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anisotropic parabolic Ni-Serrin type equations with nonstandard nonlinearity
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Because the nonlinear perturbation leads to di¢ culties (it does not have a def-
inite sign) in obtaining a priori estimates in the energy method, we had to
modify the Tartar method signi�cantly. Under suitable assumptions, we obtain
the global existence, decay, and extinction of solutions.
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1 Introduction

In this paper, we discuss the global, extinction and decay of solutions for the
following parabolic equations with the Ni-Serrin type problems a nonstandard
growth nonlinearity:8<: u0 �Au+ f (x; u) = 0, x 2 
; t > 0;

u (x; t) = 0, x 2 @
; t > 0;
u (x; 0) = u0 (x) , x 2 
;

(1)
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where 
 � RN (N � 2) is a smooth bounded domain with a smooth boundary
@
, u0 = @u=@t, f (x; u) = � jujq(x)�1 and the Ni-Serrin type operator A given
by

Au := �div

0@0@1 + jrujp(x)q
a+ jruj2p(x)

1A jrujp(x)�2ru
1A ;

where a � 0 is a constant. Moreover, q is continuous and p is log-Hölder
continuous (see [12]), that is, there exists a constant C > 0 such that, for any
x; y 2 
, we have

jp(x)� p(y)j � C

ln
�
e+ jx� yj�1

� : (2)

Assume further that

2 � p� := min


p(�) � p(x) � max



p(�) := p+ < +1; (3)

and
2 < q� := min



q(�) � q(x) � max



q(�) := q+ < +1: (4)

The main feature of equation (1) is the variable character of nonlinearity
f which causes a gap between the monotonicity and coercivity conditions.
Because of this gap, equations of the type (1) are usually termed equations with
nonstandard growth conditions.
PDEs with nonstandard growth nonlinearities (or variable exponent type)

have been very interested from the purely mathematical point of view. On
the other hand, their study is motivated by various applications where such
equations appear in the most natural way. Recently, parabolic equations in-
volving nonstandard growth nonlinearities were studied in the mathematical
descriptions of motions of the non-newtonian �uids, electrorheological �uids in
[1; 2; 4; 15; 27].
Let�s note that, in the stationary case with a = 1 and f (x; u) = �g (x; u)

problem (1) turns into the following problem:8<: �div
��
1 + jrujp(x)p

1+jruj2p(x)

�
jrujp(x)�2ru

�
= g (x; u) , in 
;

u = 0, on @
:
(5)

Recently, problem (5) has begun studied more and more (see [5; 7; 11; 14; 26; 28; 32; 33]).
Let us recall some known results of the problem (5). When the primitive G of
g oscillates at in�nity, Shokooh and Neirameh [28] obtained the existence of
in�nitely many weak solutions for this problem by using Ricceri�s variational
principle. For the case of g (x; u) = �h (x; u) is p+-superlinear at in�nity, Zhou
[33] and Ge [14] both obtained the existence of a nontrivial solution of the prob-
lem (5) for every parameter � > 0, under suitable conditions on the function
h. Rodrigues in [26], by using Fountain Theorem, established the existence of
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sequence of high energy solutions for problem (5) under appropriate conditions
on the function f .
Problem (5) can be viewed as a generalization of the equation

�div ruq
1 + jruj2

= f (u) , in RN ; (6)

with very general right hand side f , where

G(u) =
ruq

1 + jruj2

is the Kirchho¤ stress term and the source term f was very general, was initi-
ated by Ni and Serrin [23; 24]. Some authors studied the radial solutions of the
problem (6) in the context of the analysis of capillary surfaces for a function f
of the form f(u) = ku, for k > 0 (for more details see [10; 13; 17]). Capillarity
can be brie�y explained by considering the e¤ects of two opposing forces: adhe-
sion, i.e. the attractive (or repulsive) force between the molecules of the liquid
and those of the container; and cohesion, i.e. the attractive force between the
molecules of the liquid. The study of capillary phenomena has gained some at-
tention recently. This increasing interest is motivated not only by fascination in
naturally-occurring phenomena such as the motion of drops, bubbles, and waves
but also its importance in applied �elds ranging from industrial and biomedical,
and pharmaceutical to micro�uidic systems.
In the case a = 0 problem (1) turns into the following p (�)-Laplacian prob-

lem: 8<: u0 � div(jrujp(x)�2ru) + f (x; u) = 0, x 2 
; t > 0;
u (x; t) = 0, x 2 @
; t > 0;
u (x; 0) = u0 (x) , x 2 
:

(7)

