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1 Introduction

Let H1 and H2 be two real Hilbert spaces with inner products 〈·, ·〉 and induced norms ‖ · ‖,

respectively. Let C ⊆ H1 and Q ⊆ H2 be nonempty, closed and convex sets. A mapping T : C → C is

called nonexpansive if ‖T x−T y‖ ≤ ‖x− y‖, for all x, y ∈ C. Fix(T ) is denoted for the set of fixed points

of T , i.e., Fix(T ):= {x ∈ C : T x = x}. In this paper, we focus our attention on the following split null

inclusion problem (in short, SPNIP) which was introduced Byrne et al. [8]: Find x∗ ∈ H1 such that

0 ∈ B1(x∗), (1.1)

such that

y∗ = Ax∗ ∈ H2 solves 0 ∈ B2(y∗). (1.2)
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where B1 : H1 → 2H1 , B2 : H2 → 2H2 are multi-valued maximal monotone operators and A : H1 → H2

is a bounded linear operator. The solution set of SPNIP(1.1)-(1.2) is denoted by Ω = {x∗ ∈ H1 : x∗ ∈

Sol(NIP(1.1)) and Ax∗ ∈ Sol(NIP(1.2))}. Byrne et al. [8] studied the weak convergence theorems of

iterative method for SPNPP(1.1)-(1.2). For a given x0 ∈ H1, compute iterative sequence {xn} generated

by the following scheme: for n ≥ 1,

xn+1 = J B1

λ (xn + γA∗(J B2

λ − I)Axn), for λ > 0, (1.3)

where I is an identity mapping, A∗ is the adjoint operator of A and γ ∈ (0,
1

L
) with L being the spectral

radius of the operator A∗A. For obtaining strong convergence, Kazmi and Rizvi [17] modified viscosity

method to solve the problem SPNIP(1.1)-(1.2) and fixed point problem for a nonexpansive mapping. For

further related work, see [23].

It’s well known that fixed point problems have been used to solve a powerful and effective method

for solving many issues that emerge from real-world applications, for example see in [14, 15, 19, 21, 22, 26].

In 2006, Moudafi and Mainge [21] introduced and studied the following hierarchical fixed point problem

(in short, HFPP) for a nonexpansive mapping T with respect to another nonexpansive mapping S on C:

Find x∗ ∈ Fix(T ) such that

〈x∗ − Sx∗, x∗ − x〉 ≤ 0, ∀x ∈ Fix(T ), (1.4)

where S : C → C is a nonexpansive mapping. We know that HFPP(1.4) is equivalent to the following

fixed point problem of the mapping PFix(T ) ◦S where PFix(T ) is the metric projection of H1 onto Fix(T ).

The solution set of HFPP(1.4) is denoted by H := {x∗ ∈ C : x∗ = (PFix(T ) ◦ S)x∗}. Note that if

H 6= ∅, H is closed and convex. HFPP(1.4) generalizes many branches of optimization such as monotone

variational inequality on fixed point sets, minimization problems over equilibrium constraints, hierarchical

minimization problems, etc., see for instance [9, 24].

On the other hand, we consider the classical variational inequality(VI) which is to find x∗ ∈ C such

that

〈Dx∗, x− x∗〉 ≥ 0, ∀x ∈ C, (1.5)

introduced in [13] where D : H1 → H1. The set of solutions of VI(1.5) is denoted by Sol(VI). Note that

the projected gradient scheme for solving VI(1.5) is:

xn+1 = PC(I − µD)xn, ∀n ≥ 1, (1.6)

where µ > 0 and PC is the metric projection of H1 onto C. In order to converge, the algorithm (1.6)

requires the Lipschitz condition on the operator D. Indeed, if D is L-Lipschitz continuous with 0 < µ < 2
L ,

then there exists a unique point in Sol(VI) and the sequence {xn} generated by (1.6) converge strongly

to this point. There is no analytic expression for the metric projection operator in most cases. So the

algorithm (1.6) is not very convenient in the practical calculation. Further, it was found that if C is a
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fixed point set of a nonexpansive mapping, then the metric projection is not be used. In 2001, Yamada

[25] introduced the following hybrid steepest descent method:

xn+1 = PC(I − µβnD)T xn, ∀n ≥ 1. (1.7)

Under certain conditions, the sequence {xn} generated by (1.7) converges strongly to the unique point

in Sol(VI) over the fixed point of T .

In this paper, we modify a projective iterative method to approximate a common solution of split

null inclusion problem, variational inequality and hierarchical fixed point problem for nonexpansive and

quasi-nonexpansive mappings in real Hilbert spaces. Further, we prove that sequences generated by the

proposed hybrid projective iterative method converge strongly to a common solution of these problems.

As applications, signal recovery is considered.

2 Preliminaries

We recall some concepts and results needed in the sequel. Let the symbols → and ⇀ denote strong

and weak convergence, respectively, and ωw(xn) denote the set of all weak limits of the sequence {xn}.

