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Abstract
In the present research, an advanced decomposition technique based on the Adomian decompo-
sition method is proposed to achieve the highly accurate numerical solution of non-linear initial
value problems of Bratu’s-type without any linearization, perturbation and discretization. For the
completeness of the proposed technique, convergence analysis is also addressed. The reliability,
generality and validity of the proposed technique are examined by calculating the absolute errors
of some initial value problems of Bratu’s type. Moreover, the obtained solutions are compared
graphically with the precise solution and also with some existing approaches solutions.
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1 Introduction

The study of nonlinear differential equations attracts many researchers due to their wide ap-
plications in several fields of science and engineering such as chemistry, mathematical physics
and mechanics etc. In this article, we consider the non-linear initial value problems (IVPs) of
Bratu’s type. First time, Bratu’s problem was introduced and became highlight in 1914 by G.
Bratu [1]. In the esteem of mathematicians Liouville and Gelfand, this problem is also known as
the "Liouville-Bratu-Gelfand" problem [2,3]. The most reliable form of the Bratu’s problem is as

ξ′′(θ) + λ N (ξ(θ)) = 0, 0 < θ < 1, (1)
∗Corresponding Author
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with initial conditions (ICs)

ξ(0) = σ, ξ′(0) = γ (2)

where N (ξ(θ)) = eµξ(θ), µ is +1 or -1 and λ, σ, γ are constant.
In real-world applications, Bratu’s problem (1)-(2) comes out in many physical models as radia-
tive heat transfer, fuel ignition model in the thermal combustion theory, nanotechnology, Chan-
drasekhar model of the expansion of the universe [4–6].
Bratu’s problem (1) has been used by many researchers to test the accuracy of their numerical
methods as: G. Hariharan et al. [7] applied Chebyshev wavelets method, in [8] authors used the
Legendre wavelet method. Recently, Adomian’s decomposition method (ADM) [9–11], Colloca-
tion method [12], Runge-Kutta method [13, 14], Operational matrix method [15], Bernstein and
Gegenbauer-wavelet methods [16], Perturbation method [17, 18], Optimal homotopy asymptotic
method [19, 20], Bessel collocation method [21], Hybrid method [22], etc have been used to solve
the Bratu’s problem (1).
Here, we establish an efficient advanced decomposition technique, which is based on the Duan-
Rach modified decomposition approach (DRA) [23, 24], to obtain the numerical solution of IVPs
of Bratu’s type (1). This technique is a powerful tool for the analytical and numerical solution of
singualr and non-singular differential equations which arises in the modeling of real-world physical
problems [25, 26]. According to Duan-Rach approach, solution ξ and the non-linear term N (ξ)

decomposes into an infinite series as: If

ξ(θ) =
∞∑
n=0

Cn(θ − θ0)n, (3)

then nonlinear term N (ξ) transformed into the following series

N (ξ) =
∞∑
n=0

An(θ − θ0)n, (4)

where An = An(ξ0, ξ1, · · · , ξn) are the Adomian polynomials [27, 28] and given by

An =
1

n!

dn

dµn

[
N

(
∞∑
k=0

µkξk

)]
µ=0

, n ≥ 0 (5)

where µ is a grouping constant.
Here, we can note that to handle the Adomian polynomials using formula (5) is a very lengthy and
time-dominating process. So, to generate the Adomian polynomials rapidly and easily, in [29–31]
authors presented an algorithm which works very well on the computer software like Mathematica,
Matlab, Python etc.
Algorithm:
For n ≥ 1,

C1
n = ξn, (6)

For 2 ≤ k ≤ n,

Ck
n =

1

n

n−k∑
j=0

(j + 1)ξj+1C
k−1
n−1−j. (7)
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Then An are given as

A0 = N (ξ0), and An =
n∑
k=1

N k(ξ0) C
k
n, for n ≥ 1. (8)

The rest of this paper is organised as: In the next Section 2, we discuss the decomposition
technique to solve the IVPs of Bratu’s type. Section 3, presents the convergence analysis of the
proposed technique. In section 4, the decomposition technique is implemented on various IVPs of
Bratu’s type. In the end, conclusions are summarized in section 5.

