References
1. Tai, T.Y.; Tsai, K.S.; Tu, S.T.; Wu, J.S.; Chang, C.I.; Chen, C.L.;
Shaw, N.S.; Peng, H.Y.; Wang, S.Y.; Wu, C.H. The effect of soy
isoflavone on bone mineral density in postmenopausal Taiwanese women
with bone loss: A 2-year randomized double-blind placebo-controlled
study. Osteoporosis Int. 2012 , 23 , 1571-1580.
2. Gutierrez-Gonzalez, J.J.; Vuong, T.D.; Zhong, R.; Yu, O.; Lee, J.;
Shannon, G.; Ellersieck, M.; Nguyen, H.T.; Sleper, D.A. Major locus and
other novel additive and epistatic loci involved in modulation of
isoflavone concentration in soybean seeds. Theor. Appl. Genet.2011 , 123 , 1375-1385.
3. Dhaubhadel, S.; Mcgarvey, B.D.; Williams, R.; Gijzen, M. Isoflavonoid
biosynthesis and accumulation in developing soybean seeds. Plant
Mol. Biol. 2003 , 53 , 733-743.
4. Li, X.; Kamala, S.; Tian, R.; Du, H.; Li, W.; Kong, Y.; Zhang, C.
Identification and validation of quantitative trait loci controlling
seed isoflavone content across multiple environments and backgrounds in
soybean. Mol. Breeding 2018 , 38 , 1-14.
5. Lowe, E.D.; Gao, G.; Johnson, L.N.; Keung, W.M. Structure of daidzin,
a naturally occurring anti-alcohol-addiction agent, in complex with
human mitochondrial aldehyde dehydrogenase. J. Med. Chem.2008 , 51 , 4482-4487.
6. Yang, M.H.; Jung, S.H.; Chinnathambi, A.; Alahmadi, T.A.; Alharbi,
S.A.; Sethi, G.; Ahn, K.S. Attenuation of STAT3 signaling cascade by
daidzin can enhance the apoptotic potential of bortezomib against
multiple myeloma. Biomolecules 2019 , 10 , 23.
7. Wei, G.; Liang, T.; Wei, C.; Nong, X.; Lu, Q.; Zhao, J. Daidzin
inhibits RANKL‐induced osteoclastogenesis in vitro and prevents
LPS‐induced bone loss in vivo. J. Cell. Biochem. 2019 ,120 , 5304-5314.
8. Zhao, L.; Chen, Q.; Brinton, R.D. Neuroprotective and neurotrophic
efficacy of phytoestrogens in cultured hippocampal neurons. Exp.
Biol. Med. 2002 , 227 , 509-519.
9. Xiao, F.; Cui, H.; Zhong, X. Beneficial effect of daidzin in dry eye
rat model through the suppression of inflammation and oxidative stress
in the cornea. Saudi J. Biol. Sci. 2018 , 25 ,
832-837.
10. Wang, W.; Yang, R.; Zhang, M.; Li, J.; Peng, J.; Xu, M.; Zhao, Y.;
Li, H.; Pan, X. Glycitin suppresses cartilage destruction of
osteoarthritis in mice. Inflammation 2020 , 43 ,
1312-1322.
11. Chen, Y.; Guo, S.; Jiang, K.; Wang, Y.; Yang, M.; Guo, M. Glycitin
alleviates lipopolysaccharide-induced acute lung injury via inhibiting
NF-κB and MAPKs pathway activation in mice. Int. Immunopharmacol.2019 , 75 , 105749.
12. Choi, Y.R.; Shim, J.; Kim, M.J. Genistin: A novel potent
anti-adipogenic and anti-lipogenic agent. Molecules2020 , 25 , 2042.
13. Graham, T.L. Flavonoid and isoflavonoid distribution in developing
soybean seedling tissues and in seed and root exudates. Plant
Physiol. 1991 , 95 , 594-603.
14. Lozovaya, V.V.; Lygin, A.V.; Zernova, O.V.; Li, S.; Hartman, G.L.;
Widholm, J.M. Isoflavonoid accumulation in soybean hairy roots upon
treatment with Fusarium solani. Plant Physiol. Bioch.2004 , 42 , 671-679.
15. Dong, W.; Song, Y. The significance of flavonoids in the process of
biological nitrogen fixation. Int. J. Mol. Sci. 2020 ,21 , 5926.