Definition 2.1. A mapping D : H1 → H1 is said to be:

(i) monotone, if

〈Dx−Dy, x− y〉 ≥ 0, ∀x, y ∈ H1;

(ii) k-strongly monotone, if there exists a constant k ∈ R with k > 0 such that

〈Dx−Dy, x− y〉 ≥ k‖x− y‖2, ∀x, y ∈ H1;

(ii) k-inverse strongly monotone, if there exists a constant k ∈ R with k > 0 such that

〈Dx−Dy, x− y〉 ≥ k‖Dx−Dy‖2, ∀x, y ∈ H1;

(iii) L-Lipschitz continuous, if there exists a constant L > 0 such that

‖Dx−Dy‖ ≤ L‖x− y‖, ∀x, y ∈ H1;

(iv) firmly nonexpansive, if it is k-inverse strongly monotone with k = 1.

We note that if D is an k-inverse strongly monotone mapping, then D is monotone and 1
L -Lipschitz

continuous.

Definition 2.2. [7]. A multi-valued mapping D : H1 → 2H1 is said to be:
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(i) monotone if

〈u− v, x− y〉 ≥ 0, whenever u ∈ D(x), v ∈ D(y);

(ii) maximal monotone if D is monotone and the graph, graph(D) := {(x, y) ∈ H1 ×H1 : y ∈ D(x)},

is not properly contained in the graph of any other monotone mapping.

It is well known that for each x ∈ H1 and λ > 0 there is a unique z ∈ H1 such that x ∈ (I + λD)z. The

mapping JDλ := (I + λD)−1 is called the resolvent of D. It is a single-valued and firmly nonexpansive

mapping defined on H1.

Lemma 2.1. [12] Let T is a nonexpansive mapping on H1 then T is demiclosed on H1 in the sense that,

if {xn} converges weakly to x ∈ H1 and {xn − T xn} converges strongly to 0, then x ∈ Fix(T ).

Lemma 2.2. [2] Let C ⊂ H1 be a nonempty, closed and convex set and let T : C → H1 be a nonexpansive

mapping. Then Fix(T ) is closed and convex.

3 Strong convergence theorem

In this section, we prove a strong convergence theorem to approximate a common solution of

SPNIP(1.1)-(1.2), VI(1.5) and HFPP(1.4) for a nonexpansive mapping T and S : C → C be a continuous

quasi-nonexpansive mapping.

Algorithm 3.1.

Initialization: Choose {αn}, {σn}, {δn} be real sequences in (0, 1) and {µβn} ⊂ (0, 2k) and select an

arbitrary starting point x0: Set n = 0 .

Iterative Steps: Given the current iterate xn, for λ > 0:

Step 1. Compute

x0 ∈ C, C0 = C;
wn = (1− δn)xn + δnPC(xn − µβnDxn);

yn = (1− σn)wn + σnSxn;

un = (1− αn)xn + αnT yn;

zn = J B1

λ (un + γA∗(J B2

λ − I)Aun);

Cn+1 = {z ∈ Cn : ‖zn − z‖ ≤ ‖xn − z‖};
xn+1 = PCn+1x0, n ≥ 0,


(3.1)

where γ ∈
(

0,
1

‖A‖2

)
.

Step 2. Set n := n+ 1 and go to Step 1.
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Theorem 3.1. Let H1 and H2 be real Hilbert spaces and C ⊆ H1 and Q ⊆ H2 be nonempty, closed

and convex sets. Let A : H1 → H2 be a bounded linear operator with its adjoint operator A∗; let

B1 : H1 → 2H1 , B2 : H2 → 2H2 be multi-valued maximal monotone operators. Let D : C → H1 be

k-inverse strongly monotone mappings, let T : C → C be a nonexpansive mapping and S : C → C be a

continuous quasi-nonexpansive mapping such that I−S is monotone and Γ = Ω∩H∩Fix(S)∩Sol(VI) 6= ∅.

Assume that the following conditions hold:

(C1) limn→∞ inf αn > 0;

(C2) 0 < limn→∞ inf σn ≤ lim supn→∞ σn < 1;

(C3) 0 < limn→∞ inf δn ≤ lim supn→∞ δn < 1;

(C4) 0 < limn→∞ inf µβn ≤ lim supn→∞ µβn < 2k.

Then the iterative sequences {zn} and {xn} be generated by Algorithm (3.1) converges strongly to z ∈ Γ,

where z = PΓx0.

Proof. We divide the proof into several steps.

Step I. First, we show that Γ and Cn for all n ≥ 0 both are closed and convex. Since Γ 6= ∅, it follows

from Lemma 2.2 that Sol(NIP(1.1)) = Fix(J B1

λ ) and Sol(NIP(1.2)) = Fix(J B2

λ ) are closed and convex

sets. Clearly H is closed and convex, since H = Fix(PFix(T ) ◦ S) 6= ∅. Further, it is easy to observe that

Fix(S) and Sol(VI)are closed and convex. Thus, Γ is nonempty, closed and convex and PΓx0 is then well

defined.

Next, we show that Cn+1 is closed and convex. From the assumption, we see that C0 = C is closed and

convex. Suppose that Ck is closed and convex for some k ≥ 1. Next, we show that Ck+1 is closed and

convex for some k. For any z ∈ Ck, we have

‖zk − z‖2 ≤ ‖xk − z‖2

⇔ ‖zk − xk‖2 + 2〈zk − xk, xk − z〉 ≤ 0. (3.2)

We easily observe from (3.2) that Ck+1 is closed and convex for all k ≥ 1. Therefore, Cn is closed and

convex for all n ≥ 0.

