1(D0) ≤ c5(n)‖u"n‖H1(G(0)" )
and P (0)" u"n

|

|

|x2=0
= u"n

|

|

|x2=0
.

Now we fix the index m ∈ {1, 2}. Using the "linear matching", we extent the eigenfunction u"n from the class G(1,m)" into the
rectangle D"

1 = (0, a) ×
(

− l2 − l1,−l1 − "
)

, i.e.,

E(m)
" u"n =

{

u"n, x ∈ G(1,m)"

�j(x2; ") + �j(x2; ") ⋅
(

x1 − "(j + b1,m +
ℎ1,m
2
)
)

, x ∈ Ĝ(1,m)j ("), j ∈ {−1, 0, 1,… , N},

where

�j(x2; ") = u"n
(

"(j + b1,m +
ℎ1,m
2
), x2

)

,

�j(x2; ") =
1

1 − ℎ1,m

(

u"n
(

"(j + 1 + b1,m −
ℎ1,m
2
), x2

)

− �j(x2; ")
)

,

Ĝ(1,m)j (") =
(

"(j + b1,m +
ℎ1,m
2
), "(j + 1 + b1,m −

ℎ1,m
2
)
)

×
(

− l2 − l1,−l1 − "
)

.
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Recall that the problem (63) is invariant with respect to shifts by " along the axis Ox1; therefore, in the cases of extreme rods
we take j = −1 or j = N, respectively. Direct calculations give (for more detail see12, §4)

‖E(m)
" u"n‖H1(D"

1)
≤ c6(n)‖u"n‖H1(G(1,m)" ).

Further extension of E(m)
" u"n to the rectangle D1 is performed in the same way as for "-perforated domains18,19. The theorem is

proved.

The next two conditions of this scheme are the conditions for the convergence of some quantities.

Lemma 1 (Condition C4). If for certain functions w" and v" from " we have

P"w" → w and P"v" → v weakly in Z0 as "→ 0, (79)

then
lim
"→0

(

w", v"
)

"
=
(

w, v
)

V0
.

Proof. By �S we denote the characteristic function of a set S in ℝ2 (resp. ℝ). It easy to verify that for each i ∈ {0, 1} and
m ∈ {1, 2} (recall that if i = 0, then the index m is absent)

�G(i,m)"
⇀ ℎi,m weakly-star in L∞(Di) as "→ 0. (80)

Since the space Z0 is compactly imbedded in V0, we have that P"w" → w and P"v" → v in V0 as "→ 0. Therefore,

(

w", v"
)

"
= (w", v")L2(Ω0) + ∫

D0

�G(0)" P
(0)
"

(

w")P (0)"

(

v"
)

dx +
2
∑

m=1
∫
D1

�G(1,m)"
P (1,m)"

(

w")P (1,m)"

(

v"
)

dx

←→ (w+, v+)L2(Ω0) + ℎ0(w
(0), v(0))L2(D0) +

2
∑

m=1
ℎ1,m(w(1,m), v(1,m))L2(D1) =

(

w, v
)

V0
as "→ 0.

Lemma 2 (Condition C5). Let {�(")}">0 be a sequence of eigenvalues of the problem (3) such that

lim
"→0

�(") = Λ and 1
Λ
∉ �ess(A0); (81)

{u"}">0 is the corresponding sequence of eigenfunctions such that

‖u"‖" = 1 and P"u" → u weakly in Z0 as "→ 0. (82)

Then Λ is an eigenvalue and u =
(

u+, u(0),
{

u(1,m)
}2
m=1

)

is the corresponding multi-sheeted eigenfunction of the homogenized
problem.

Proof. First we note that from Lemma 1 it follows than ‖u‖V0 = 1.
The characteristic function �G(i,m)"

can be represented as follows

�G(i,m)"
(x) = �ℎ(i)i,m

(x1
"

)

, x ∈ Di,

where �ℎ(i)i,m(�), � ∈ ℝ, is 1-periodic function that equals 1 on the interval
(

b(i)i,m −
ℎ(i)i,m
2
, b(i)i,m +

ℎ(i)i,m
2

)

and vanishing on the rest of the
segment [0, 1]; here, if i = 0, then b(0)0,m =

1
2
and ℎ(0)0,m = ℎ0, and if i = 1, then b(1)1,m = b1,m and ℎ(1)1,m = ℎ1,m; the same for other

notation.
For each index i and m we define the function

Y (i)i,m(�) =

⎧

⎪

⎨

⎪

⎩

−� + b(i)i,m, � ∈
[

b(i)i,m −
ℎ(i)i,m
2
, b(i)i,m +

ℎ(i)i,m
2

]

0, � ∈
[

0, 1
]

⧵
[

b(i)i,m −
ℎ(i)i,m
2
, b(i)i,m +

ℎ(i)i,m
2

]

,

and then periodically extend it to ℝ. Integrating by parts the integral

" ∫
G(i,m)"

Y (i)i,m
(x1
"

)

)x1v(x) dx,
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we get the identity

"
ℎ(i)i,m
2 ∫

Υ(i,m)"

v dx2 = ∫
G(i,m)"

v dx − " ∫
G(i,m)"

