References
1. Tai, T.Y.; Tsai, K.S.; Tu, S.T.; Wu, J.S.; Chang, C.I.; Chen, C.L.; Shaw, N.S.; Peng, H.Y.; Wang, S.Y.; Wu, C.H. The effect of soy isoflavone on bone mineral density in postmenopausal Taiwanese women with bone loss: A 2-year randomized double-blind placebo-controlled study. Osteoporosis Int. 2012 , 23 , 1571-1580.
2. Gutierrez-Gonzalez, J.J.; Vuong, T.D.; Zhong, R.; Yu, O.; Lee, J.; Shannon, G.; Ellersieck, M.; Nguyen, H.T.; Sleper, D.A. Major locus and other novel additive and epistatic loci involved in modulation of isoflavone concentration in soybean seeds. Theor. Appl. Genet.2011 , 123 , 1375-1385.
3. Dhaubhadel, S.; Mcgarvey, B.D.; Williams, R.; Gijzen, M. Isoflavonoid biosynthesis and accumulation in developing soybean seeds. Plant Mol. Biol. 2003 , 53 , 733-743.
4. Li, X.; Kamala, S.; Tian, R.; Du, H.; Li, W.; Kong, Y.; Zhang, C. Identification and validation of quantitative trait loci controlling seed isoflavone content across multiple environments and backgrounds in soybean. Mol. Breeding 2018 , 38 , 1-14.
5. Lowe, E.D.; Gao, G.; Johnson, L.N.; Keung, W.M. Structure of daidzin, a naturally occurring anti-alcohol-addiction agent, in complex with human mitochondrial aldehyde dehydrogenase. J. Med. Chem.2008 , 51 , 4482-4487.
6. Yang, M.H.; Jung, S.H.; Chinnathambi, A.; Alahmadi, T.A.; Alharbi, S.A.; Sethi, G.; Ahn, K.S. Attenuation of STAT3 signaling cascade by daidzin can enhance the apoptotic potential of bortezomib against multiple myeloma. Biomolecules 2019 , 10 , 23.
7. Wei, G.; Liang, T.; Wei, C.; Nong, X.; Lu, Q.; Zhao, J. Daidzin inhibits RANKL‐induced osteoclastogenesis in vitro and prevents LPS‐induced bone loss in vivo. J. Cell. Biochem. 2019 ,120 , 5304-5314.
8. Zhao, L.; Chen, Q.; Brinton, R.D. Neuroprotective and neurotrophic efficacy of phytoestrogens in cultured hippocampal neurons. Exp. Biol. Med. 2002 , 227 , 509-519.
9. Xiao, F.; Cui, H.; Zhong, X. Beneficial effect of daidzin in dry eye rat model through the suppression of inflammation and oxidative stress in the cornea. Saudi J. Biol. Sci. 2018 , 25 , 832-837.
10. Wang, W.; Yang, R.; Zhang, M.; Li, J.; Peng, J.; Xu, M.; Zhao, Y.; Li, H.; Pan, X. Glycitin suppresses cartilage destruction of osteoarthritis in mice. Inflammation 2020 , 43 , 1312-1322.
11. Chen, Y.; Guo, S.; Jiang, K.; Wang, Y.; Yang, M.; Guo, M. Glycitin alleviates lipopolysaccharide-induced acute lung injury via inhibiting NF-κB and MAPKs pathway activation in mice. Int. Immunopharmacol.2019 , 75 , 105749.
12. Choi, Y.R.; Shim, J.; Kim, M.J. Genistin: A novel potent anti-adipogenic and anti-lipogenic agent. Molecules2020 , 25 , 2042.
13. Graham, T.L. Flavonoid and isoflavonoid distribution in developing soybean seedling tissues and in seed and root exudates. Plant Physiol. 1991 , 95 , 594-603.
14. Lozovaya, V.V.; Lygin, A.V.; Zernova, O.V.; Li, S.; Hartman, G.L.; Widholm, J.M. Isoflavonoid accumulation in soybean hairy roots upon treatment with Fusarium solani. Plant Physiol. Bioch.2004 , 42 , 671-679.
