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Abstract
Previous work developed a quantitative model using capacitance spectroscopy in an at-line setup to predict the dying cell percentage measured from a flow cytometer. This work aimed to transfer the at-line model to monitor lab-scale bioreactors in real-time, waiving the need for frequent sampling and enabling precise controls. Due to the difference between the at-line and in-line capacitance probes, direct application of the at-line model resulted in poor accuracy and high prediction bias. A new model with a variable range that had similar spectra shape across all probes was first constructed, which improved the prediction accuracy. Moreover, the global calibration method included the variance of different probes and scales in the model, reducing the prediction bias. External parameter orthogonalization also mitigated the interference from feeding, which further improved the model performance. The culture evolution trajectory predicted by the in-line model captured the cell death and alarmed cell death onset earlier than the trypan blue exclusion test. In addition, the incorporation of at-line spectra following orthogonal design into the calibration set is more likely to generate robust calibration models than the calibration models constructed using the in-line spectra only. This is advantageous, as at-line spectra collection is easier, faster, and more material-sparing than in-line spectra collection. The root-mean-square error of prediction of the final model was 6.56% (8.42% of the prediction range) with an R2 of 92.4%.


Introduction
In the upstream bioprocess for biologics manufacturing, the production relies on the cells being healthy. Higher productivity is expected if more cells remain healthy for an extended period. Various measures were seen to improve productivity by preserving cell health and extending the culture longevity. Some measures focus on cell line modification, such as constructing anti-apoptotic cell lines with genetic engineering.1-4 Other measures are process control actions, such as temperature downshift, media supplementation, chemical agent addition, etc.5-11 Most longevity extension control actions improve productivity by inducing growth arrest.12 Therefore, productivity is maximized when control actions are taken at appropriate timing. The onset of cell death may indicate the switch between the growth and production phases, triggering control actions to prolong the production phase. Our previously developed at-line quantitative model measures the dying cell population, as well as provides an earlier indication of cell death than traditional methods (i.e., trypan blue exclusion test) through the use of capacitance spectroscopy and multivariate data analysis. The timely monitoring of the cell death onset was achieved. This work proposed to transfer the at-line model to the in-line model so that real-time monitoring is achieved. The in-line monitoring can be a part of an automated culture process without invasive actions to check cell health. Additionally, the real-time monitoring of cell death provides an extra dimensionality to describe the culture process, strengthening process understanding. This work echoes regulatory initiatives (e.g., process analytical technology (PAT) and quality-by-design (QbD)), which encouraged consistent high product quality through thorough process understanding.13,14
Though widely accepted for early cell death detection, flow cytometry is rarely used on the manufacturing floor due to the complicated sample preparation and instrument maintenance.15 Our previous work provided an alternative cell death monitoring using capacitance spectroscopy.16 However, using an at-line measurement strategy requires sampling the bioreactor multiple times to capture the cell viability crossing the critical threshold. Frequent invasive sample collection means a high risk of contamination. Moreover, a pragmatic sampling frequency may still be too low to provide precise controls. Therefore, using in-line capacitance probes that provide real-time continuous measurements to capture cell death is highly desired.