When f (x; u) = juj�(x), Lourêdo et. al concerned with the study of the global
existence and the decay of solutions of an evolution problem driven by an
anisotropic operator and a nonlinear perturbation, both of them having a vari-
able exponent in [20]. Because the nonlinear perturbation leads to di¢ culties
in obtaining a priori estimates in the energy method, the authors had to sig-
ni�cantly modify the Tartar method. As a result, they proved the existence
of global solutions at least for small initial data. The decay of the energy was
derived by using a di¤erential inequality and applying a non-standard approach.
There are many works regarding parabolic problems with nonlinearities of

nonstandard growth nonlinearities (see [3; 6; 8; 9; 16; 18; 21; 25].
In this paper, we consider (1) and establish the global, extinction and decay

of weak solutions. We cannot apply the energy method to obtain the existence
of solutions of problem (1) because the term �

R


jujq(x)�1 udx; � > 0 does not

have a de�nite sign. To overcome this di¢ culty we apply the method which has
its motivation in the work of Tartar [31] (see also [20; 22]).
In developing our study, we consider both the Lebesgue space with variable

exponent Lq(�)(
) and the Sobolev spaces with variable exponents W 1;p(�)(
).
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Denote by S(
) the set of all measurable real functions de�ned on 
. Let
q 2 C+(
) :=

�
q 2 C(
) : minx2
 q(x) > 1

	
. We de�ne the Lebesgue space

with variable exponent as

Lq(�)(
) :=

�
u : u 2 S(
);

Z



ju(x)jq(x) dx <1
�
:

The set Lq(�)(
), equipped with the Luxemburg norm

kukLq(�)(
) := kukq(�) = inf
(

 > 0 :

Z



����u(x)

����q(x) dx � 1

)
;

is a Banach space. The modular of Lq(�) (
), which is the mapping �q(�) (u) :
Lq(�) (
)! R, de�ned by

�q(�) (u) :=

Z



ju(x)jq(x) dx

is a modular on Lq(�) (
). For p 2 C+(
), we de�ne the Sobolev space with
variable exponent, W 1;p(�) (
), as the space of functions u 2 Lp(�)(
), such that
@u
@xi

2 Lp(�)(
), i = 1; :::; N , equipped with the norm

kukW 1;p(�)(
) := kuk1;p(�) = kukp(�) + krukp(�) , u 2W
1;p(�) (
) :

We denoteW 1;p(�)
0 (
) := C10 (
)

W 1;p(�)(
). Furthermore, for all u 2W 1;p(�)
0 (
),

we can de�ne an equivalent norm kuk
W

1;p(�)
0 (
)

such that

kuk
W

1;p(�)
0 (
)

= krukp(�) ;

since 
 is bounded. Let us �rst observe that, for all u 2 W
1;p(�)
0 (
) and

jrujp(x)�2ru 2 Lp0(�) (
), the dual space ofW 1;p(�)
0 (
) is denoted by

�
W

1;p(�)
0 (
)

��
:=

W
�1;p0(�)
0 (
), where 1=p(x) + 1=p0(x) = 1, 8x 2 
.
Set

B (u) =

Z



NX
i=1

1

p(x)

0@���� @u@xi
����p(x)�1 +

s
a+

���� @u@xi
����2p(x)

1A dx;8u 2W 1;p(�)
0 (
) :

We have the following proposition.

Proposition 1 (see [26]). The following assertions hold:
(i) B 2 C1(W

1;p(�)
0 (
) ;R) is convex and sequentially weakly lower semi-

continuous and

hB0 (u) ; �i =
NX
i=1

Z



0BB@���� @u@xi
����p(x)�2 @u@xi +

��� @u@xi ���2p(x)�2 @u
@xir

a+
��� @u@xi ���2p(x)

1CCA @�

@xi
dx
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for all u; � 2 W 1;p(�)
0 (
);

(ii) B0 :W
1;p(�)
0 (
)!W

�1;p0(�)
0 (
) is a mapping of type (S+), i.e., un * n

in W 1;p(�)
0 (
) and

lim sup
n!1

hB0 (un) ; un � ui � 0

imply un ! u in W 1;p(�)
0 (
);

(iii) B0 :W
1;p(�)
0 (
)!W

�1;p0(�)
0 (
) is a strictly monotone, bounded home-

omorphism.

Moreover, it is well known that if 1 < q� � q+ <1, 1 < p� � p+ <1, then
the spaces

�
Lq(�) (
) ; k�kq(�)

�
,
�
W 1;p(�) (
) ; k�k1;p(�)

�
and

�
W

1;p(�)
0 (
) ; k�k0;1;p(�)

�
are separable and re�exive Banach spaces. We refer to [12; 19] for further prop-
erties of variable exponent Lebesgue-Sobolev spaces.