15. Dong, W.; Song, Y. The significance of flavonoids in the process of biological nitrogen fixation. Int. J. Mol. Sci. 2020 ,21 , 5926.
16. Dodds, P.N.; Rathjen, J.P. Plant immunity: Towards an integrated view of plant–pathogen interactions. Nat. Rev. Genet.2010 , 11 , 539-548.
17. Algar, E.; Gutierrez-Mañero, F.J.; Garcia-Villaraco, A.; García-Seco, D.; Lucas, J.A.; Ramos-Solano, B. The role of isoflavone metabolism in plant protection depends on the rhizobacterial MAMP that triggers systemic resistance against Xanthomonas axonopodis pv. Glycines in Glycine max (L.) Merr. Cv. Osumi. Plant Physiol. Bioch.2014 , 82 , 9-16.
18. Kosslak, R.M.; Bohlool, B.B. Suppression of nodule development of one side of a split-root system of soybeans caused by prior inoculation of the other side. Plant Physiol. 1984 , 75 , 125-130.
19. Kim, H.; Jang, Y.; Baek, I.; Lee, J.; Park, M.J.; Chung, Y.; Chung, J.; Kim, J. Polymorphism and expression of isoflavone synthase genes from soybean cultivars. Molecules & Cells (Springer Science & Business Media BV) 2005 , 19 .
20. Mortier, V.; Fenta, B.A.; Martens, C.; Rombauts, S.; Holsters, M.; Kunert, K.; Goormachtig, S. Search for nodulation-related CLE genes in the genome of Glycine max. J. Exp. Bot. 2011 , 62 , 2571-2583.
21. Naoumkina, M.; Farag, M.A.; Sumner, L.W.; Tang, Y.; Liu, C.; Dixon, R.A. Different mechanisms for phytoalexin induction by pathogen and wound signals in Medicago truncatula. Proceedings of the National Academy of Sciences 2007 , 104 , 17909-17915.
22. Wegulo, S.N.; Yang, X.; Martinson, C.A.; Murphy, P.A. Effects of wounding and inoculation with Sclerotinia sclerotiorum on isoflavone concentrations in soybean. Can. J. Plant Sci. 2005 ,85 , 749-760.
23. Yao, L.; Zhong, Y.; Wang, B.; Yan, J.; Wu, T. BABA application improves soybean resistance to aphid through activation of phenylpropanoid metabolism and callose deposition. Pest Manag. Sci. 2020 , 76 , 384-394.
24. Joshi, K.; Baumgardner, J.L.; Macphail, M.; Acharya, S.R.; Blotevogel, E.; Dayan, F.E.; Nachappa, P.; Nalam, V.J. The source of Rag5-mediated resistance to soybean aphids is located in the stem.Front. Plant Sci. 2021 , 1425.
25. Eldridge, A.C.; Kwolek, W.F. Soybean isoflavones: Effect of environment and variety on composition. J. Agr. Food Chem.1983 , 31 , 394-396.
26. Jung, W.; Yu, O.; Lau, S.C.; O’Keefe, D.P.; Odell, J.; Fader, G.; Mcgonigle, B. Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat. Biotechnol. 2000 , 18 , 208-212.
27. Liang, H.; Yu, Y.; Wang, S.; Yun, L.; Wang, T.; Wei, Y.; Gong, P.; Liu, X.; Fang, X.; Zhang, M. QTL mapping of isoflavone, oil and protein contents in soybean (Glycine max L. Merr.). Agricultural Sciences in China 2010 , 9 , 1108-1116.
28. Wang, Y.; Han, Y.; Zhao, X.; Li, Y.; Teng, W.; Li, D.; Zhan, Y.; Li, W. Mapping isoflavone QTL with main, epistatic and QTL× environment effects in recombinant inbred lines of soybean. PLoS One2015 , 10 , e118447.
29. Zhang, H.J.; Li, J.W.; Liu, Y.J.; Jiang, W.Z.; Du, X.L.; Li, L.; Li, X.; Su, L.T.; Wang, Q.Y.; Wang, Y. Quantitative trait loci analysis of individual and total isoflavone contents in soybean seeds. J. Genet. 2014 , 93 , 331-338.