In-line monitoring using capacitance spectroscopy has focused historically on biomass measurement, i.e., viable cell density and viable packed cell volume.17-21 This application was marked as high business value by a recent multi-author review paper.22 Additionally, the authors also identified methods aimed at monitoring culture health as having a high business value in production bioreactors.22 It aligned with our previous work, which demonstrated the capacitance spectra as a multi-attribute analytical tool that contains important early cell death information.16 Multiple apoptosis-related cellular changes may result in the capacitance spectral shape change. These properties include but are not limited to cell shrinkage, plasma membrane blebbing, loss of microvilli, and cytoplasmic conductivity variation.20,23-25  In addition to our previous work, Ma et al. and Zalai et al. have developed qualitative real-time monitoring of the early cell death with the capacitance spectral shape.26,27 
This work aims to develop a quantitative model that monitors cell death in real-time using Multivariate data analysis (MVDA). Two routes were attempted. The first was to transfer the at-line calibration model to the in-line monitoring condition. The difference between at-line and in-line situations for capacitance probes and the spectra collection environment has the potential to result in poor prediction accuracy if the at-line was directly applied. There are multiple techniques available for calibration transfer. For example, standardization algorithms, such as direct standardization (DS) and piece-wise direct standardization (PDS), correct the spectra from secondary instruments before being loaded to the model constructed with the primary instrument.28,29 Othogonalization methods that remove unrelated variance were reported for this purpose, e.g., orthogonal signal correction (OSC), generalized least square weighting (GLSW), and O-PLS (orthogonal partial least squares).30-32 Global calibration method, which includes the spectra from primary and secondary instruments into the calibration set, is helpful as well since it includes the instrument-related variance to build a robust calibration model.33 In this work, the global calibration method was primarily used to transfer the model, but other methods were also attempted. In addition to the calibration transfer, the in-line model was constructed only using the in-line spectra from the capacitance probe inserted in the bioreactors. The in-line spectra were collected along with the cell culture process without manipulations to vary the dying cell percentage and cell density independently. In comparison, the at-line spectra were collected from samples with different levels of the dying cell percentage and cell density that were deliberately modified to achieve an orthogonal design. Therefore, the in-line spectra have a narrower calibration space, which may be less likely to result in a robust calibration. This work compares the models built using these two methods to determine whether there are benefits to using at-line spectra when an in-line model is desired. 
The in-line model constructed in this work yielded accurate predictions and described the culture trajectory well. The predicted trajectory alarmed cell death onset earlier than the trypan blue exclusion test, which is a traditional viability test. However, prediction fluctuations associated with the feeding operation were observed. External parameter orthogonalization (EPO) preprocessed the capacitance spectra to remove the variance related to the feeding, eliminating the prediction fluctuation. A hierarchical model combining the EPO processed and the regular model was constructed, demonstrating optimal model performance and mitigated fluctuations.
In summary, this work constructed an in-line dying cell percentage model using the global calibration approach. EPO was applied to alleviate the interference from feeding operations.
[bookmark: _Hlk77843396]Experimental Section
Cell Culture Condition
The model cell in this study was a Chinese Hamster Ovary (CHO) cell line expressing a recombinant fusion protein. The cells deposited in the cryovials were expanded through a series of Erlenmeyer flasks, including 50 mL, 250 mL, 1 L, and 3L flasks. These flasks were cultured in a controlled incubator (150 rpm, 37 ℃, and 5% CO2).
A scale-down model of a commercial process was used in this study. The cells were cultured in 5-L Sartorius Biostat bioreactors with working volumes of approximately 4 L, which has similar process conditions to those previously described.34,35 Six independent lab-scale cell cultures were performed in three runs, with two batches in each run. Fed-batch mode was applied in the first two runs (four batches), during which dextran sulfate (DS) was supplied after the cell viability dropped below 90%. DS was reported to inhibit cell death and prolong the cell culture. A bolus feed was added daily, with additional feeding provided as needed to maintain the glucose concentration. In contrast, the batch mode was applied in the third run (two batches), with no feed or DS. One in-process sample was collected daily. Two in-process samples were collected between 80 and 160 hours to provide additional off-line data during the cell death onset. 
In-Process Sample Analysis
The BioProfile® FLEX analyzer (NOVA Biomedical, Inc., Waltham, MA) was used to measure the metabolites of in-process samples, including glucose and glutamine. In addition, total cell density (TCD), viability, and viable cell density (VCD) were measured by the Vi-CellTM XR Cell Viability Analyzer (Beckman Coulter, Inc., Fullerton, CA).
The percentage of the dying cells was assessed by the Guava® easyCyteTM Flow Cytometer (Luminex, Austin, TX) after staining the in-process samples with InvitrogenTM To-ProTM-3 Ready FlowTM Reagent (Thermo Fisher Scientific, Waltham, MA). The staining procedure was the same as the supplier’s protocol. Similar to the cyanine monomer, Yo-Pro-1, the To-Pro-3 penetrates the plasma membrane of dying cells through the PANX-1 channel and marks them by binding to nucleic acids, indicating early cell death.36,37 The dying cell percentage refers to the percentage of events specified by the positive gate of To-Pro-3 by the guavaSoft 3.3 software – ExpressPro module (MilliporeSigma, Burlington, MA).