Step II. Γ ⊂ Cn for each n ≥ 0, {xn} is well defined and the sequences {xn}, {un}, {zn}, {wn} and {yn}

are bounded. Let p ∈ Γ then p ∈ C. Since PC is firmly nonexpansive, we estimate

‖wn − p‖2 ≤ (1− δn)‖xn − p‖2 + δn‖PC(I − µβnD)xn − PC(I − µβnD)p‖2

≤ (1− δn)‖xn − p‖2 + δn‖(I − µβnD)xn − (I − µβnD)p‖2

≤ ‖xn − p‖2 + δn
(
µ2β2

n‖Dxn −Dp‖2 − 2µβn〈xn − p,Dxn −Dp〉
)

≤ ‖xn − p‖2 + δn
(
µ2β2

n‖Dxn −Dp‖2 − 2µβnk‖Dxn −Dp‖2
)

≤ ‖xn − p‖2 − δnµβn(2k − µβn)‖Dxn −Dp‖2
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≤ ‖xn − p‖2, (3.3)

‖yn − p‖2 = ‖σnSxn + (1− σn)wn − p‖2

≤ (1− σn)‖wn − p‖2 + σn‖Sxn − p‖2 − σn(1− σn)‖Sxn − wn‖2

≤ σn‖xn − p‖2 + (1− σn)‖xn − p‖2 − σn(1− σn)‖Sxn − wn‖2

≤ ‖xn − p‖2 − σn(1− σn)‖Sxn − wn‖2 (3.4)

≤ ‖xn − p‖2, (3.5)

and

‖un − p‖2 = ‖(1− αn)xn + αnT yn − p‖2

≤ (1− αn)‖xn − p‖2 + αn‖T yn − p‖2

≤ (1− αn)‖xn − p‖2 + αn‖yn − p)‖2

≤ (1− αn)‖xn − p‖2 + αn[‖xn − p)‖2 − σn(1− σn)‖Sxn − wn‖2]

≤ ‖xn − p‖2 − σn(1− σn)‖Sxn − wn‖2 (3.6)

≤ ‖xn − p‖2. (3.7)

Since p ∈ Γ then p ∈ Ω and hence J B1

λ p = p and J B2

λ Ap = Ap, we have

‖zn − p‖2 = ‖J B1

λ (un + γA∗(J B2

λ − I)Aun)− p‖2

= ‖J B2

λ (un + γA∗(J B2

λ − I)Aun)− J B1

λ (p)‖2

≤ ‖un + γA∗(J B2

λ − I)Aun − p‖2

= ‖un − p‖2 + γ2‖A∗(J B2

λ − I)Aun‖2 + 2γ〈un − p,A∗(J B2

λ − I)Aun〉

= ‖un − p‖2 + γ2‖A‖2‖(J B2

λ − I)Aun‖2 + 2γ〈un − p,A∗(J B2

λ − I)Aun〉. (3.8)

Further, we have

2γ〈un − p,A∗(J B2

λ − I)Aun〉

= 2γ〈Aun −Ap, (J B2

λ − I)Aun〉

= 2γ〈Aun −Ap+ (J B2

λ − I)Aun − (J B2

λ − I)Aun, (J B2

λ − I)Aun〉

= 2γ
{
〈J B2

λ Aun −Ap,J
B2

λ Aun −Aun〉 − ‖(J
B2

λ − I)Aun‖2
}

= γ{‖J B2

λ Aun −Ap‖
2 + ‖J B2

λ Aun −Aun‖
2 − ‖Aun −Ap‖2 − 2‖(J B2

λ − I)Aun‖2}

= γ{‖J B2

λ Aun − J
B2

λ Ap‖
2 + ‖(J B2

λ − I)Aun‖2 − ‖Aun −Ap‖2 − 2‖(J B2

λ − I)Aun‖2}

≤ γ{‖Aun −Ap‖2 − ‖Aun −Ap‖2 − ‖(J B2

λ − I)Aun‖2}

= −γ‖(J B2

λ − I)Aun‖2. (3.9)

6



Now, using (3.9) in (3.8), we obtain

‖zn − p‖2 ≤ ‖un − p‖2 − γ(1− γ‖A‖2)‖(J B2

λ − I)Aun‖2. (3.10)

Next, using (3.7) and (3.10), we estimate

‖zn − p‖2 ≤ ‖xn − p‖2 − γ(1− γ‖A‖2)‖(J B2

λ − I)Aun‖2. (3.11)

Since γ ∈
(

0,
1

‖A‖2

)
, (3.11) implies

‖zn − p‖ ≤ ‖xn − p‖. (3.12)

This implies that p ∈ Cn+1 and hence Γ ⊂ Cn+1 for all n ≥ 0. Consequently, Cn+1 is nonempty, closed

and convex and hence xn+1 = PCn+1
x0 is well defined for all n ≥ 0. Thus the sequence {xn} is well

defined.

Let l = PΓx0. From xn+1 = PCn+1x0 and l ∈ Γ ⊂ Cn+1, we have

‖xn+1 − x0‖ ≤ ‖l − x0‖, ∀n ≥ 0. (3.13)

Therefore {xn} is bounded. It also follows from (3.3), (3.5), (3.7) and (3.12) that the sequences {wn},

{yn}, {un} and {zn} are bounded.