2 Advanced decomposition technique for the IVPs of Bratu’s type

Consider the Bratu’s problem (1)

ξ′′(θ) + λ N (ξ(θ)) = 0, (9)

subject to the initial conditions (IC)

ξ(0) = σ, ξ′(0) = γ. (10)

In this technique, solution ξ(θ) decomposed into an infinite series as

ξ(θ) =
∞∑
i=0

Ciθ
i, (11)

then non-linear term N (ξ(θ)) transformed into the series of Adomian polynomials Ai as,

N (ξ(θ)) = N

(
∞∑
i=0

Ciθ
i

)
=
∞∑
i=0

Aiθ
i. (12)

Now our job is to determine the solution coefficients Ci of the series (11).
Applying the initial conditions (10) on (11), we obtain

C0 = σ, C1 = γ. (13)

On substituting the equations (11)-(13) into (9), we have
∞∑
i=0

Ci+2(i+ 2)(i+ 1)θi + λ

∞∑
i=0

Aiθ
i = 0, (14)

which gives the relation

Ci+2 =
−λ Ai(C0, C1, · · · , Ci)

(1 + i)(2 + i)
, i ≥ 0 (15)

where Ai in terms of the Ci are calculated by using the algorithm (6-7).
To attain the nth- order numerical solution of problem (1) truncate the series (11) as

ξn(θ) =
n∑
i=0

Ciθ
i. (16)
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From the relations (13) and (15), (16) becomes

ξn(θ) = σ + γθ − λ
n−2∑
i=0

Ai
(1 + i)(2 + i)

θi+2 (17)

Equation (17) provides the desired numerical solution of problem (1).

3 Convergence analysis of decomposition technique

Convergence of Adomian decomposition method (ADM) and its modifications for the initial,
boundary value problems are discussed by many authors [25,26,32–34].
Here, we discuss the convergence of advanced decomposition technique for IVPs of Bratu’s type
(1). For this, equation (17) can be written in operator from as

ξ = σ +M(ξ) (18)

where

M(ξ) =M

(
∞∑
i=0

Ciθ
i

)
= γθ − λ

∞∑
i=0

Ai
(2 + i)(1 + i)

θi+2. (19)

Equation (17) can be rewritten as

ξn(θ) = σ + γθ − λ
n−1∑
i=1

Ai−1
i(i+ 1)

θi+1. (20)

Using (19) and (20), the operator form of (17) is as

ξn = σ +M(ξn−1), n ≥ 1. (21)

The convergence of approximate solution ξn defined by (21) is given by the ensuing theorem.

Theorem 1. Let Z = C[0, 1] be a Banach space with the norm ||ξ|| = max
0≤θ≤1

|ξ(θ)|, ξ ∈ C[0, 1].
Suppose the non-linear operatorM(ξ) given by (19) satisfies the Lipschitz condition

||M(ξ)−M(ψ)|| ≤ r ||ξ−ψ||, ∀ ξ, ψ ∈ C[0, 1] with Lipschitz constant r, 0 ≤ r < 1. If ||σ|| <∞,
then the sequence {ξn} defined by (21) converges to ξ.

Proof. For the convergence of {ξn}, first we prove the relation

||ξn+1 − ξn|| ≤ rn ||σ||, (22)

to prove it, we use induction principle.
For n = 1, from (21) and by the Lipschitz condition forM(ξ), we have

||ξ2 − ξ1|| = ||M(ξ1)−M(ξ0)|| ≤ r ||ξ1 − ξ0|| = r ||σ||, (23)

so (22) is true for n = 1.

For n = k, by induction principle (22) is true and we have

||ξk+1 − ξk|| = ||M(ξk)−M(ξk−1)|| ≤ rk ||ξk − ξk−1|| = rk ||σ||. (24)
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Finally, for n = k + 1,

||ξk+2 − ξk+1|| = ||M(ξk+1)−M(ξk)|| ≤ rk+1 ||ξk+1 − ξk|| = rk+1 ||σ||. (25)

From the relations (23)-(25), we observe that (22) is hold ∀ n ∈ N.
Now, to show that sequence {ξn} is convergent, we prove that {ξn} is a Cauchy sequence in the
Banach space C[0, 1].
For every n,m ∈ N, n ≥ m, using (22), we have

||ξn − ξm|| = ||(ξn − ξn−1) + (ξn−1 − ξn−2) + · · ·+ (ξm+1 − ξm)||
≤ ||(ξn − ξn−1)||+ ||(ξn−1 − ξn−2)||+ · · ·+ ||(ξm+1 − ξm)||
≤ rn−1 ||σ||+ rn−2 ||σ||+ · · ·+ rm+1 ||σ||+ rm ||σ||
≤ rm(1 + r + r2 + · · ·+ rn−m−1) ||σ||

≤ rm
(
1− rn−m

1− r

)
||σ||

(26)

since 0 ≤ r < 1, so 1− rn−m < 1 and ||σ|| <∞, then (26) reduces to

||ξn − ξm|| ≤
rm

1− r
||σ|| (27)

as m→∞ in (27), we get ||ξn − ξm|| → 0.

Therefore, {ξn} is a Cauchy sequence in the Banach space C[0, 1]. It implies that there exist a ξ
such that

lim
n→∞

ξn = ξ,

Hence ξn converges to ξ.