30. Chu, S.; Wang, J.; Zhu, Y.; Liu, S.; Zhou, X.; Zhang, H.; Wang, C.; Yang, W.; Tian, Z.; Cheng, H. An R2R3-type MYB transcription factor, GmMYB29, regulates isoflavone biosynthesis in soybean. PLoS Genet. 2017 , 13 , e1006770.
31. Anguraj Vadivel, A.K.; Renaud, J.; Kagale, S.; Dhaubhadel, S. GmMYB176 regulates multiple steps in isoflavonoid biosynthesis in soybean. Front. Plant Sci. 2019 , 10 , 562.
32. Gutierrez-Gonzalez, J.J.; Wu, X.; Zhang, J.; Lee, J.; Ellersieck, M.; Shannon, J.G.; Yu, O.; Nguyen, H.T.; Sleper, D.A. Genetic control of soybean seed isoflavone content: Importance of statistical model and epistasis in complex traits. Theor. Appl. Genet. 2009 ,119 , 1069-1083.
33. Akkaya, M.S.; Bhagwat, A.A.; Cregan, P.B. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 1992 ,132 , 1131-1139.
34. Vogt, T. Phenylpropanoid biosynthesis. Mol. Plant 2010 ,3 , 2-20.
35. Hu, Q.; Min, L.; Yang, X.; Jin, S.; Zhang, L.; Li, Y.; Ma, Y.; Qi, X.; Li, D.; Liu, H. Laccase GhLac1 modulates broad-spectrum biotic stress tolerance via manipulating phenylpropanoid pathway and jasmonic acid synthesis. Plant Physiol. 2018 , 176 , 1808-1823.
36. Xue, C.; Yao, J.; Xue, Y.; Su, G.; Wang, L.; Lin, L.; Allan, A.C.; Zhang, S.; Wu, J. PbrMYB169 positively regulates lignification of stone cells in pear fruit. J. Exp. Bot. 2019 , 70 , 1801-1814.
37. Wang, X.; Zhuo, C.; Xiao, X.; Wang, X.; Docampo-Palacios, M.; Chen, F.; Dixon, R.A. Substrate specificity of LACCASE8 facilitates polymerization of caffeyl alcohol for C-lignin biosynthesis in the seed coat of Cleome hassleriana. The Plant Cell 2020 , 32 , 3825-3845.
38. Dong, N.; Lin, H. Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions. J. Integr. Plant Biol. 2021 , 63 , 180-209.
39. Gonzalez, A.; Zhao, M.; Leavitt, J.M.; Lloyd, A.M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal 2008 ,53 , 814-827.
40. Schmutz, J.; Cannon, S.B.; Schlueter, J.; Ma, J.; Mitros, T.; Nelson, W.; Hyten, D.L.; Song, Q.; Thelen, J.J.; Cheng, J.; Xu, D.; Hellsten, U.; May, G.D.; Yu, Y.; Sakurai, T.; Umezawa, T.; Bhattacharyya, M.K.; Sandhu, D.; Valliyodan, B.; Lindquist, E.; Peto, M.; Grant, D.; Shu, S.; Goodstein, D.; Barry, K.; Futrell-Griggs, M.; Abernathy, B.; Du, J.; Tian, Z.; Zhu, L.; Gill, N.; Joshi, T.; Libault, M.; Sethuraman, A.; Zhang, X.; Shinozaki, K.; Nguyen, H.T.; Wing, R.A.; Cregan, P.; Specht, J.; Grimwood, J.; Rokhsar, D.; Stacey, G.; Shoemaker, R.C.; Jackson, S.A. Genome sequence of the palaeopolyploid soybean. Nature 2010 , 463 , 178-183.
41. Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res.2012 , 40 , D1178-D1186.
42. Han, Y.; Li, D.; Zhao, G.; Zhao, X.; Jiang, Z.; Hu, H.; Wu, L.; Wang, Y.; Gao, Y.; Li, Y. Dynamic quantitative trait loci underlies isoflavone accumulation in soybean seed. Plant Breeding2016 , 135 , 335-341.