Proposition 2 (see [12; 19]). If 1 < h� � h+ < +1 is satis�ed, then for
any u 2 Lh(�) (
) the following inequalities are provided.
(i) kukh

�

h(�) � �h(�) (u) � kuk
h+

h(�) if kukh(�) > 1;
(ii) kukh

+

h(�) � �h(�) (u) � kuk
h�

h(�) if kukh(�) � 1.

Proposition 3 (Hölder-type inequality, see [12; 19]). Let p 2 L1+ (
). The con-
jugate space to Lp(�) (
) is Lp

0(�) (
), where 1=p(x)+1=p0(x) = 1 for almost every
(a.e.) x 2 
. Moreover, the following inequality hold����Z




u(x)�(x)dx

���� � 2 kukp(�) k�kp0(�) ;
for all u 2 Lp(�) (
) and � 2 Lp0(�) (
).

Proposition 4 (see [12; 19]). (i) Let 
 be a bounded domain in RN with
smooth boundary @
 and p 2 Plog(
). Let q : 
 ! [1;+1) be a measurable
and bounded function and suppose that q (x) � p� (x) = Np(x)= (N � p(x))+ for
a.e. x 2 
. Then W 1;p(�) (
) is continuously embedded in Lq(�) (
). In addition,
assume that ess inf

x2

fp� (x)� q(x)g > 0. Then the embedding W 1;p(�)

0 (
) ,!

Lq(�) (
) is compact.
In particular, if p� � 2N

N+2 , then there exists a positive constant S such that

kuk2 � S kukW 1;p(�)
0 (
)

; 8u 2W 1;p(�)
0 (
) : (8)

(ii) If p1; p2 2 L1(
), 1 < p1(x) � p2(x) for any x 2 
, then Lp2(�) (
)
,! Lp1(�) (
), and the imbedding is continuous.

Under the (3) ; (4) and Proposition 4, we obtain

W
1;p(�)
0 (
) ,!,! Lq

+

(
) ,! Lq(�) (
) ,! Lq
�
(
) ,! L2 (
) : (9)
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For the sake of simplicity, we denote the norm k�kLp(
) by k�kp (1 � p < +1)
and W 1;p(�)

0 (
) by X0.
Then for weak solution of problem (1), we have the following de�nition.

De�nition 5 We de�ne a function u 2 L1(0; T ;X0) with u0 2 L2(0; T ;L2(
))
to be a weak solution of problem (1), if it satis�es the initial condition u(:; 0) :=
u0 2 X0, and

(u0; �) + hB0 (u) ; �i+ �
Z



jujq(x)�1 �dx = 0

for all � 2 X0, and for a.e. t 2 (0; T ).

2 Main Results

In this section, we study the global solutions, decay estimates, and extinction
of solutions of the problem (1) under suitable assumptions.
By (9) there exists a constant K > 0 such that

kukq(�) � K kukX0
;8u 2 X0: (10)

Let K0 = max f1;Kg where K is the embedding constant given in inequality
(10).
Now we can state our main results as follows.

Theorem 6 (Global solutions). Assume that hypothesis (2) holds. If p�; p+; q+

satisfy

2 � p� � p+ < q� � q+ < Np�

N � p� ; (11)

and u0 2 X0 satis�es 

u0


X0
< � � 1; (12)

with

2

p�

�

u0

2
X0
+


u0

p�

X0

�
+ �K

q+

0



u0

q�
X0
+K1 <

�
2

p+Nq��1 � �K
q+

0

�
�q

�
;

(13)
where

K1 =
2p� + 2p+ + j
j

p
ap+

p�p+
+
q� + q+

q�q+
; a � 0;

� 2
 
0;min

(
2

p+Nq��1K
q+

0

; q+

)!
;

then there exists a function u : 
� [0;+1), in the class:

u 2 L1(0;1;X0); u0 2 L2(0;1;L2(
)) (14)

which is a weak solution of (1) in L2loc(0;1;X�
0 ) and u(0) := u

0 in 
.
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Let u be the solution given by Theorem 6. De�ne the energy F (t) by

F (t) =

Z



u2dx: (15)

From (14), we have that F 2 C([0;+1);L2(
)).
Theorem 7 (Decay estimates). Let u be the solution given by Theorem 6 . Sup-
pose that (2) and (11) hold. Then
(i) if p� = 2, that is, p(x) = 2, 8x 2 
, we have

F (t) � F (0)e��t; (16)

where F (0) =
R


u2(0)dx, � = 1+2b

S2 , b = 1 �
a

a+D4 > 0 with a � 0, D > 0 are
constants and S is the embedding constant of the (8).
(ii) if p� > 2, we have8><>: kuk2 �

h

u0

2�p�
2

+ �1
p��2
2 t

i 1

2�p�
;

u0

 � � b1�1� 1

p�
;

(17)

where , �1 =
1+2b

Sp+
, b = 1� a

a+minfD2p� ;D2p+g > 0.