Capacitance Spectra Collection
The capacitance spectra for the at-line model were collected by the Futura 7.5 mm PICO capacitance probe (ABER Instruments, Aberystwyth, UK). 15 mL of cell suspension sample was required for the at-line monitoring. The details about the laboratory setup were reported elsewhere.16 
Two Futura 12 mm Annular capacitance probes (ABER Instruments, Aberystwyth, UK) collected the in-line capacitance spectra while they were inserted in the bioreactor during the cell culture. One spectrum was collected every thirty seconds. Twenty spectra were averaged to reduce the random noise using the SCADA Data Exporter software (ABER Instruments, Aberystwyth, UK). The Annular probes used were deliberately chosen from different generations to challenge the transfer methods. Based on the year of purchase, they were coded as 2017 probe and 2020 probe, respectively. 
All three probes measured the suspension conductivity at 1000 kHz during the capacitance spectra collection.
Calibration Design
The at-line calibration model from our previous work was constructed using a calibration set following a factorial design (Figure 1A).16 The cell samples used in the calibration set were cultured in the 250 mL Erlenmeyer shake flasks. This factorial design included the TCD, which was potentially an interference that needed to be orthogonalized from the target response (i.e., dying cell percentage). Six independent calibration sets following the same design were prepared, with the dying cell percentage ranging from 4.1% to 74.6% and the TCD ranging from 1.56  106 to 6.20  106 cells/mL.
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[bookmark: _Ref75190913]Figure 1. (A) Calibration space of the two-factor calibration design (B) Theoretical calibration space of the modeling using in-line spectra only
Global calibration is a calibration transfer method that uses spectra from multiple sources to construct a model. In this study, the calibration set includes the at-line model set and the run-3 in-line spectra (batch mode), while the run-1 and run-2 in-line spectra were held as an independent test set. To demonstrate the robustness, another model including the at-line set and run-2 spectra were constructed to predict run-1 and run-3 spectra. 
An additional quantitative model was constructed using in-line spectra only. Considering that the in-line spectra were collected along with the cell culture process, limited manipulation could be performed on the dying cell percentage. The cells multiply and remain healthy at the beginning of the cell culture. When the culture reaches the peak TCD, the cells start to die. Therefore, the calibration space is relatively smaller than the calibration design (Figure 1B). 
Multivariate Calibration Model Construction
The calibration model was fitted using the partial least square (PLS) regression algorithm, which finds the orthogonal latent variables by maximizing the covariance between X-matrix (predictors, i.e., capacitance spectra) and Y-vector (response, i.e., dying cell percentage). As shown in equation 1, the original X and Y matrix are decomposed by projecting onto new orthogonal latent variables, i.e., loadings. Therefore, the product of scores (T) and weighted loadings (P) plus the error term (E) equals the X matrix. The subscripted k indicates the number of latent variables used in the calibration model. If k is smaller than the full rank, E also represents the spectral residual, which is essentially the difference between the original X-matrix and reconstructed X-matrix.
	 									    Eq 1
The area normalization was used to preprocess the capacitance spectra prior to model construction. The spectrum is normalized by dividing the capacitance of each alternating frequency by the sum of all capacitance.
The model prediction performance was assessed using root-mean-square error (RMSE) (equation 2). The  and  indicate the measured and predicted response, respectively. Depending on the specific condition, the RMSE can be referred to as cross-validation error (RMSECV) or prediction error (RMSEP).
 									    Eq 2
The spectral data were analyzed using MATLAB 2017B (Mathworks Inc., Natick, MA)  and PLS_Toolbox 8.5.2 (Eigenvector Research Inc., Manson, WA).