16. Dodds, P.N.; Rathjen, J.P. Plant immunity: Towards an integrated
view of plant–pathogen interactions. Nat. Rev. Genet.2010 , 11 , 539-548.
17. Algar, E.; Gutierrez-Mañero, F.J.; Garcia-Villaraco, A.;
García-Seco, D.; Lucas, J.A.; Ramos-Solano, B. The role of isoflavone
metabolism in plant protection depends on the rhizobacterial MAMP that
triggers systemic resistance against Xanthomonas axonopodis pv. Glycines
in Glycine max (L.) Merr. Cv. Osumi. Plant Physiol. Bioch.2014 , 82 , 9-16.
18. Kosslak, R.M.; Bohlool, B.B. Suppression of nodule development of
one side of a split-root system of soybeans caused by prior inoculation
of the other side. Plant Physiol. 1984 , 75 ,
125-130.
19. Kim, H.; Jang, Y.; Baek, I.; Lee, J.; Park, M.J.; Chung, Y.; Chung,
J.; Kim, J. Polymorphism and expression of isoflavone synthase genes
from soybean cultivars. Molecules & Cells (Springer Science &
Business Media BV) 2005 , 19 .
20. Mortier, V.; Fenta, B.A.; Martens, C.; Rombauts, S.; Holsters, M.;
Kunert, K.; Goormachtig, S. Search for nodulation-related CLE genes in
the genome of Glycine max. J. Exp. Bot. 2011 , 62 ,
2571-2583.
21. Naoumkina, M.; Farag, M.A.; Sumner, L.W.; Tang, Y.; Liu, C.; Dixon,
R.A. Different mechanisms for phytoalexin induction by pathogen and
wound signals in Medicago truncatula. Proceedings of the National
Academy of Sciences 2007 , 104 , 17909-17915.
22. Wegulo, S.N.; Yang, X.; Martinson, C.A.; Murphy, P.A. Effects of
wounding and inoculation with Sclerotinia sclerotiorum on isoflavone
concentrations in soybean. Can. J. Plant Sci. 2005 ,85 , 749-760.
23. Yao, L.; Zhong, Y.; Wang, B.; Yan, J.; Wu, T. BABA application
improves soybean resistance to aphid through activation of
phenylpropanoid metabolism and callose deposition. Pest Manag.
Sci. 2020 , 76 , 384-394.
24. Joshi, K.; Baumgardner, J.L.; Macphail, M.; Acharya, S.R.;
Blotevogel, E.; Dayan, F.E.; Nachappa, P.; Nalam, V.J. The source of
Rag5-mediated resistance to soybean aphids is located in the stem.Front. Plant Sci. 2021 , 1425.
25. Eldridge, A.C.; Kwolek, W.F. Soybean isoflavones: Effect of
environment and variety on composition. J. Agr. Food Chem.1983 , 31 , 394-396.
26. Jung, W.; Yu, O.; Lau, S.C.; O’Keefe, D.P.; Odell, J.; Fader, G.;
Mcgonigle, B. Identification and expression of isoflavone synthase, the
key enzyme for biosynthesis of isoflavones in legumes. Nat.
Biotechnol. 2000 , 18 , 208-212.
27. Liang, H.; Yu, Y.; Wang, S.; Yun, L.; Wang, T.; Wei, Y.; Gong, P.;
Liu, X.; Fang, X.; Zhang, M. QTL mapping of isoflavone, oil and protein
contents in soybean (Glycine max L. Merr.). Agricultural Sciences
in China 2010 , 9 , 1108-1116.
28. Wang, Y.; Han, Y.; Zhao, X.; Li, Y.; Teng, W.; Li, D.; Zhan, Y.; Li,
W. Mapping isoflavone QTL with main, epistatic and QTL× environment
effects in recombinant inbred lines of soybean. PLoS One2015 , 10 , e118447.
29. Zhang, H.J.; Li, J.W.; Liu, Y.J.; Jiang, W.Z.; Du, X.L.; Li, L.; Li,
X.; Su, L.T.; Wang, Q.Y.; Wang, Y. Quantitative trait loci analysis of
individual and total isoflavone contents in soybean seeds. J.
Genet. 2014 , 93 , 331-338.
30. Chu, S.; Wang, J.; Zhu, Y.; Liu, S.; Zhou, X.; Zhang, H.; Wang, C.;
Yang, W.; Tian, Z.; Cheng, H. An R2R3-type MYB transcription factor,
GmMYB29, regulates isoflavone biosynthesis in soybean. PLoS
Genet. 2017 , 13 , e1006770.