4 Simulation and results

The proposed advanced decomposition technique discussed in Section 2 is implemented on some
IVPs of Bratu’s type and the obtained results are compared with their exact solution, and also with
the existing methods in [7, 8, 19, 35]. To check the robustness and effectiveness of the proposed
technique, we introduce the error function as: If ξ(θ) and ξn(θ) are the exact and nth-order
approximate solution of given problem (1), then the absolute error En(θ) is given by

En(θ) = |ξ(θ)− ξn(θ)|. (28)

All numerical simulation related to these problems have been done on MATLAB R2018b.

Problem 1: Let λ = −2 and N (ξ(θ)) = eξ(θ) in equation (1), we obtain the IVP of Bratu’s type
as

ξ′′(θ)− 2eξ(θ) = 0, 0 < θ < 1 (29)

with initial conditions

ξ(0) = 0, ξ′(0) = 0. (30)
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This problem has the exact solution

ξ(θ) = −2 ln(cos(θ)).

Adomian polynomials for the term −2eξ(θ) of (29) by using the algorithm (6)-(7) are estimated as

A0 = −2 eC0

A1 = −2 C1 e
C0

A2 = −C2
1 e

C0 − 2 C2 e
C0

A3 = −2 C3 e
C0 − 1

3
C3

1 e
C0 − 2 C1C2 e

C0

...

Applying the decomposition technique discussed in Section 2, we obtain ξn(θ) for different n as

ξ10(θ) = (4.4e− 03) θ10 + (1.3e− 02) θ8 + (4.4e− 02) θ6 + (0.166) θ4 + θ2.

ξ12(θ) = (1.5e− 03) θ12 + (4.4e− 03) θ10 + (1.3e− 02) θ8 + (4.4e− 02) θ6 + (0.166) θ4 + θ2.
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Fig. 1: (a) Comparison between approximate solution ξ10(θ) and exact solution ξ(θ) of Problem 1.
(b) Absolute error E10(θ) in the approximate solution ξ10(θ) of Problem 1.
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Fig. 2: (a) Comparison between approximate solution ξ12(θ) and exact solution ξ(θ) of Problem 1.
(b) Absolute error E12(θ) in the approximate solution ξ12(θ) of Problem 1.
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Fig. 3: (a) Comparison between approximate solution ξ18(θ) and exact solution ξ(θ) of Problem 1.
(b) Absolute error E18(θ) in the approximate solution ξ18(θ) of Problem 1.

Table 1: Comparison of the Absolute Errors of Problem 1.

Present method
θ E10(θ) E12(θ) E18(θ) LWM [8] OHAM [19] TWM [35]

0 0 0 0 0 0 8.563e−05

0.1 1.595e−15 1.196e−16 1.145e−16 9.023e−08 6.410e−07 2.696e−05

0.2 6.135e−12 8.529e−14 6.939e−18 1.506e−07 9.746e−06 2.389e−05

0.3 8.104e−10 2.535e−11 9.437e−16 6.140e−07 4.529e−05 1.013e−05

0.4 2.624e−08 1.460e−09 2.794e−13 8.880e−06 1.271e−04 2.124e−05

0.5 3.950e−07 3.437e−08 2.512e−11 5.671e−05 2.686e−04 1.153e−05

0.6 3.676e−06 4.611e−07 1.008e−09 2.557e−04 4.836e−04 1.851e−05

0.7 2.466e−05 4.215e−06 2.329e−08 9.246e−04 8.367e−04 1.154e−05

0.8 1.307e−04 2.923e−05 3.610e−07 2.861e−03 1.600e−03 2.264e−05

0.9 5.823e−04 1.651e−04 4.149e−06 7.912e−03 3.649e−03 1.139e−05

1.0 2.275e−03 7.986e−04 3.796e−05 2.014e−02 9.391e−03 8.555e−05

Fig. 1(a), Fig. 2(a) and Fig. 3(a) depict the numerical result of the approximate solution
ξn(θ) for n = 10, 12, 18 and the exact solution ξ(θ) of Problem 1. Here, we observe that the
approximate solution and exact solution coincide nearly. Also, the absolute error between exact
ξ(θ) and approximate solution ξn(θ) for n = 10, 12, 18 of Problem 1 are shown in Fig. 1(b), Fig.
2(b) and Fig. 3(b). From these Figures, it is important to note that when we increase the order
of numerical solution errors are decreasing.