External Parameter Orthogonalization
Process operations such as feeding and DS addition affect the medium conductivity, interfering with the capacitance spectra and resulting in prediction fluctuation. External Parameter Orthogonalization (EPO) was used to remove the undesired variance introduced by these operations. The first step of EPO was to define the clutter, i.e., a group of samples whose variance represented the interference. The covariance matrix of the clutter was generated and decomposed by the singular-value decomposition (SVD). The filtering matrix was constructed with a selected number of principal components of the SVD result. Future samples were projected onto the filtering matrix to remove the undesired variance. 
Although the EPO removed the fluctuation, it also generated unnecessary noise. Therefore, a hierarchical model was constructed so that the EPO preprocessed model was applied only when necessary. Prediction value normalized Mahalanobis distance (), an index of spectra distance, was used to decide whether the spectra were affected by process operation, i.e., whether it was necessary to apply EPO preprocessed model (equation 4).  
						    Eq 3
 - a spectrum under investigation, 
𝜇 - the mean of a group of reference spectra to be compared to, 
 - the covariance matrix of the reference spectra, 
 - model prediction on the investigated spectra, while 
 - the mean of prediction on the reference spectra.
Results and Discussion
Prediction Bias using the Original At-line Model 
The intrinsic difference between instruments, either hardware or software, may result in the spectra difference. The difference between spectra leads to prediction bias when using the model constructed by the primary instrument to predict the future spectra collected by secondary instruments. Figure 2 shows the prediction result when the original at-line model built with the PICO probe predicted the in-line spectra from the Annular probe. Overall, the prediction performance was not as accurate as previously reported when the model predicted the at-line test set. The RMSEP was 15.4%, which equaled 16.3% of the prediction range. The prediction bias was -5.8%, and the prediction R2 was 77.6%. 
The prediction on the in-line spectra from the 2017 Annular probe was mostly accurate except at the lower To-Pro-3% prediction range. In contrast, a negative prediction bias was observed for the prediction on the spectra from the 2020 Annular probe over the entire prediction range. This indicated that spectra from the 2017 Annular probe were more similar to the PICO probe than the 2020 Annular probe. This similarity is illustrated in Figure 2B, which utilized the raw spectra of three probes at the same time from run-1. The samples between the two run-1 bioreactors were similar, as shown in the two raw spectra from the PICO probe. Therefore, the difference between the two in-line spectra was primarily the instrument difference. The spectra from the 2017 Annular probe were similar to the PICO probe spectra in shape, which explained why the prediction was more accurate.
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[bookmark: _Ref77172231][bookmark: _Ref77175953]Figure 2. (A) Measured vs. predicted plot for predicting the in-line spectra from all three runs using the at-line model; (B) Raw spectra of three probes at 71 hours of two run-1 batches with the frequency range of previously reported at-line model; (C) Same raw spectra with the frequency range of selected variables for the new model
New At-line Model Built with Selected Variable 
A new at-line model was constructed using the truncated spectra, ranging from 287 kHz to 9457 kHz. Within this range, the raw spectra had a similar shape across all three probes (Figure 2C). Two in-line probes were nearly identical, whereas they were slightly different from the at-line probe. The new model was constructed using three latent variables (LV), which improved predictions compared to the original at-line model (Figure 3A). It had an RMSEP of 13.3%, equivalent to 14.1% of the prediction range. The prediction R2 was 88.8%, suggesting good linearity. Additionally, the predictions were similar between two in-line probes, demonstrating that the truncated range could standardize two in-line probes. However, the prediction bias was -9.1%, indicating a systematic variance that was not included in the calibration model. This systematic variance was suspected of being from the instrument difference between the PICO and two Annular probes, which could be corroborated by the spectra difference observed in Figure 2C.
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[bookmark: _Ref77437324]Figure 3. Measured vs. Predicted plot of the at-line model using truncated spectra to predict all in-line spectra of six batches, color-coded by (A) in-line probes, (B) TCD; Q-Residual vs. third LV plot of all six batches, colored by the To-Pro-3%, color-coded by (C) To-Pro-3%, (D) TCD
Moreover, the underestimation of the new model was more severe when the measured To-Pro-3% was low. In Figure 3B, the underestimation was primarily from the low TCD groups. Extrapolation may be one reason, as the underestimated group has the TCD outside or on the edge of calibration space (the lowest TCD in the calibration set was 1.56  106 cells/mL). In addition, lower TCD meant lower capacitance, potentially suggesting a prediction deviation due to a low signal-to-noise ratio.