Theorem 8 (Extinction of solutions). Assume that hypotheses (3), 0 < u0 2
L1(
) \X0 and

2N

N + 2
< p� � p+ < q� < 2

hold. Then the weak solution of problem (1) vanishes in �nite time for non-
negative initial data satisfying following estimate:

min
n
1;


u0

2�p�

2

o
max

n
ku0kq��p�2 ; ku0kq+�p�2

o > 2 (j
j+ 1)(2�q
�)=2

(b+ 1)S�p
�

0

;

where S0 = max f1; Sg and S is embedding constant given in (8). More precisely
speaking, we have the following estimates

ku (t)k2�p
�

2

�


u0

2�p�

2
�
�
2� p�

� �
�1min

�
1;


u0

p+�p�

2

�
� �1max

�

u0

q��p�
2

;


u0

q+�p�

2

��
t

for t 2 (0; T �), and
ku (t)k2 � 0

for t 2 [T �;+1), with

T � =



u0

2�p�
2

(2� p�)
h
�1min

n
1; ku0kp+�p�2

o
� �1max

n
ku0kq��p�2 ; ku0kq+�p�2

oi ;
where �1 = 2 (1 + b)S

�p�
0 , �1 = 4 (j
j+ 1)(

2�q�)=2.
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2.1 Global Existence

In this section, we �rst introduce the following auxiliary lemma, which we will
use to obtain existence of global weak solution of problem (1).

Lemma 9 Assume that 2 � p� � p+ < q� � q+ and �1; :::; �N � 0 withPN
i=1 �i � 1 hold. Then, we have 

NX
i=1

�p
�

i

! 1
2

�
NX
i=1

�i � N
q��1
q�

 
NX
i=1

�p
+

i

! 1

q�

; (18)

and  
NX
i=1

�p
+

i

! 1

p�

�
NX
i=1

�i � N
p+�1
p+

 
NX
i=1

�p
�

i

! 1

p+

: (19)

Proof of Lemma 9. For �i < 1 (i = 1; :::; N), we have�
�p

�

i

� 1
2

= �
p�
2
i � �i � �

p+

q�
i =

�
�p

+

i

� 1

q�
: (20)

Summing (20) over i, we easily get

NX
i=1

�i �
NX
i=1

�
�p

�

i

� 1
2 �

 
NX
i=1

�p
�

i

! 1
2

;

and
NX
i=1

�i �
NX
i=1

�
�p

+

i

� 1

q�
:

Since '(t) = tq
�
is convex, by applying Jensen�s inequality we have

0B@
PN

i=1

�
�p

+

i

� 1

q�

N

1CA
q�

= '

0B@
PN

i=1

�
�p

+

i

� 1

q�

N

1CA �

PN
i=1 '

�
�p

+

i

� 1

q�

N
:

Then PN
i=1

�
�p

+

i

� 1

q�

N
�
 PN

i=1 �
p+

i

N

! 1

q�

:

That is
NX
i=1

�
�p

+

i

� 1

q� � N
q��1
q�

 
NX
i=1

�p
+

i

! 1

q�

:
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Thus
NX
i=1

�i �
NX
i=1

�
�p

+

i

� 1

q� � N
q��1
q�

 
NX
i=1

�p
+

i

! 1

q�

:

Similarly we obtain�
�p

+

i

� 1

p�
= �

p+

p�
i � �i � �

p�
p+

i =
�
�p

�

i

� 1

p+

: (21)

Summing (21) over i, we have

NX
i=1

�i �
NX
i=1

�
�p

+

i

� 1

p� �
 

NX
i=1

�p
+

i

! 1

p�

;

and
NX
i=1

�i �
NX
i=1

�
�p

�

i

� 1

p+ � N
p+�1
p+

 
NX
i=1

�p
�

i

! 1

p+

:

Thus the proof of Lemma 9 is complete.
Now, we prove the existence of global weak solution for (1) with small ini-

tial data. We shall employ the Galerkin�s method. Consider a Schauder basis
f!1; !2; :::; !N ; :::g of X0. Let um be an approximate solution of problem (1)
de�ned by

um(x; t) =

mX
j=1

gjm (t)!j(x), m = 1; 2; :::;

where the coe¢ cients gjm (t) 2 C1[0; T ] (1 � j � m) satisfy the system of ordi-
nary di¤erential equations

(u0m; !j) + hA0 (um) ;r!ji+
Z



jumjq(x)�1 !jdx = 0; (22)

with

um(x; 0) =
mX
j=1

gjm (0)!j(x)! u0(x) strongly in X0; (23)

for all � 2 Vm = span f!1; !2; :::; !mg the subspace of dimension m of X0
generated by !1; !2; :::; !m and !m (0) := !0m 2 Vm;as m! +1.
We denote by [0; tm) the maximal interval of existence of the solution um.