Table 1, represent the comparison of absolute errors En(θ) obtained by the proposed decomposi-
tion technique for n = 10, 12, 18 and the existing method as Legendre wavelet method (LWM) [8],
optimal homotopy analysis method (OHAM) [19] and Taylor wavelet method (TWM) [35], for
Problem 1. Table 1 shows that the Proposed technique provides the higher accuracy result with
less error in comparison to the methods in [8, 19,35].
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Problem 2: Let λ = −π2 and N (ξ(θ)) = eξ(θ) in equation (1), we obtain the IVP of Bratu’s type
as

ξ′′(θ)− π2eξ(θ) = 0, 0 < θ < 1 (31)

with initial conditions

ξ(0) = 0, ξ′(0) = π. (32)

This problem has the exact solution

ξ(θ) = −ln
[
1 + cos

(2θ + 1)

2
π

]
.

Adomian polynomials for the term −π2eξ(θ) of (31) are as

A0 = −π2eC0

A1 = −π2C1 e
C0

A2 = −π2C2 e
C0 − 1

2
π2C2

1e
C0

A3 = −π2C3 e
C0 − 1

6
π2c31e

C0 − π2C1C2e
C0

...

Applying the decomposition technique described in section 2, we obtain the approximate solution,

ξ12(θ) = (682.668) θ12+(372.3615) θ11+(204.8035) θ10+(113.7721) θ9+(64.0099) θ8+(36.5551) θ7

+(21.364) θ6 + (12.7508) θ5 + (8.1174) θ4 + (5.1677) θ3 + (4.9348) θ2 + π θ.
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Fig. 4: (a) Comparison between approximate solution ξ12(θ) and exact solution ξ(θ) of Problem 2.
(b) Absolute error E12(θ) in the approximate solution ξ12(θ) of Problem 2.
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Fig. 5: (a) Comparison between approximate solution ξ16(θ) and exact solution ξ(θ) of Problem 2.
(b) Absolute error E16(θ) in the approximate solution ξ16(θ) of Problem 2.
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Fig. 6: (a) Comparison between approximate solution ξ20(θ) and exact solution ξ(θ) of Problem 2.
(b) Absolute error E20(θ) in the approximate solution ξ20(θ) of Problem 2.

Table 2: Comparison of the Absolute Errors of Problem 2.

Present Method

θ E12(θ) E16(θ) E20(θ) EWM [7] OHAM [19]

-0.3 1.291e−04 1.272e−05 1.329e−06 1.280e−04 2.277e−03

-0.2 7.531e−07 1.467e−08 3.032e−10 4.025e−05 3.892e−04

-0.1 1.063e−10 1.297e−13 1.665e−16 4.822e−07 1.061e−05

0.0 0 0 0 0 0

0.1 1.548e−10 1.9e−13 1.110e−16 1.068e−07 4.681e−05

0.2 1.645e−06 3.252e−08 6.781e−10 7.068e−04 1.938e−03

0.3 4.570e−04 4.617e−05 4.906e−06 1.010e−06 2.534e−02

Again in Fig. 4(a), Fig. 5(a) and Fig. 6(a) we observe that the approximate solution ξn(θ) for
n = 12, 16, 20 and the exact solution ξ(θ) of Problem 2 coincide nearly. Also, the absolute error
between exact ξ(θ) and approximate solution ξn(θ) for n = 12, 16, 20 in Fig. 4(b), Fig. 5(b) and
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Fig. 6(b) show that on increasing the order of the numerical solution errors are decreasing. In
case of Problem 2 from Table 2, we can see that the proposed technique provides better result in
comparison to the efficient wavelet method (EWM) [7] and optimal homotopy analysis method
(OHAM) [19].

5 Conclusion

In this paper, an advanced decomposition technique is presented to obtain the numerical solution
of non-linear IVPs of Bratu’s type (1)-(2), with a fast algorithm to generate the Adomian polyno-
mials. The proposed technique does not require the linearization of non-linear terms, discretization
of the variables and any perturbed parameter to handle the non-linear problems of the type (1),
so attained results are more physically realistic in comparison to the existing approaches. For the
completeness of the proposed technique, in Theorem 1 we have proved that the decomposition
technique is convergent.

In section 4, to test the robustness and effectiveness of the proposed technique, we considered
two non-linear IVPs of Bratu’s type. In Fig. 1(a), Fig. 2(a), Fig. 3(a) and similarly in Fig. 4(a),
Fig. 5(a), Fig. 6(a) of Problem 1 and Problem 2, we observed that approximate solution ξn(θ)

are indistinguishable to the exact solution ξ(θ), which demonstrate that the proposed technique
works very well for Bratu’s problem (1). In addition, in Fig. 1(b), Fig. 2(b), Fig. 3(b) of Problem
1 and similarly in Fig. 4(b), Fig. 5(b), Fig. 6(b) of Problem 2, it is to be noted that as we increase
the order of numerical solution error are decreasing. Hence the accuracy of our obtained solutions
can be improved by adding more terms in the approximate series solution. Also, Tables 1 and 2
reveal that the proposed technique provides more accurate results in comparison to the methods
in [7, 8, 19,35].
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