Phytochemical In-vitro & in-vivo model Mechanism of action Reference
Cinnamaldehyde derivatives 2’-(HCA), 2’-(BCA)
OSCC: SGT, YD-10B. SCC-15, HEp-2, In-vivo Anti-proliferative, ↑apoptosis, Cytotoxic, cell cycle arrest at G2/M, ↑Caspase 3,7,9, ↑PARP, ↑p21, ↑Bak1, ↓Bcl-2. Antiproliferative, ↑apoptosis, Arrest cell cycle at G2/M. (Ahn et al., 2015) (Kim et al., 2010)
Indole-3-Carbinol (I3C)+TPA+CaCl2. I3C derivative (OSU-A90). SCC 25, FaDu, Detroit, KJD, Cal-27. SSC4, SCC15, SCC2095 ┴growth, Cytotoxic, ↓Colony formation, ↑G1/S phase arrest. Antiproliferative, ↑apoptosis, Arrest G1 phase, ↑ROS & ER stress, increases ↑PARP cleavage, ↑cytochrome-c, ↓NF-Kβ, ↓Akt. (Dahler et al., 2007) (Weng et al., 2010)
Kaempferol-3-O-rhamnoside CNE-1 ┴migration, ┴invasion, ┴proliferation, ↓Rho c, ↓MTA1, ↓MMP7 and ↓MMP9, ↓EGFR, ↓PERK. (Huang et al., 2017)
Luteolin and nano-luteolin Tu212, In-vivo Inhibit tumor growth and colony forming ability in Xenograft mouse model. (Majumdar et al., 2014)
Resveratrol and 5-Fluorouracil Coencapsulated in PEGylated Nanoliposome
NT8e, In-vivo: DMBA induced carcinogenesis model.
Increased the cytotoxicity activity, both showed different effects on different genes that may influence the net antagonistic effect.
(Mohan et al., 2014)
SalB PLC-NPs HN-13, HN-30. Antiproliferative effect, ↑apoptosis, cell cycle arrest. (Li et al., 2016)
Ursolic acid- (UA-PTX-LiP) HSC-3 ↑Cytotoxicity, ↑apoptosis. (Lv et al., 2018)
Hesperetin loaded Nanoparticles (HETNPs) DMBA indued carcinogenesis model. ↑metabolic activity, ↓ Redox ratio [(FAD/NADH+FAD)]. (Gurushankar et al., 2015)