Step III. lim
n→∞

‖xn+1 − xn‖ = 0; lim
n→∞

‖zn − xn‖ = 0; lim
n→∞

‖zn − un‖ = 0; lim
n→∞

‖PC(xn − µβnDxn)−

xn‖ = 0; lim
n→∞

‖wn − yn‖ = 0 and lim
n→∞

‖xn − un‖ = 0.

Since xn = PCnx0, Cn+1 ⊂ Cn and xn+1 ∈ Cn, we have

‖xn − x0‖ ≤ ‖xn+1 − x0‖, ∀n ≥ 0. (3.14)

It follows from (3.13) and (3.14) that the sequence {‖xn−x0‖} is monotonically increasing and bounded,

and hence convergent. Therefore lim
n→∞

‖xn − x0‖ exists.

By the properties of the metric projection PCn that xn = PCnx0 and xn+1 ∈ Cn+1, we have

‖xn+1 − xn‖2 ≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2, ∀n ≥ 0,

which implies that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.15)

Since xn+1 = PCn+1
x0 ∈ Cn+1, it follows that

‖zn − xn+1‖ ≤ ‖xn − xn+1‖. (3.16)
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Hence, it follows from (3.15) and (3.16) that

lim
n→∞

‖zn − xn+1‖ = 0. (3.17)

Since

‖xn − zn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − zn‖, (3.18)

it follows from (3.15), (3.17) and (3.18) that

lim
n→∞

‖xn − zn‖ = 0. (3.19)

Next, from the assumption lim infn→∞ σn > 0, (3.11) and (3.19), we have

lim
n→∞

‖(J B2

λ − I)Aun‖ = 0. (3.20)

Since J B1

λ is firmly nonexpansive, we have

‖zn − p‖2 = ‖J B1

λ (un + γA∗(J B2

λ − I)Aun)− p‖2

= ‖J B1

λ (un + γA∗(J B2

λ − I)Aun)− J B1

λ p‖2

≤ 〈zn − p, un + γA∗(J B2

λ − I)Aun − p〉

=
1

2

[
‖zn − p‖2 + ‖un − p‖2 − ‖zn − un − γA∗(J B2

λ − I)Aun‖2
]

≤ 1

2

[
‖zn − p‖2 + ‖un − p‖2 − ‖zn − un‖2 − γ2‖A∗(J B2

λ − I)Aun‖

+2γ〈zn − un,A∗(J B2

λ − I)Aun〉]

≤ 1

2

[
‖zn − p‖2 + ‖un − p‖2 − ‖zn − un‖2 − γ2‖A∗(J B2

λ − I)Aun‖

+2γ‖zn − un‖‖A∗(J B2

λ − I)Aun‖
]
,

which in turn yields

‖zn − p‖2 ≤ ‖un − p‖2 − ‖zn − un‖2 + 2γ‖zn − un‖‖A∗(J B2

λ − I)Aun‖, (3.21)

and this together with (3.7) implies that

‖zn − un‖2 ≤ ‖un − p‖2 − ‖zn − p‖2 + 2γ‖zn − un‖‖A∗(J B2

λ − I)Aun‖

≤ ‖xn − p‖2 − ‖zn − p‖2 + 2γ‖zn − un‖‖A∗(J B2

λ − I)Aun‖

≤ ‖xn − zn‖(‖xn − p‖+ ‖zn − p‖) + 2γ‖zn − un‖‖A∗(J B2

λ − I)Aun‖

≤ L1‖xn − zn‖+ 2γ‖zn − un‖‖A∗‖‖(J B2

λ − I)Aun‖. (3.22)
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Hence, it follows from (3.19), (3.20) and (3.22) that

lim
n→∞

‖zn − un‖ = 0. (3.23)

Since

‖xn − un‖ ≤ ‖xn − zn‖+ ‖zn − un‖. (3.24)

It follows from (3.19), (3.23) and (3.24) that

lim
n→∞

‖xn − un‖ = 0. (3.25)

It follows from (3.1) that

αn‖T yn − xn‖ = ‖un − xn‖. (3.26)

It follows from (3.25), (3.26) and limn→∞ inf αn > 0 that

lim
n→∞

‖T yn − xn‖ = 0. (3.27)

From the assumption limn→∞ inf σn > 0, (3.6) and (3.27), we have

lim
n→∞

‖Sxn − wn‖ = 0. (3.28)

It follows from (3.1) that

‖yn − wn‖ = σn‖Sxn − wn‖ (3.29)

It follows from (3.28), (3.29) that

lim
n→∞

‖yn − wn‖ = 0. (3.30)

Since {µβn} ⊂ (0, 2k), PC(I − µβnD) is nonexpansive. It follows from T and S are nonexpansive that

‖un − p‖2 ≤ (1− αn)‖xn − p‖2 + αn‖T yn − p‖2

≤ (1− αn)‖xn − p‖2 + αn
(
(1− σn)‖wn − p‖2 + σn‖Sxn − p‖2

)
≤ ‖xn − p‖2 − αn(1− σn)(1− δn)δn‖PC(I − µβnD)xn − xn‖2. (3.31)

It follows the assumptions (C1)-(C3), (3.25) and (3.31) that

lim
n→∞

‖PC(I − µβnD)xn − xn‖ = 0. (3.32)

It follows from the assumption (C3) and (3.32) that

‖wn − xn‖ ≤ δn‖PC(I − µβnD)xn − xn‖ → 0, (3.33)
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as n→∞. Since