Figure 3C showed the underestimated group (To-Pro-3% < 15%) had a Q-residual much higher than the 95% confidence interval, which was also the groups with low TCD (smaller than 3  106 cells/mL, Figure 3D). Increasing the LV numbers did not reduce the Q-residual, indicating the unexplained variance was not included in the at-line set. Therefore, the unexplained variance was speculated to originate from changes in the cell culture environment within the bioreactors. Except for the TCD, other changes were also observed within the same period that could potentially influence the signal, including but not limited to the substantially increased ammonium and sodium ion concentration. These changes might have affected the capacitance through changing medium conductivity. 
In summary, although the new model built with variable selection showed improved model prediction, it still interfered with instrument difference (negative prediction bias) and unexplained variance at the early growth stage.
Global Calibration Model
Including the unexplained variance, either from instrument or process, into the calibration set facilitates the construction of a more accurate model. Since it is hard to confirm the source of unexplained variance, it is convenient to include some in-line spectra into the calibration set. Therefore, the unexplained variance could be incorporated without identifying its source and simulating it in the at-line setup. On the basis of variable selection, a global calibration model (referred to as GCM-1) constructed with at-line spectra and run-3 in-line spectra was tested by the in-line spectra from run-1 and run-2. The RMSEP of this 4 LV model was 7.04%, equivalent to 9.06% of the prediction range. The measured vs. predicted plot showed good prediction linearity (R2 = 89.42%, Figure 4A). In addition, the prediction bias was 0.70%, suggesting an alleviation of the instrument difference. To further test the global calibration method, a second model (referred to as GCM-2) constructed with at-line spectra and run-2 in-line spectra was tested by the in-line spectra from run-1 and run-3. This 3 LV model had an RMSEP of 8.81 %, equivalent to 9.32% of the prediction range. Similarly, the prediction showed good linearity (R2 = 92.60%) and a low prediction bias of -0.65%.
Both global calibration models showed a substantially improved accuracy. No clear separation was observed between two in-line spectra, re-emphasizing the benefit of variable selection. Both models' prediction bias was low, suggesting that the calibration transfer between the at-line probe and the in-line probe was achieved after including the instrument difference. Additionally, although the underestimation was still observed in the early growth stage, it was an improvement comparing to the model with variable selection only. This improvement highlighted that the global calibration method mitigated the prediction deviation resulted from process condition interference. 
The global calibration models depicted the cell death development trajectory to illustrate the early alarm given by the capacitance spectroscopy. Overall, the model predicted value aligned with the measured trend well. In both batches from Figure 4B and Figure 4C, the change in predicted To-Pro-3 percentage preceded the off-line measured trypan blue percentage, which was not only the absolute value but also the trend deflection point. The DS addition timing can be taken as an example to illustrate the value of such an early alarm. The green box indicates that the DS addition timing. This addition was triggered by the trypan blue percentage exceeding 10%, which was 96.5 and 121 hours. In comparison, the real-time predicted To-Pro-3 was higher 20% and at the deflection point at 86 and 97 hours, preceding 10.5 and 24 hours, respectively. This earlier indication of the need to intervene demonstrated that capacitance spectroscopy provided an early alarm for the cell death onset. Additionally, the early indication of cell death onset for these two batches preceded the present indication differently (10.5 hours vs. 24 hours), highlighting the advantage of in-line monitoring over off-line monitoring. At 96.5 hours of the run-2 batch, the trypan blue percentage was 10.11%, which was slightly over the 10% threshold. In contrast, the run-3 batch had a trypan blue percentage of 9.16% at 108 hours, which was moderately below the 10% threshold. Therefore, the control decision had to be delayed until the next sampling time, i.e., 121 hours. The real-time monitoring could provide a more precise control as it waives the restriction of sampling time.