By (11) and (12), we obtain

u0m

X0
< � � 1;8m � m0;

and

2

p�

�

u0m

2X0
+


u0m

p�X0

�
+ �K

q+

0



u0m

q�X0
+K1 <

�
2

p+Nq��1 � �K
q+

0

�
�q

�
:

Fixing m such that m � m0, we have the following estimate:
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Lemma 10 Assume that hypotheses (3) ; (4) and (11) hold. Suppose that �
satisfy the conditions (12) and (13) of Theorem 6 . Then we have kum (t)kX0

<
�; 8t � 0;m 2 N.

Proof of Lemma 10. We argue by contradiction. In fact, suppose that there
exist m 2 N and t1 2 (0; tm) such that

kum(t1)kX0
� �:

Consider the subset � of (0; tm) de�ned by:

< =
�
� 2 (0; tm) : kum(�)kX0

� �
	
; (24)

and inf�2< � = t0. Then we have kum(t0)kX0
= � and t0 > 0. < is not empty,

because of (24). It is a closed set because the function ' (t) := kum(t)kX0

is continuous on [0; tm). In fact, the function ' is continuous on [0; tm) then
' (t0) � �. If ' (t0) > �, the Intermediate Value Theorem and noting that
' (0) < �, imply that t0 is not the in�mum on <, which is a contradiction.
Thus ' (t0) = �. Also t0 > 0 because ' (0) < �. Note that ' (t) < � for all
0 � t < t0.
Consider t 2 [0; t0) and multiplying (22) by g0jm(t) and summing over j give

ku0m (�)k
2
2

+
NX
i=1

Z



0BB@����@um (t)@xi

����p(x)�2 +
���@um(t)@xi

���p(x)�2r
a+

���@um(t)@xi

���2p(x)
1CCA @um (t)

@xi

@u0m (t)

@xi
dx

+ �

Z



jum (t)jq(x)�1 u0m(t)dx = 0:

It follows

ku0m (�)k
2
2 +

d

dt

NX
i=1

Z



1

p(x)

0@����@um (t)@xi

����p(x) +
s
a+

����@um (t)@xi

����2p(x)
1A dx

+�
d

dt

Z



jum (t)jq(x)�1 um (t)
q(x)

dx = 0:
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Integrating both sides of this equality with respect to t,Z t

0

ku0m (�)k
2
2 d� +

NX
i=1

Z



1

p(x)

0@����@um (t)@xi

����p(x) +
s
a+

����@um (t)@xi

����2p(x)
1A dx

+�

Z



jum (t)jq(x)�1 um (t)
q(x)

dx

=
NX
i=1

Z



1

p(x)

0@����@u0m@xi
����p(x) +

s
a+

����@u0m@xi
����2p(x)

1A dx
+�

Z



��u0m��q(x)�1 u0m
q(x)

dx; (25)

and then we have Z t

0

ku0m (�)k
2
2 d� + I(um) = I(u

0
m);

where I : X0 ! R is de�ned by:

I(u)

=
NX
i=1

Z



1

p(x)

0@����@um (t)@xi

����p(x) +
s
a+

����@um (t)@xi

����2p(x)
1A dx+ � Z




jujq(x)�1 u
q(x)

dx:

The main question, in this point of the proof, is to show that under the
assumptions (11) and (12), we can control the sign of I(u), for u = um(�; t)
approximate solution of (22), 0 � t < t0 and at u = u0 , in the inequality (25).
Since ����@um (t)@xi

����p(x) �
s
a+

����@um (t)@xi

����2p(x); a � 0; (26)

and s
a+

����@u0m@xi
����2p(x) � pa+ ����@u0m@xi

����p(x) ; (27)

by (25) ; (26) and (27) we getZ t

0

ku0m (�)k
2
2 d� +

2

p+

NX
i=1

Z



����@um(t)@xi

����p(x) dx+ �

q+

Z



jum (t)jq(x)�1 um (t) dx

� 1

p�

NX
i=1

Z



 
p
a+ 2

Z



����@u0m@xi
����p(x)

!
dx+

�

q�

Z



��u0m��q(x)�1 u0mdx: (28)

By using Proposition 2 (ii), (10), and since kumkX0
< 1, we have���� �q+

Z



jum(t)jq(x)�1 um(t)dx
���� � �

q+

Z



jum(t)jq(x) dx

� �

q+

�
kum(t)kq

+

q(�) + kumk
q�

q(�)

�
� K

q+

0 kum(t)kq
�

X0
; (29)