‖T yn − wn‖ ≤ ‖T yn − xn‖+ ‖xn − wn‖,

it follows from (3.27) and (3.33) that

lim
n→∞

‖T yn − wn‖ = 0. (3.34)

Since

‖T yn − yn‖ ≤ ‖T yn − wn‖+ ‖wn − yn‖,

it follows from (3.30) and (3.34) that

lim
n→∞

‖T yn − yn‖ = 0. (3.35)

Since

‖Sxn − xn‖ ≤ ‖Sxn − wn‖+ ‖wn − xn‖,

it follows from (3.28) and (3.33) that

lim
n→∞

‖Sxn − xn‖ = 0. (3.36)

Step IV: x∗ ∈ Γ. Since {xn} is bounded, there exists a subsequence {xni
} of {xn} such that xni

⇀ x∗.

Further, it follows from (3.19), (3.25), (3.30) and (3.32) that the sequences {xn}, {yn}, {zn}, {un} and

{wn} all have the same asymptotic behavior and hence there exist subsequences {yni} of {yn}, {zni} of

{zn}, {uni
} of {un} and {wni

} of {wn} such that {yni
}, {zni

}, {uni
} and {wni

} converge weakly to x∗.

It follows from Lemma 2.1(ii), (3.35) and(3.36) that x∗ ∈ Fix(T ) and x∗ ∈ Fix(S).

Now, we show that x∗ ∈ H. It follows from (3.1)

1

σn
(T yn − yn) = (I − S)xn +

1

σn
(T yn − wn) + (wn − xn), (3.37)

and hence for all p ∈ Fix(T ) and using monotonicity of I − S, we have

〈T yn − yn
σn

, xn − p〉 = 〈(I − S)xn − (I − S)p, xn − p〉+ 〈(I − S)p, xn − p〉

+
1

σn
〈T yn − wn, xn − p〉+ 〈wn − xn, xn − p〉

≥ 〈(I − S)p, xn − p〉+
1

σn
〈T yn − wn, xn − p〉

+〈wn − xn, xn − p〉 (3.38)

Using (3.32), (3.34), (3.35), conditions on parameters αn and σn in (3.38), we have

lim
n→∞

〈p− Sp, xn − p〉 ≤ 0, ∀p ∈ Fix(T ). (3.39)
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Due to the fact that xn weakly converges to x∗, we have

〈(I − S)p, x∗ − p〉 ≤ 0, ∀p ∈ Fix(T ). (3.40)

Since Fix(T ) is convex, λp+ (1− λ)x∗ ∈ Fix(T ) for λ ∈ (0, 1) and hence

〈(I − S)(λp+ (1− λ)x∗), x∗ − (λp+ (1− λ)x∗)〉 = λ〈(I − S)(λp+ (1− λ)x∗), x∗ − p〉

≤ 0, ∀p ∈ Fix(T ), (3.41)

which implies

〈(I − S)(λp+ (1− λ)x∗), x∗ − p〉 ≤ 0, ∀p ∈ Fix(T ).

On taking limits λ→ 0+, we have

〈(I − S)x∗, x∗ − p〉 ≤ 0, ∀p ∈ Fix(T ). (3.42)

That is x∗ ∈ H. Since {xni} converges weakly to x∗, it follows from Lemma 2.1 and (3.32) that x∗ ∈

Sol(VI). Next, we show that x∗ ∈ Ω. Indeed, since {xn} weakly converges to x∗ and the sequences {xn},

{un}, {zn} and {yn} have the same asymptotic behavior then un ⇀ x∗, zn ⇀ x∗ and yn ⇀ x∗. Since

Algorithm 3.1 can be rewritten as

(un − zn) +A∗(J B2

λ − I)Aun
λ

∈ B1(zn). (3.43)

By passing to the limit n → ∞ in (3.43) and taking account (3.20), (3.23) and the fact that graph of

maximal monotone mapping is weakly-strongly closed, we obtain 0 ∈ B1(x∗). Since A is continuous then

Aun ⇀ Ax∗. It follows from the nonexpansivity of J B2

λ , (3.20) and Lemma 2.1 that 0 ∈ B2(Ax∗). This

shows that x∗ ∈ Ω and thus x∗ ∈ Γ.

Step V. xn → x∗, where x∗ = PΓx0. Since xn = PCnx0 and x∗ ∈ Γ, we have

‖xn − x0‖ ≤ ‖x∗ − x0‖.

It follows from l = PΓx0 and the lower semicontinuity of the norm that

‖l − x0‖ ≤ ‖x∗ − x0‖ ≤ lim inf
n→∞

‖xn − x0‖ ≤ lim sup
n→∞

‖xn − x0‖ ≤ ‖l − x0‖.

This implies that limn→∞ ‖xn − x0‖ = ‖l− x0‖ = ‖x∗ − x0‖. Since xn − x0 ⇀ x∗ − x0 and ‖xn − x0‖ →

‖x∗−x0‖ then from the Kadec-Klee property [12] of H1, we have limn→∞ xn = x∗ = l. Thus, we conclude

that {xn} converges strongly to x∗, where x∗ = PΓx0.
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4 Numerical illustrations

4.1 Function space

For supporting our main theorem, we now give an example in infinitely dimensional spaces L2[0, 1]

such that ‖ · ‖ is L2-norm defined by ‖x‖ =
√∫ 1

0
|x(t)|2dt where x(t) ∈ L2[0, 1].