Y (i)i,m
(x1
"

)

)x1v dx ∀ v ∈ ". (83)

Using this identity, we get

"�iki,m ∫
Υ(i,m)"

u" �dx2 = "�i−1
2ki,m
ℎ(i)i,m

(

∫
Di

�ℎ(i)i,m

(x1
"

)

P (i,m)"

(

u"
)

�dx − " ∫
G(i,m)"

Y (i)i,m
(x1
"

)

)x1
(

u" �
)

dx
)

∀� ∈ C1(Di),

whence, taking the boundedness of Y (i)i,m and (82) into account, it follows that

lim
"→0

"�iki,m ∫
Υ(i,m)"

u" �dx2 = ��i,12ki,m ∫
Di

u(i,m) �dx. (84)

Here ��i,1 is the Kronecker delta.
Now take any function � ∈ C∞0 (Di) and consider the function

 (x) =

{

0, x ∈ Ω" ⧵ G(i,m)" ,

" Y (i)i,m
( x1
"

)

�(x), x ∈ G(i,m)" .

It is obvious that  ∈ ". Considering the corresponding integral identity (5) with the test-function  , we obtain

∫
G(i,m)"

)x1u
" �dx = (") as "→ 0. (85)

Direct calculations show that

∫
G(i,m)"

)x2u
" �dx = ∫

Di

�ℎ(i)i,m

(x1
"

)

)x2
(

P (i,m)" u"
)

�dx = −∫
Di

�ℎ(i)i,m

(x1
"

)

P (i,m)"

(

u"
)

)x2�dx

←→ −ℎ(i)i,m ∫
Di

u(i,m) )x2�dx = ℎ
(i)
i,m ∫

Di

)x2u
(i,m) �dx as "→ 0.

Thus
�ℎ(i)i,m

(x1
"

)

)x2
(

P (i,m)" u"
)

⇀ ℎ(i)i,m )x2u
(i,m) weakly in L2(Di) as "→ 0. (86)

Writing down the integral identity (5) with the test function S"', where ' is an arbitrary function from the space Z0 and
S" ∶ Z0 → " is the operator from the condition C2, and taking the limits (81) - (86) into account, we find

(

u,'
)

H0
= Λ

(

u,'
)

V0
∀' ∈ Z0. (87)

Since the subspaceZ0 is dense inH0, the identity (87) means (see Definition 2) thatΛ is an eigenvalue and u is the corresponding
multi-sheeted eigenfunction of the homogenized problem.

6.1 The main results
Thus, all conditions C1 - C5 of the scheme from16 are satisfied. Applying this scheme, we obtain the following theorems.

Theorem 3 (the Hausdorff convergence). Only points of the spectrum of the homogenized problem are accumulation points for
the spectrum of the problem (3) as "→ 0.

The convergence of the eigenvalue �"n at a fixed index n as " tends to zero is usually called low -frequency convergence of the
spectrum.

Theorem 4 (low-frequency convergence of the spectrum). For any n ∈ ℕ

�"n → �(1)n as "→ 0,

where �(1)n is the eigenvalue of the homogenized spectral problem from the first sequence (55).
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There exists a subsequence of {"} (again denoted by {"}) such that

P"u"n → v(1)n weakly in Z0 as "→ 0,

{v(1)n }n∈ℕ are the corresponding eigenfunctions of the homogenized problem such that
(

v(1)n , v
(1)
m

)

V0
= �n,m, n, m ∈ ℕ.

Theorem 5. Let �(1)n = �(1)n+1 = … = �(1)n+r−1 be an r-multiple eigenvalue of the homogenized problem from the first sequence
(55). Then for any positive number % and sufficiently small ", we have

|�n(") − �(1)n | ≤ C(n, %) � ("),

where

� (") ∶=
(

"1−% +
1
∑

i=0
"�i−1+��i,1

)

.

For the approximation functionR(n+j)" (j ∈ {0, 1,… , r−1}) constructed with the help of the eigenfunction v(1)n+j by the formulas
(57)-(59) the inequality

‖

‖

‖

R(n+j)" −
r−1
∑

s=0
�js(")un+k(", ⋅)

‖

‖

‖H1(Ω")
≤ Cj(n, %) � (")

is satisfied for " small enough, where 0 < c1 <
∑r−1
k=0(�js("))

2 < c2.

It follows from Theorem 3 that there exist other converging sequences of eigenvalues �"n(") → �(k)n as " → 0, where �(k)n is an
eigenvalue of the homogenized problem from the kth sequence (56) (obviously, in this case n(")→ +∞ as "→ 0); these limits
are usually called high-frequency convergence of the spectrum.