31. Anguraj Vadivel, A.K.; Renaud, J.; Kagale, S.; Dhaubhadel, S.
GmMYB176 regulates multiple steps in isoflavonoid biosynthesis in
soybean. Front. Plant Sci. 2019 , 10 , 562.
32. Gutierrez-Gonzalez, J.J.; Wu, X.; Zhang, J.; Lee, J.; Ellersieck,
M.; Shannon, J.G.; Yu, O.; Nguyen, H.T.; Sleper, D.A. Genetic control of
soybean seed isoflavone content: Importance of statistical model and
epistasis in complex traits. Theor. Appl. Genet. 2009 ,119 , 1069-1083.
33. Akkaya, M.S.; Bhagwat, A.A.; Cregan, P.B. Length polymorphisms of
simple sequence repeat DNA in soybean. Genetics 1992 ,132 , 1131-1139.
34.
Vogt,
T. Phenylpropanoid biosynthesis. Mol. Plant 2010 ,3 , 2-20.
35. Hu, Q.; Min, L.; Yang, X.; Jin, S.; Zhang, L.; Li, Y.; Ma, Y.; Qi,
X.; Li, D.; Liu, H. Laccase GhLac1 modulates broad-spectrum biotic
stress tolerance via manipulating phenylpropanoid pathway and jasmonic
acid synthesis. Plant Physiol. 2018 , 176 ,
1808-1823.
36.
Xue,
C.; Yao, J.; Xue, Y.; Su, G.; Wang, L.; Lin, L.; Allan, A.C.; Zhang, S.;
Wu, J. PbrMYB169 positively regulates lignification of stone cells in
pear fruit. J. Exp. Bot. 2019 , 70 , 1801-1814.
37.
Wang,
X.; Zhuo, C.; Xiao, X.; Wang, X.; Docampo-Palacios, M.; Chen, F.; Dixon,
R.A. Substrate specificity of LACCASE8 facilitates polymerization of
caffeyl alcohol for C-lignin biosynthesis in the seed coat of Cleome
hassleriana. The Plant Cell 2020 , 32 , 3825-3845.
38.
Dong,
N.; Lin, H. Contribution of phenylpropanoid metabolism to plant
development and plant–environment interactions. J. Integr. Plant
Biol. 2021 , 63 , 180-209.
39.
Gonzalez,
A.; Zhao, M.; Leavitt, J.M.; Lloyd, A.M. Regulation of the anthocyanin
biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in
Arabidopsis seedlings. The Plant Journal 2008 ,53 , 814-827.
40. Schmutz, J.; Cannon, S.B.; Schlueter, J.; Ma, J.; Mitros, T.;
Nelson, W.; Hyten, D.L.; Song, Q.; Thelen, J.J.; Cheng, J.; Xu, D.;
Hellsten, U.; May, G.D.; Yu, Y.; Sakurai, T.; Umezawa, T.;
Bhattacharyya, M.K.; Sandhu, D.; Valliyodan, B.; Lindquist, E.; Peto,
M.; Grant, D.; Shu, S.; Goodstein, D.; Barry, K.; Futrell-Griggs, M.;
Abernathy, B.; Du, J.; Tian, Z.; Zhu, L.; Gill, N.; Joshi, T.; Libault,
M.; Sethuraman, A.; Zhang, X.; Shinozaki, K.; Nguyen, H.T.; Wing, R.A.;
Cregan, P.; Specht, J.; Grimwood, J.; Rokhsar, D.; Stacey, G.;
Shoemaker, R.C.; Jackson, S.A. Genome sequence of the palaeopolyploid
soybean. Nature 2010 , 463 , 178-183.
41. Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.;
Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N. Phytozome: A
comparative platform for green plant genomics. Nucleic Acids Res.2012 , 40 , D1178-D1186.
42. Han, Y.; Li, D.; Zhao, G.; Zhao, X.; Jiang, Z.; Hu, H.; Wu, L.;
Wang, Y.; Gao, Y.; Li, Y. Dynamic quantitative trait loci underlies
isoflavone accumulation in soybean seed. Plant Breeding2016 , 135 , 335-341.
43. Sh, U.; Fmd, S.; Mauro, A. Marker-Assisted selection and
genomic selection ; Soybean Breeding, 2017.
44. Li, S. Transcriptional control of flavonoid biosynthesis:
Fine-tuning of the MYB-bHLH-WD40 (MBW) complex. Plant Signaling &
Behavior 2014 , 9 , e27522.