Example 4.1. Let H1 = H2 = L2[0, 1] and C = {x(t) ∈ L2[0, 1] :
∫ t

0
x(s)ds <∞}. Define mappings as

follow:

(i) bounded linear operator A : L2[0, 1]→ L2[0, 1] by Ax(t) = 2x(t), ∀x(t) ∈ L2[0, 1];

(ii) maximal monotone operators B1,B2 : L2[0, 1] → L2[0, 1] by B1x(t) = 3x(t) and B2x(t) = x(t)
5 ,

∀x(t) ∈ L2[0, 1];

(iii) nonexpansive mapping T : L2[0, 1]→ L2[0, 1] by T x(t) = x(t)
2 , ∀x(t) ∈ L2[0, 1];

(iv) continuous quasi-nonexpansive mapping S : L2[0, 1]→ L2[0, 1] by Sx(t) = x(t)
2 , ∀x(t) ∈ L2[0, 1];

(v) π
2 -inverse strongly monotone mapping D : C → L2[0, 1] by Dx(t) =

∫ t
0
x(s)ds.

For each λ > 0, we see that J B1

λ (x) = x
1+3λ and J B2

λ (x) = x
1+ 1

5λ
. For the experiments in this section,

we use the Cauchy error ‖xn+1 − xn‖2 < 10−10 for the stopping criterion. We split considering all of the

performances of our algorithm in five cases.

Case I: Comparison of the proposed algorithm with different parameters δn are shown when we choose

µβn = n
n+1 , γ = 0.1, λ = 0.1, σn = αn = n

2n+1 and initializations x0 = sin(t)+t
2 . Then the results are

presented as follows:

δn 0.1 0.3 0.5 0.9 0.999

No. of Iter. 18 18 17 17 17

CPU time(s) 3.204624 3.219476 3.104514 3.132228 3.212694

Table1: Numerical results of different parameters δn.

Case II: Comparison of the proposed algorithm with different parameters µβn are shown when we

choose δn = 0.5, γ = 0.1, λ = 0.1, σn = αn = n
2n+1 and initializations x0 = sin(t)+t

2 . Then the results are

presented as follows:

µβn
n
n+1

n
10n+1

n
100n+1

n
103n+1

n
104n+1

No. of Iter. 17 18 18 18 18

CPU time(s) 3.302351 3.310532 3.369519 3.301081 3.176498

Table2: Numerical results of different parameters µβn.

Case III: The performance of the algorithm with different parameters γ are shown by choosing µβn =

n
104n+1 , δn = 0.5, λ = 0.1, σn = αn = n

2n+1 and initializations x0 = sin(t)+t
2 . Then the results are

presented as follows:

12



2 3 4 5 6 7 8 9 10
Number of iterations

0

0.005

0.01

0.015

0.02

0.025

E
rr

or
s

x
0
=(t+sin(t))/2

n
=0.1

n
=0.3

n
=0.5

n
=0.9

n
=0.999

Figure 1: The error plotting of our proposed algorithm (3.1) for different parameters δn .
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Figure 2: The error plotting of our proposed algorithm (3.1) for different parameters µβn .

γ 0.2 0.1 0.01 0.001 0.0001

No. of Iter. 18 18 19 19 19

CPU time(s) 3.062286 3.016581 3.620591 3.267629 3.195616

Table3: Numerical results of different parameters γ.

Case IV: The performance of the algorithm with different parameters λ are shown by choosing γ = 0.1,

µβn = n
104n+1 , δn = 0.5, σn = αn = n

2n+1 and initializations x0 = sin(t)+t
2 . Then the results are presented

as follows:

λ 0.1 1 10 100 103

No. of Iter. 18 8 4 3 3

CPU time(s) 3.189750 1.538551 0.9133888 0.752417 0.758241

Table4: Numerical results of different parameters λ.
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Figure 3: The error plotting of our proposed algorithm (3.1) for different parameters γ .
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Figure 4: The error plotting of our proposed algorithm (3.1) for different parameters λ .

Case V: The performance of the algorithm with different parameters σn are shown by choosing λ = 100,

γ = 0.1, δn = 0.5, µβn = n
104n+1 , αn = n

2n+1 and initializations x0 = sin(t)+t
2 . Then the results are

presented as follows:

σn
n

2n+1
n

10n+1
n

100n+1
n

103n+1
n

104n+1

No. of Iter. 3 3 3 3 3

CPU time(s) 0.743157 0.723417 0.744866 0.760672 0.675156

Table5: Numerical results of different parameters σn.

Case VI: The performance of the algorithm with different parameters αn are shown by choosing λ = 100,

γ = 0.1, δn = 0.5, µβn = n
104n+1 , σn = n

104n+1 and initializations x0 = sin(t)+t
2 . Then the results are

presented as follows:
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Figure 5: The error plotting of our proposed algorithm (3.1) for different parameters σn .

αn
n

2n+1
n

10n+1
n

100n+1
n

103n+1
n

104n+1

No. of Iter. 3 3 3 3 3

CPU time(s) 0.746312 0.748333 0.741478 0.735886 0.769183

Table6: Numerical results of different parameters αn.
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Figure 6: The error plotting of our proposed algorithm (3.1) for different parameters αn .