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[bookmark: _Ref77604369]Figure 4. (A) Measured vs. Predicted plot of GCM-1 predicting the run-1 and run-3 spectra, (B) Culture evolution trajectory of the predicted To-Pro-3 percentage of a run-2 batch (C) Culture evolution trajectory of a run-3 batch; (D) Predicted culture evolution trajectory overlaid with measured conductivity of an exemplary run-2 batch (fed-batch), where black arrows indicate daily feeding (small volume), the red arrow indicates DS addition, green arrows indicate special feeding (large volume), and gray box indicate the period that culture temperature was lowered. (E) Predicted culture evolution trajectory overlaid with measured conductivity of an exemplary run-3 batch (batch culture). 
Lastly, it should be noted that the fluctuation in the run-2 prediction was due to the bolus feed and temperature shift of the fed-batch culture. These process operations changed the medium conductivity and affected the capacitance spectra. In Figure 4D, every prediction fluctuation coincided with the conductivity change that occurred immediately after the operations. In comparison, the run-3 that had no feeding and temperature change showed no prediction fluctuation (Figure 4E). The interference removal will be discussed in the next section.
Prediction Fluctuation Correction
Normalized spectra were preprocessed using EPO if they were interfered with by the process operations. A model insensitive to the interfering process operations was built using EPO preprocessed spectra. The spectra from 97.5 to 101.5 hours of two run-1 batches were defined as the clutter. Prediction fluctuation was observed during this period due to feeding and DS addition, whereas the dying cell percentage was assumed to be unchanged. Therefore, all X-variance during this four-hour window experienced interference. Four principal components of the SVD-processed clutter covariance matrix were used to construct the filtering matrix and remove the interfering X-variance. A global calibration PLS model was built using the EPO-preprocessed at-line spectra and run-3 in-line spectra. The model was tested with the run-2 in-line spectra. The prediction fluctuation was substantially mitigated. However, the EPO preprocessing introduced noise as well, especially at the beginning of the culture. Therefore, a hierarchical model was desired, primarily applying the regular model and switching to the EPO preprocessed model when spectra were affected. 
The criteria for the switch between different modes of the hierarchical model had two facets. The first relied on knowledge of the operation that induces interference, i.e., feed bolus and DS addition, in this study. Interference is expected at these events, and therefore it is appropriate to switch from the regular model to the EPO preprocessed model. However, there is no clear criterion for switching back to the regular model. A short period with an arbitrary length, e.g., 3 hours, can be determined empirically, but it may be more convincing to apply an index that identifies whether the spectra were affected, i.e., the need for EPO preprocessed model. The normalized Mahalanobis distance was applied as this index and was the second layer of switching logic. Twenty spectra around 95 hours, i.e., the three hours before the first feeding bolus and DS addition, were selected as the reference spectra for calculation. If the spectra were affected by the process operations, they would have a large normalized Mahalanobis distance from the reference spectra at 95 hours. The results met the expectation that the process operations incurred an increase in the normalized Mahalanobis distance (Figure 5A). Additionally, this increased distance was restored at 172 hours, after the last feeding at 148 hours. The normalized Mahalanobis distance of run 3 demonstrated no increase since no process operation was involved in run 3, which supported that normalized Mahalanobis distance was a reliable measure of interference (Figure 5B). It should be noted that the normalized Mahalanobis distances around 95 hours were high in the run-3 as well. The main reason was the small denominators in the normalized Mahalanobis distance calculation, i.e., the difference between the prediction of reference spectra and spectrum under investigation. The threshold was set at 70 to differentiate the spectra requiring preprocessing from regular spectra.
Figure 5C illustrates the structure of the hierarchical model that combined the criteria mentioned above. The RMSEP of this hierarchical model predicting both run-2 batches was 6.56%, equivalent to 8.42% of the prediction range. The prediction had good linearity as well (R2 was 92.24%). The hierarchical model had an improved prediction accuracy compared to the regular model. Additionally, the culture evolution trajectory in Figure 5D demonstrated a well-aligned trend and no prediction fluctuation, suggesting that EPO effectively removed the unnecessary X-variance introduced by the process operations. It should be noted that a moving window average (window size was 40 spectra, i.e., 20 minutes) was applied on the EPO model prediction to remove the noise.  