45. Besseau, S.; Hoffmann, L.; Geoffroy, P.; Lapierre, C.; Pollet, B.;
Legrand, M. Flavonoid accumulation in Arabidopsis repressed in lignin
synthesis affects auxin transport and plant growth. The Plant
Cell 2007 , 19 , 148-162.
46. Li, X.; Bonawitz, N.D.; Weng, J.; Chapple, C. The growth reduction
associated with repressed lignin biosynthesis in Arabidopsis thaliana is
independent of flavonoids. The plant cell 2010 ,22 , 1620-1632.
47. Gill, U.S.; Uppalapati, S.R.; Gallego Giraldo, L.; Ishiga, Y.;
Dixon, R.A.; Mysore, K.S. Metabolic flux towards the (iso) flavonoid
pathway in lignin modified alfalfa lines induces resistance against
Fusarium oxysporum f. Sp. Medicaginis. Plant, Cell & Environment2018 , 41 , 1997-2007.
48. Ding, Y.; Yu, S.; Wang, J.; Li, M.; Qu, C.; Li, J.; Liu, L.
Comparative transcriptomic analysis of seed coats with high and low
lignin contents reveals lignin and flavonoid biosynthesis in Brassica
napus. BMC Plant Biol. 2021 , 21 , 1-16.
49. Geng, P.; Zhang, S.; Liu, J.; Zhao, C.; Wu, J.; Cao, Y.; Fu, C.;
Han, X.; He, H.; Zhao, Q. MYB20, MYB42, MYB43, and MYB85 regulate
phenylalanine and lignin biosynthesis during secondary cell wall
formation. Plant Physiol. 2020 , 182 , 1272-1283.
50. Dolan, W.L.; Dilkes, B.P.; Stout, J.M.; Bonawitz, N.D.; Chapple, C.
Mediator complex subunits MED2, MED5, MED16, and MED23 genetically
interact in the regulation of phenylpropanoid biosynthesis. The
Plant Cell 2017 , 29 , 3269-3285.
51. Capron, A.; Chang, X.F.; Hall, H.; Ellis, B.; Beatson, R.P.;
Berleth, T. Identification of quantitative trait loci controlling fibre
length and lignin content in Arabidopsis thaliana stems. J. Exp.
Bot. 2013 , 64 , 185-197.
52. Baudry, A.; Heim, M.A.; Dubreucq, B.; Caboche, M.; Weisshaar, B.;
Lepiniec, L. TT2, TT8, and TTG1 synergistically specify the expression
of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana.The Plant Journal 2004 , 39 , 366-380.
53. Nesi, N.; Jond, C.; Debeaujon, I.; Caboche, M.; Lepiniec, L. The
Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a
key determinant for proanthocyanidin accumulation in developing seed.The Plant Cell 2001 , 13 , 2099-2114.
54. Dubos, C.; Stracke, R.; Grotewold, E.; Weisshaar, B.; Martin, C.;
Lepiniec, L. MYB transcription factors in Arabidopsis. Trends
Plant Sci. 2010 , 15 , 573-581.
55. Nesi, N.; Debeaujon, I.; Jond, C.; Pelletier, G.; Caboche, M.;
Lepiniec, L. The TT8 gene encodes a basic helix-loop-helix domain
protein required for expression of DFR and BAN genes in Arabidopsis
siliques. The Plant Cell 2000 , 12 , 1863-1878.
56. Walker, A.R.; Davison, P.A.; Bolognesi-Winfield, A.C.; James, C.M.;
Srinivasan, N.; Blundell, T.L.; Esch, J.J.; Marks, M.D.; Gray, J.C. The
TRANSPARENT TESTA GLABRA1 locus, which regulates trichome
differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a
WD40 repeat protein. The Plant Cell 1999 , 11 ,
1337-1349.
57. Appelhagen, I.; Thiedig, K.; Nordholt, N.; Schmidt, N.; Huep, G.;
Sagasser, M.; Weisshaar, B. Update on transparent testa mutants from
Arabidopsis thaliana: Characterisation of new alleles from an isogenic
collection. Planta 2014 , 240 , 955-970.
58. Doyle, J.J.; Doyle, J.L.; Brown, A. Analysis of a polyploid complex
in Glycine with chloroplast and nuclear DNA. Aust. Syst. Bot.1990 , 3 , 125-136.