11



Let us choise a � such that �
q+ < 1. Therefore it follows from Proposition 2 (ii)

that
2

p+

NX
i=1





@um(t)@xi





p+
p(�)

� 2

p+

NX
i=1

Z



����@um(t)@xi

����p(x) dx: (30)

By (18) and (30), we have

2

p+Nq��1 kum(t)k
q�

X0
� 2

p+

NX
i=1





@um(t)@xi





p+
p(�)

� 2

p+

NX
i=1

Z



����@um(t)@xi

����p(x) dx; (31)

By (18) and (19), we have

2

p�

NX
i=1

Z



����@u0m@xi
����p(x) dx

� 2

p�

NX
i=1





@u0m@xi




p

�

p(�)
+
2

p�

NX
i=1





@u0@xi





p
+

p(�)

� 2

p�


u0m

2X0

+
2

p�


u0m

p�X0

: (32)

Similarly the inequality (29) and noting that


u0m

X0

< 1, because t 2 [0; t0) it
follows that ���� 1q�

Z



��u0m��q(x)�1 u0mdx���� � Kq+

0



u0m

q�X0
;

on the other hand

1

p�

 
2

NX
i=1

Z



����@u0m@xi
����p(x) +pa

!
dx � 2

p�

�

u0m

p�X0

�
+

p
aN j
j
p�

: (33)

Plugging (29) ; (31) ; (32) ; (33) into (28), we obtainZ t

0

ku0m (�)k
2
2 d� +

�
2

p+Nq��1 � �K
q+

0

�
kum(t)kq

�

X0

� 2

p�

�

u0m

2X0
+


u0m

p�X0

�
+ �K

q+

0



u0m

q�X0
+K1;

for all 0 � t < t0, where

� < min

(
2

p+Nq��1K
q+

0

; q+

)
;

and

K1 =

p
a j
jN
p�

:

12



Therefore,

2

p�

�

u0m

2X0
+


u0m

p�X0

�
+ �K

q+

0



u0m

q�X0
+K1 <

�
2

p+Nq��1 � �K
q+

0

�
�q

�
;

and�
2

p+Nq��1 � �K
q+

0

�
kum(t)kq

�

X0
<

2

p�

�

u0m

2X0
+


u0m

p�X0

�
+ �K

q+

0



u0m

q�X0
+K1

< r <

�
2

p+Nq��1 � �K
q+

0

�
�q

�

for some r 2 R+. Taking the limit t! t0, t < t0 , in the above inequality,

0 �
�

2

p+Nq��1 � �K
q+

0

�
kum(t)kq

�

X0
� r <

�
2

p+Nq��1 � �K
q+

0

�
�q

�

which is a contradiction because kum (t0)kX0
= �. Thus the Lemma 10 is

proved.
Proof of Theorem 6. Using the convergence (23), Lemma 10 and the
Gronwall�s lemma, there exists a constant C > 0 independent of t;m such thatZ t

0

ku0m (�)k
2
2 d� +

2

p+
kum(t)kp

�

X0
� C:

By properties of operator A, we obtain that there exist u, � and a subse-
quence of fumg (still denoted by fumg), such that, as m!1,

um
�
* u in L1(0;1;X0); (34)

u0m * u0 in L2(0;1;L2(
)): (35)

Since B is monotone, bounded homeomorphism and (S+) type (see Proposition
1) we get

B (um)
�
* � in L1(0;1;X�

0 ):

The next step is to prove that � = Bu and for that we need to show thatZ T

0

Z



jumjq(x)�1 umdxdt!
Z T

0

Z



jujq(x)�1 udxdt (36)

for any T > 0. By compactness X0 ,!,! Lq
+

(
), (34), (35) and Aubin�Lions�
Simon Lemma (see [29], Corollary 4), we get

um ! u in C([0; T ] ;Lq
+

(
)):

So,
um ! u in Lq

+

(QT ); (37)
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and
um (x; t)! u (x; t) a.e. in QT :

This implies
jumjq(x)�1um ! jujq(x)�1u a.e. (x; t) 2 QT : (38)

By (37), we deriveZ
QT

�
jumjq(x)�1 um

� q+

q+�1
dxdt

�
Z
QT\f(x;t)2QT :jum(x;t)j�1g

�
jumjq(x)�1

� q+

q+�1
dxdt

+

Z
QT\f(x;t)2QT :jum(x;t)j>1g

�
jumjq(x)�1

� q+

q+�1
dxdt

� T j
j+
Z
QT

jumjq
+

dxdt � C;8m 2 N;

that is, Z
QT

jumjq
+

dxdt � C;8m 2 N: (39)

From (38), (39) and Lions�Lemma (see [30]) it follows that

jumjq(x)�1um * jujq(x)�1u in L
q+

q+�1 (QT ) : (40)

This result and convergence (37) imply convergence (36).