From Tables 1-6 and Figures 1-6, we noticed that in all the above 6 cases, selecting λ = 100, γ = 0.1,

δn = 0.5, µβn = n
104n+1 , σn = n

104n+1 and αn = n
103n+1 for initialization x0 = sin(t)+t

2 yield the best

results.

4.2 Signal recovery

In this section, a signal recovery problem in compressed sensing is considered for giving an example

of our algorithm application in real world problem. A signal recovery problem can be modeled as the
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following underdeterminated linear equation system:

b = Ax+ ε, (4.1)

where x ∈ RN is the original signal, b ∈ RM is the observed signal with noise ε, and A ∈ RM×N (M < N)

is filter matrix. It is well known that the problem (4.1) can be solved by the LASSO problem:

min
x∈RN

1

2
‖b−Ax‖22 + λ‖x‖1, (4.2)

where λ > 0 is a given constant. In this case, we set D(x) = ∇f(x), Sx = T x = J ∂gλ (x−λ∇f(x)) where

f(x) = 1
2‖b−Ax‖

2
2 and g(x) = λ‖x‖1. We know that if λ ∈ (0, 2/‖A‖2), then S, T are nonexpansive, then

our algorithm (3.1) can be applied. And we set B1(x) = ∂g(x) and B2(x) = x. For the experiments in

this section, we choose the signal size to be N = 1024 and M = 512, and the original signal x is generated

by the uniform distribution in [−2, 2] with m = 100 nonzero elements. We use the mean-squared error

to measure the restoration accuracy defined as follows: MSEn = 1
N ‖xn − x‖

2
2 < 5× 10−5. Let A be the

Gaussian matrix generated by the MATLAB routine randn(M,N), the observation b be generated by

white Gaussian noise with signal-to-noise ratio SNR=40. The original signal and the measurement by

using A with m = 100. Given that the initial points x0 is generated by command randn(N, 1). We split

considering all of the performances of our algorithm in five cases.

Case I: Comparison of the proposed algorithm with different parameters δn are shown when we choose

µβn = 1.5
‖A‖2 , γ = 0.5

‖A‖2 , λ = 1.5
‖A‖2 , σn = n

100n+1 and αn = 1
n2+1 . Then the results are presented as follows:

δn 0.1 0.3 0.5 0.9 0.999

No. of Iter. 9092 9088 9083 9075 9074

CPU time(s) 13.9853 15.5584 16.4712 17.8711 17.9848

Table7: Numerical results of different parameters δn.

Case II: Comparison of the proposed algorithm with different parameters µβn are shown when we choose

δn = 0.999, γ = 0.5
‖A‖2 , λ = 1.5

‖A‖2 , σn = n
100n+1 and αn = 1

n2+1 . Then the results are presented as follows:

µβn
1.5
‖A‖2

1.7
‖A‖2

1.9
‖A‖2

1.99
‖A‖2

1.999
‖A‖2

No. of Iter. 9074 9073 9072 9072 9072

CPU time(s) 16.8849 17.0220 18.0354 17.9963 18.9953

Table8: Numerical results of different parameters µβn.

Case III: The performance of the algorithm with different parameters γ are shown by choosing µβn =

1.99
‖A‖2 , δn = 0.999, λ = 1.5

‖A‖2 , σn = n
100n+1 and αn = 1

n2+1 . Then the results are presented as follows:

γ 0.5
‖A‖2

0.7
‖A‖2

0.9
‖A‖2

0.99
‖A‖2

0.999
‖A‖2

No. of Iter. 9072 8995 8965 8959 8959

CPU time(s) 17.1674 15.7297 15.9147 15.4883 15.5108

Table9: Numerical results of different parameters γ.
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Case IV: The performance of the algorithm with different parameters λn are shown by choosing γ = 0.99
‖A‖2 ,

δn = 0.999, µβn = 1.99
‖A‖2 , σn = n

100n+1 and αn = 1
n2+1 . Then the results are presented as follows:

λn
1.5
‖A‖2

1.7
‖A‖2

1.9
‖A‖2

1.99
‖A‖2

1.999
‖A‖2

No. of Iter. 9050 7996 7167 6848 6818

CPU time(s) 14.5482 12.5826 11.1581 11.1900 11.1400

Table10: Numerical results of different parameters λn.

Case V: The performance of the algorithm with different parameters σn are shown by choosing λn =

1.999
‖A‖2 , δn = 0.999, γ = 0.99

‖A‖2 , µβn = 1.99
‖A‖2 , and αn = 1

n2+1 . Then the results are presented as follows:

σn 0.1 0.9 n
n+1

n
100n+1

n
104n+1

No. of Iter. 6611 6608 6587 6583 6611

CPU time(s) 10.4733 10.7185 8.2354 7.7671 11.1091

Table11: Numerical results of different parameters σn.

Case VI: The performance of the algorithm with different parameters αn are shown by choosing σn =

n
100n+1 , δn = 0.999, λn = 1.999

‖A‖2 , γ = 0.99
‖A‖2 , and µβn = 1.99

‖A‖2 . Then the results are presented as follows:

αn
1

n2+1
1

100n2+1
1

104n2+1
1

n3+1
1

100n3+1

No. of Iter. 6732 6764 6732 6758 6765

CPU time(s) 10.5964 10.4635 10.4464 10.8398 5.5015

Table12: Numerical results of different parameters αn.