43. Sh, U.; Fmd, S.; Mauro, A. Marker-Assisted selection and genomic selection ; Soybean Breeding, 2017.
44. Li, S. Transcriptional control of flavonoid biosynthesis: Fine-tuning of the MYB-bHLH-WD40 (MBW) complex. Plant Signaling & Behavior 2014 , 9 , e27522.
45. Besseau, S.; Hoffmann, L.; Geoffroy, P.; Lapierre, C.; Pollet, B.; Legrand, M. Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. The Plant Cell 2007 , 19 , 148-162.
46. Li, X.; Bonawitz, N.D.; Weng, J.; Chapple, C. The growth reduction associated with repressed lignin biosynthesis in Arabidopsis thaliana is independent of flavonoids. The plant cell 2010 ,22 , 1620-1632.
47. Gill, U.S.; Uppalapati, S.R.; Gallego Giraldo, L.; Ishiga, Y.; Dixon, R.A.; Mysore, K.S. Metabolic flux towards the (iso) flavonoid pathway in lignin modified alfalfa lines induces resistance against Fusarium oxysporum f. Sp. Medicaginis. Plant, Cell & Environment2018 , 41 , 1997-2007.
48. Ding, Y.; Yu, S.; Wang, J.; Li, M.; Qu, C.; Li, J.; Liu, L. Comparative transcriptomic analysis of seed coats with high and low lignin contents reveals lignin and flavonoid biosynthesis in Brassica napus. BMC Plant Biol. 2021 , 21 , 1-16.
49. Geng, P.; Zhang, S.; Liu, J.; Zhao, C.; Wu, J.; Cao, Y.; Fu, C.; Han, X.; He, H.; Zhao, Q. MYB20, MYB42, MYB43, and MYB85 regulate phenylalanine and lignin biosynthesis during secondary cell wall formation. Plant Physiol. 2020 , 182 , 1272-1283.
50. Dolan, W.L.; Dilkes, B.P.; Stout, J.M.; Bonawitz, N.D.; Chapple, C. Mediator complex subunits MED2, MED5, MED16, and MED23 genetically interact in the regulation of phenylpropanoid biosynthesis. The Plant Cell 2017 , 29 , 3269-3285.
51. Capron, A.; Chang, X.F.; Hall, H.; Ellis, B.; Beatson, R.P.; Berleth, T. Identification of quantitative trait loci controlling fibre length and lignin content in Arabidopsis thaliana stems. J. Exp. Bot. 2013 , 64 , 185-197.
52. Baudry, A.; Heim, M.A.; Dubreucq, B.; Caboche, M.; Weisshaar, B.; Lepiniec, L. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana.The Plant Journal 2004 , 39 , 366-380.
53. Nesi, N.; Jond, C.; Debeaujon, I.; Caboche, M.; Lepiniec, L. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed.The Plant Cell 2001 , 13 , 2099-2114.
54. Dubos, C.; Stracke, R.; Grotewold, E.; Weisshaar, B.; Martin, C.; Lepiniec, L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010 , 15 , 573-581.
55. Nesi, N.; Debeaujon, I.; Jond, C.; Pelletier, G.; Caboche, M.; Lepiniec, L. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. The Plant Cell 2000 , 12 , 1863-1878.
56. Walker, A.R.; Davison, P.A.; Bolognesi-Winfield, A.C.; James, C.M.; Srinivasan, N.; Blundell, T.L.; Esch, J.J.; Marks, M.D.; Gray, J.C. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. The Plant Cell 1999 , 11 , 1337-1349.
57. Appelhagen, I.; Thiedig, K.; Nordholt, N.; Schmidt, N.; Huep, G.; Sagasser, M.; Weisshaar, B. Update on transparent testa mutants from Arabidopsis thaliana: Characterisation of new alleles from an isogenic collection. Planta 2014 , 240 , 955-970.
58. Doyle, J.J.; Doyle, J.L.; Brown, A. Analysis of a polyploid complex in Glycine with chloroplast and nuclear DNA. Aust. Syst. Bot.1990 , 3 , 125-136.