From the monotonicity of the operator s 7�! jsjp�2 s+ jsj2p�1sp
a+jsj2p

(see [26]),

the convergences (36) and (38), we deduce (see [30])

� = Au. (41)

Also, by applying the diagonalization process to the sequence of fumg, we �nd
from (40)

jumjq(x)�1um * jujq(x)�1u in L
q+

q+�1 (QT ) ;8T > 0: (42)

Convergences (41) and (42) allows us to pass to the limit in the approximate
equation (22) and so it holds thatZ 1

0

(u0 (t) ; �) dt

+

Z 1

0

NX
i=1

Z



0BB@���� @u@xi
����p(x)�2 +

��� @u@xi ���2p(x)�2r
a+

��� @u@xi ���2p(x)
1CCA @u

@xi
� @�
@xi

dxdt+ �

Z 1

0

ju (t)jq(x)�1 �dt = 0;

for all � 2 L2loc (0;1;X0) and supp � compact in (0;1). Taking � 2 C10 (
 �
(0; T )) in the last equality, we �nd equation (1). The initial condition u(0) = u0

14



in 
 follows by convergences (34) and (35). This concludes the proof of Theorem
6.

2.2 Decay of Solutions

Now, we give the decay of solution to the problem (1).
Proof of Theorem 7. By Multiplying both sides of the �rst equation in 1 by
u and integrating on 
, we obtain

1

2

d

dt
ku (t)k22 +

NX
i=1

Z



0BB@���� @u@xi
����p(x) +

��� @u@xi ���2p(x)r
a+

��� @u@xi ���2p(x)
1CCA dx

+�

Z



ju (t)jq(x)�1 u (t) dx = 0: (43)

It is easy to see that��� @u@xi ���2p(x)r
a+

��� @u@xi ���2p(x)
=

��� @u@xi ���2p(x)
r
a+

��� @u@xi ���2p(x)
a+

��� @u@xi ���2p(x)

=

s
a+

���� @u@xi
����2p(x)

0B@1� a

a+
��� @u@xi ���2p(x)

1CA
� b

s
a+

���� @u@xi
����2p(x) � b ���� @u@xi

����p(x) ; i = 1; :::; N (44)

where ���� @u@xi
���� � D > 0, b = 1� a

a+min
�
D2p� ; D2p+

	 > 0:
From (43) and (44) we get

d

dt
ku (t)k22 + 2 (b+ 1)

NX
i=1

Z



���� @u@xi
����p(x) dx+ 2Z




ju (t)jq(x)�1 u (t) dx � 0: (45)

As ku (t)kX0
< 1, from Proposition 2 (ii) and (10), we �nd����� Z



ju (t)jq(x)�1 u (t) dx
���� � �

Z



ju(t)jq(x) dx

� �
�
ku (t)kq

+

q(:) + ku (t)k
q�

q(:)

�
� �K

q+

0 ku (t)kq
+

X0
; (46)
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and
NX
i=1

Z



����@u (t)@xi

����p(x) dx � NX
i=1





@u (t)@xi





p�
p(:)

= ku (t)kp
�

X0
: (47)

Plugging (46) ; (47) into (45) we get

d

dt
ku (t)k22 + 2 (b+ 1) ku (t)k

p�

X0
� 2K

q+

0 ku (t)kq
+

X0
� 0: (48)

Noting that by 2
p+ � 1, we derive the inequality (48) as following

d

dt
ku (t)k22 + (1 + 2b) ku (t)k

p�

X0
+

�
2

p+
ku (t)kp

�

X0
� 2K

q+

ku (t)kq
+

X0

�
� 0: (49)

By (49) we get
d

dt
ku (t)k22 + (2b+ 1) ku (t)k

p�

X0
� 0:

By using (15) and (8) we obtain

F 0 (t) +
1 + 2b

Sp�
F (t)

p�
2 � 0: (50)

(i) if p� = 2, that is, p(x) = 2, 8x 2 
, we have

F 0 (t) + �F (t) � 0;

where � = 1+2b
S2 , then we get

(ln (�F (t)))
0 � ��:

Integrating both sides of this inequality with respect to t,

�F (t) � �F (0) e��t:

Thus
F (t) � F (0)e��t:

that implies (16).
(ii) Let p� > 2. If u0 = 0, we take u0 � 0 as the solution of problem

(1). Assume u0 6= 0. If there exists t1 2 (0;+1) such that F (t1) = 0, we
consider the set = = f� 2 (0;+1) : F (�) = 0g and inf�2= � = t0. Then t0 > 0
because F (0) > 0. Also F (t0) = 0. As F 0(t) � 0 a.e. in (0;+1), then F (t) is
decreasing, therefore F (t) = 0 for all t � t0. Thus either F (t) = 0 for all t � t0
or F (t) > 0, for all t > 0. We prove inequality (43) for the second case, that is,
F (t) > 0, for all t 2 [0;+1). The inequality (43) for t 2 [0; t0) is derived in a
similar way. Recalling that p