From Table7- Table12, we see that in all the above 6 cases, selecting αn = 1
104n2+1 , δn = 0.999, σn =

n
100n+1 , λn = 1.999

‖A‖2 , γ = 0.99
‖A‖2 , and µβn = 1.99

‖A‖2 yield the best results, we denote that choosing the best

parameters is depended on number of iterations. We next show the original signal, the measurement by

using A with m = 100, and the reconstructed signals in Figure 7.
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Figure 7: From top to bottom: the original signal, the measurement by using A with m = 100, and the
reconstructed signals by using the best of all parameters in Table 12.
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From Figure 8, we see that our proposed algorithm (3.1) converges to the original signal.

5 Conclusion

In this paper, we modify a hybrid projective method for approximating a common solution of split

null inclusion problem, variational inequality and hierarchical fixed point problem for nonexpansive and

quasi-nonexpansive mappings of nonexpansive and quasi-nonexpansive mappings. We also prove strong

convergent theorems under some mind conditions in Hilbert spaces and give an example for supporting

our main result in infinitely dimensional spaces. Finally, we show the efficiency of the algorithm by

applying to solve the signal recovery problem.
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[7] Brẽzis, H.: Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de

Hilbert, Mathematical Studies(Amsterdam: North-Holand), 5, 759-775 (1973)

[8] Byrne, C., Censor, Y., Gibali, A., Reich, S.: The split common null point problem, J. Nonlinear

Convex Anal. 13 (4), 759-775 (2012)

[9] Cabot, A.: Proximal point algorithm controlled by a slowly vanishing term: application to hierar-

chical minimization. SIAM J. Optim. 15, 555-572 (2005)

[10] Combettes, P.L., Hirstoaga, S.A.: Equilibrium programming in Hilbert spaces, J. Nonlinear Convex

Anal. 6, 117-136 (2005)

[11] Combettes, P.L., Pesquet, J.C.: Proximal splitting method in signal processing. Fixed Point Al-

gorithms Inverse Problem Sci. Eng 49, 185-212 (2011)

[12] Geobel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced

Mathematics. 28. Cambridge University Press, Cambridge, 1990

[13] Hartman, P., and Stampacchia, G.: On some non-linear elliptic differential-functional equation,

Acta Mathenatica, 115 (1966), 271-310.

[14] Kazmi, K.R., Ali, Rehan, Furkan, M.: Krasnoselski-Mann type iterative method for hierarchical

fixed point problem and split mixed equilibrium problem. Numerical Algorithms (2017), (DOI:

10.1007/s11075-017-0316-y)

19



[15] Kazmi, K.R., Ali, R. and Furkan, M., Hybrid iterative method for split monotone variational

inclusion problem and hierarchical fixed point problem for a finite family of nonexpansive mappings,

Numer. Algor. 79(2), 499-527 (2018)

[16] Kazmi, K.R., Rizvi, S.H.: Iterative approximation of a common solution of a split equilibrium

problem, a variational inequality problem and a fixed point problem. J. Egy. Math. Soc. 21,

44-51(2013)

[17] Kazmi, K.R., Rizvi, S.H.: An iterative method for split variational inclusion problem and fixed

point problem for a nonexpansive mapping, Optim. Letters 8, 1113-1124 (2014)

[18] Marino, G., Colao, V., Muglia, L., Yao, Y.: Krasnoselski-Mann iteration for hierarchical fixed-

points and equilibrium problem, Bull. Aust. Math. Soc. 79, 187-200 (2009)

[19] Moudafi, A.: Krasnoselski-Mann iteration for hierarchical fixed-point problems, Inverse Probl. 23,

1635-1640 (2007)

[20] Moudafi, A.: Split monotone variational inclusions, J. Optim. Theory Appl. 150, 275-283 (2011)

[21] Moudafi, A., Mainge, P.-E.: Towards viscosity approximations of hierarchical fixed-point problems,

Fixed Point Theory Appl. Vol. 2006 , Article ID 95453 (2006)

[22] Moudafi, A., Mainge, P.-E.: Strong convergence of an iterative method for hierarchical fixed-point

problems, Pacific J. Optim. 3, 529-538 (2007)

[23] Shehu, Y., Ogbuisi, F.U.: An iterative method for solving split monotone variational inclusion and

fixed point problems. RACSAM 110 (2), 503-518 (2016)

[24] Yamada, I., Ogura, N.: Hybrid steepest descent method for the variational inequality problem

over the fixed point set of certain quasi-nonexpansive mappings. Numer. Funct. Anal. Optim. 25,

619-655 (2004)

[25] Yamada, I.: The hybrid steepest descent method for the variational inequality problem over the

intersection of fixed point sets of a nonexpansive mappings. In: Inherently parallel algorithms in

feasibility and optimization and their applications; 2001, p. 473-504.

[26] Yao, Y., Liou, Y.C.: Weak and strong convergence of Krasnoselski-Mann iteration for hierarchical

fixed-point problems. Inverse Probl. 24, 501-508 (2008)

20


	Introduction
	Preliminaries
	Strong convergence theorem 
	Numerical illustrations
	Function space
	Signal recovery

	Conclusion