Theorem 6. Let �(k)n = �(k)n+1 = … = �(k)n+r−1 be an r-multiple eigenvalue of the homogenized problem from the kth sequence
(56). Then

∀% > 0 ∃"n,k > 0, c > 0 such that ∀" ∈ (0, "n,k) in the interval

I (k)n (") ∶=
(

�(k)n − c �(") , �(k)n + c �(")
)

there are exactly r eigenvalues of the problem (3).
For the approximation function R(n+j,k)" (i ∈ {0, 1,… , r − 1}) constructed with the help of the eigenfunction v(k)n+j by the

formulas (57)-(59) we have
‖

‖

‖

R(n+j,k)"

‖R(n+j,k)" ‖"

− Ũ"
‖

‖

‖"
≤ c(n, k, %) � ("), ‖Ũ"‖"

= 1,

for " small enough; here Ũ" is a linear combination of eigenfunctions of the problem (3), which correspond to the eigenvalues
from the interval I (k)n (").

7 CONCLUSION

1. In this paper the asymptotic analysis of the spectral problem (3) is presented. The asymptotic behavior of the spectrum is
determined by the spectrum of the corresponding non-standard homogenized spectral problem consisting of relations (14), (20)-
(23), (38)-(41). The spectrum of the homogenized problem has a complex structure, namely, there is a countable set of gaps
in the spectrum (see Theorem 1). This structure of the spectrum is the main argument for the mathematical justification of the
well-known "loss reduction" phenomenon in comb-like waveguides (for more detail see12). Moreover, the question of existence
of spectral gaps has been actively investigated in last time since it is very important for the description of wave propagations
in different mediums (see3 for a lot of examples and references on this topic). The left accumulation points {pk}k∈ℕ form the
essential spectrum of the homogenized problem. In some cases, these points can stretch into segments. Based on my previous
results (see the review on spectral problems in thick junctions5, Chap. 1, this can happen when thin branches (rods) forming trees
smoothly change their length. Thus, choosing appropriately lengths of the thin branches one can build a thick fractal junction
so that the spectrum of a problem under consideration has the given number of gaps.



T.A. Mel’nyk 21

2. The differential equations (20)-(23) contain extra zero-order terms that catch the effect of the parameters {�i} (�i ≥ 1). A
natural question arises, what happens when �i < 1 for some i ∈ {0, 1, 2}; to be specific, we put �0 < 1. Then from the integral
identity (5), (8) and (9) it follows that for a fixed index n ∈ ℕ

"�0k0 ∫
Υ(0)"

(u"n)
2 dx2 ≤ C1.

Now, with the help of (83), we get

∫
G(0)"

(u"n)
2 dx ≤ C2"

# ←→ 0 as "→ 0,

where # ∶= min{1, 1 − �0}. So, we can state that the spectral problem (3) splits into three independent problems as " → 0,
namely

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−Δx v(x) = � v(x), x ∈ Ω0
)px1v|x1=0 = )px1v|x1=a, x2 ∈ [0, �0], p = 0, 1

v = 0, on Γ1 ∪ I0,
)�v = 0, on )Ω0 ⧵ (Γ0 ∪ Γ1 ∪ I0),

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−ℎ1,1 )2x2x2v
(1,1) + 2��1,1k1,1v

(1,1) = � v(1,1) in D1,
−ℎ2,m )2x2x2v

(2,m) + 2��2,1k2,mv
(2,m) = � ℎ2,mv(2,m) in D2, m ∈ {1, 2},

v(1,1) = 0 on I1,
v(1,1) = v(2,1) = v(2,2), ℎ1,1)x2v

(1,1) = ℎ2,1)x2v
(2,1) + ℎ2,2)x2v

(2,2) on I2,

)x2v
(2,m)|

|

|x2=−(l1+l2+l3)
= 0, m ∈ {1, 2};

and
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−ℎ1,2 )2x2x2v
(1,2) + 2��1,1k1,2v

(1,2) = � v(1,2) in D1,
−ℎ2,m )2x2x2v

(2,m) + 2��2,1k2,mv
(2,m) = � ℎ2,mv(2,m) in D2, m ∈ {3, 4},

v(1,2) = 0 on I1,
v(1,2) = v(2,3) = v(2,4), ℎ1,2)x2v

(1,2) = ℎ2,3)x2v
(2,3) + ℎ2,4)x2v

(2,4) on I2,

)x2v
(2,m)|

|

|x2=−(l1+l2+l3)
= 0, m ∈ {3, 4}.

Thus, in this case, a new essential feature appears, which is different from the cases studied here and which cannot be studied
by any simple modifications of the approaches of this article; the cases when �i < 1 for some i ∈ {0, 1, 2} are postponed by the
author to a planned forthcoming paper.
3. It should be noted that for each new proposed asymptotic method, it is very important to justify its accuracy. Thus, the

proof of the residual error estimate for discrepancy between the constructed approximations and solutions is a general principle
applied to the analysis of the efficiency of the proposed asymptotic method. With the help of special branch-layer solutions,
whose properties were studied in13, the method of matched asymptotic expansions7 and the approach within the conceptual
framework of12,16,4,5, the approximation for the eigenfunctions are constructed and the corresponding asymptotic error estimates
in the Sobolev space H1(Ω") are proved in Theorems 4 and 5. In addition, the Hausdorff convergence of the spectrum and the
rate of this convergence (asymptotic estimates for eigenvalues) depending on the parameters " and {�i} are proved.
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