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[bookmark: _Ref77866633]Figure 5. Normalized Mahalanobis distance evolution over the culture age of (A) a run-2 batch, (B) a run-3 batch; (C) Structure of the hierarchical model Hierarchical, (D) dying cell percentage described by the hierarchical model of a run-2 batch
The in-line monitoring detected the early cell death onset, providing the monitoring capability of a fully automated cell culture process. This early alarm has the potential to trigger a series of longevity extension actions, such as bolus feed, amino acid supplementation, antioxidant addition, etc. Moreover, this early alarm could be tens of hours earlier than the complete cell death indicated by the traditional viability test. This early alarm creates a window that is sufficient for thorough off-line analysis,  i.e., the cell death monitoring can dictate the sampling time for analyses like proteomics and metabolomics. The detailed analysis improves the process understanding for the development and allows evidence-based control if the regulatory agencies approve the adaptive control according to the Quality-by-Design concept.38
Inclusion of Calibration Design to the Calibration Model
This study compared the calibration model constructed with the global calibration method and with in-line spectra only. Table 1 is the summary of model performance. Only three at-line calibration sets were included in the model so that the included sample numbers were similar between models (fair comparison). Table 1 shows that the models with the at-line calibration design had lower RMSEP when predicting the independent test set, although it involved fewer spectra in the calibration set.
[bookmark: _Ref77764279]Table 1. Model performance comparison between models with and without at-line orthogonal design. The numbers in the parenthesis indicate the percentage of RMSEP in the test set prediction range
	Calibration Set
	RMSEP on Run-2
	RMSEP on Run-3
	Spectra Number
	Sample Number

	At-line + Run-3
	6.87% (8.82%)
	N/A
	5755
	38

	Run -1 + Run -3
	7.86% (10.09%)
	N/A
	8824
	35

	At-line + Run -2
	N/A
	9.90% (10.56%)
	7031
	46

	Run -1 + Run -2
	N/A
	15.00% (16.00%)
	10277
	42


One advantage of including the orthogonal design was the improved model robustness due to the expanded calibration space (Figure 1). The expanded calibration space was also observed in the hyperspace, i.e., score plot (Figure 6). The first LV and the third LV were selected since they explained most Y-variance (40.01% and 26.90%, respectively). The in-line spectra of three runs had similar trajectories in the score plot, where they started from the bottom and ended at the right side. However, slight variation could be observed in the middle of the trajectory. In the narrow calibration space of in-line spectra, these slight variations of test samples resulted in extrapolation and consequently reduced prediction accuracy. In comparison, the at-line datasets covered more space. Therefore, supplementing the in-line spectra with the orthogonal-designed dataset helped expand the calibration space and improve model robustness.
[bookmark: _Hlk91150436][image: ]
[bookmark: _Ref77772157]Figure 6. Projection of all data sets on the score plot of the model built with at-line spectra and run-2 in-line spectra. The number in parenthesis at each axis indicates the explained X-variance.
[bookmark: OLE_LINK17][bookmark: OLE_LINK18]Conclusion
This work demonstrated an in-line model that directly predicts the dying cell percentage accurately in real-time using capacitance spectroscopy. This in-line model was transferred from the previously reported at-line model using the variable selection combined with the global calibration method. The transferred model showed a low RMSEP and prediction bias, suggesting good prediction accuracy and bias. The in-line model described the culture trajectory and captured the cell death onset earlier than the traditional viability test, which can be used to construct an automatic culture process. The predicted trajectory showed fluctuations related to process operations such as feeding. EPO preprocessing method mitigated the fluctuations as it removed the unrelated X-variance. The transferred model was compared to in-line models built with in-line spectra. The transferred model showed a better prediction performance as the orthogonal at-line calibration set expanded the calibration space, improving model robustness. The final model showed an RMSEP of 6.56% (equivalent to 8.42% of the prediction range) with an R2 of 92.4%.
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