Phytochemical |
In-vitro & in-vivo
model
|
Mechanism of action |
Reference |
Cinnamaldehyde derivatives 2’-(HCA), 2’-(BCA)
|
OSCC: SGT, YD-10B.
SCC-15, HEp-2, In-vivo
|
Anti-proliferative, ↑apoptosis, Cytotoxic, cell cycle arrest at G2/M,
↑Caspase 3,7,9, ↑PARP, ↑p21, ↑Bak1, ↓Bcl-2.
Antiproliferative, ↑apoptosis, Arrest cell cycle at G2/M.
|
(Ahn et al., 2015)
(Kim et al., 2010)
|
Indole-3-Carbinol (I3C)+TPA+CaCl2.
I3C derivative (OSU-A90).
|
SCC 25, FaDu, Detroit, KJD, Cal-27.
SSC4, SCC15, SCC2095
|
┴growth, Cytotoxic, ↓Colony formation, ↑G1/S phase arrest.
Antiproliferative, ↑apoptosis, Arrest G1 phase, ↑ROS & ER stress,
increases ↑PARP cleavage, ↑cytochrome-c, ↓NF-Kβ, ↓Akt.
|
(Dahler et al., 2007)
(Weng et al., 2010)
|
Kaempferol-3-O-rhamnoside |
CNE-1 |
┴migration, ┴invasion,
┴proliferation, ↓Rho c, ↓MTA1, ↓MMP7 and ↓MMP9, ↓EGFR, ↓PERK. |
(Huang
et al., 2017) |
Luteolin and nano-luteolin |
Tu212, In-vivo
|
Inhibit tumor
growth and colony forming ability in Xenograft mouse model. |
(Majumdar
et al., 2014) |
Resveratrol and 5-Fluorouracil
Coencapsulated in PEGylated Nanoliposome
|
NT8e, In-vivo: DMBA induced carcinogenesis model.
|
Increased the cytotoxicity activity, both showed different effects on
different genes that may influence the net antagonistic effect.
|
(Mohan et al., 2014)
|
SalB PLC-NPs |
HN-13, HN-30. |
Antiproliferative effect, ↑apoptosis,
cell cycle arrest. |
(Li et al., 2016) |
Ursolic acid- (UA-PTX-LiP) |
HSC-3 |
↑Cytotoxicity, ↑apoptosis. |
(Lv
et al., 2018) |
Hesperetin loaded Nanoparticles (HETNPs) |
DMBA indued carcinogenesis
model. |
↑metabolic activity, ↓ Redox ratio [(FAD/NADH+FAD)]. |
(Gurushankar et al., 2015) |