�

2 = 1 + 
; 
 > 0. By (50), we obtain

F 0 (t) + �1F (t)
p�
2 � 0;

16



where �1 =
2b+1

Sp+
. Thus, we have

F 0 (t) � ��1F (t)
p�
2 : (51)

and
2�p�
2 F 0(t)

F
p�
2 (t)

� �1
�
p� � 2
2

�
:

Therefore, �
F

2�p�
2 (t)

�0
� �1 (p

� � 2)
2

Integrating both sides of this inequality with respect to t, we obtain

F
2�p�

2 (t) � F
2�p�

2 (0) + �1
p� � 2
2

t:

This implies inequality (17). This concludes the proof of Theorem 7.

2.3 Extinction of Solutions

In this section, �rstly, in order to obtain the extinction properties of weak so-
lutions, we introduce an auxiliary lemma on the ordinary di¤erential inequality
as follows.

Lemma 11 (see Lemma 3.2 in [6]) Assume 0 < l1 � l2 < r1 � r2 � 1 and
� � 0, � � 0 and ' is a nonnegative and absolutely continuous function, which
satis�es(

'0(t) + �min
�
'l1(t); 'l2(t)

	
� �max f'r1(t); 'r2(t)g ; t � 0;

'(0) > 0; �
maxf'r1�l1 (0);'r2�l1 (0)g

minf1;'l2�l1 (0)g < �;

then it holds(
'(t) �

�
'1�l1(0)� �0 (1� l1) t

� 1
1�l1 ; 0 < t < T0;

'(t) � 0; t � T0;

where

�0 = �min
�
1; 'l2�l1(0)

	
� �max

�
'r1�l1(0); 'r2�l1(0)

	
> 0;

and
T0 = �

�1
0 (1� l1)�1 '1�l1(0) > 0:
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Now, we can give the proof of Theorem 8.
Proof of Theorem 8. From (43) and (44) we have

d

dt
ku (t)k22 + 2 (1 + b)

Z



jru (t)jp(x) dx+ 2�
Z



ju (t)jq(x)�1 u (t) dx � 0: (52)

Furthermore, by using (15), Proposition 2 (i) and (8), we obtain

2 (1 + b)

Z



jrujp(x) dx

� 2 (1 + b)min
n
krukp

�

p(�) ; kruk
p+
p(�)

o
� �1min

n
kukp

�

2 ; kukp
+

2

o
= �1min

�
F

p�
2 (t); F

p+

2 (t)

�
; (53)

where �1 = 2 (1 + b)S
�p�
0 > 0. By Proposition 3 we have

2

����� Z



ju (t)jq(x)�1 u (t) dx
���� � 2�

Z



jujq(x) dx � 4�



jujq(�)




2
q(�)

k1k 2
2�q(�)

� �1max
n
kukq

�

2 ; kukq
+

2

o
= �1max

�
F

q�
2 (t) ; F

q+

2 (t)

�
; (54)

where
�1 = 4� (j
j+ 1)(

2�q�)=2 > 0:

Plugging (53) ; (54) into (52) we get

d

dt
ku (t)k22 + �1 (1 + b)min

�
F

p�
2 (t); F

p+

2 (t)

�
� �1max

�
F

q�
2 (t) ; F

q+

2 (t)

�
:

with 0 < p�

2 � p+

2 < q�

2 � q+

2 � 1. By using Lemma 11, we obtain

F 0(t) � ��0F
p�
2 (t);

where

�0 = �1min

�
1; F

p+�p�
2 (0)

�
� �1max

�
F

q��p�
2 (0); F

q+�p�
2 (0)

�
> 0;

that is

F (t) �
�
F

2�p�
2 (0)� �0 (2� p

�)

2
t

� 2

2�p�

; t � 0:

Thus, from F (t) � 0 with F (0) > 0, we get

F
2�p�

2 (t) � F
2�p�

2 (0)

�2� p
�

2

�
�1min

�
1; F

p+�p�
2 (0)

�
+ �1max

�
F

q��p�
2 (0); F

q+�p�
2 (0)

��
t
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for t 2 (0; T �), and
F (t) � 0

for t 2 [T �;+1), where

T � =
2F

2�p�
2 (0)

(2� p�)
�
�1min

n
1; F

p+�p�
2 (0)

o
� �1max

n
F

q��p�
2 (0); F

q+�p�
2 (0)

o� :
Thus the proof of Theorem 8 is complete.
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